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Abstract. Identification of sleep stages is crucial in the diagnosis of sleep-
related disorders but relies on the labor-intensive and manual scoring of overnight
polysomnography (PSG) recordings. To simplify the sleep staging process, deep
learning (DL) algorithms have been proposed to automatically analyze pulse rate
(PR) and blood oxygen saturation (SpO2) signals from pulse oximetry in children
with obstructive sleep apnea (OSA). However, existing approaches are perceived
as black boxes, limiting their implementation in clinical settings. Accordingly, we
develop a DL architecture based on a U-Net to automatically perform 4-class sleep
stage classification (wake, light sleep, deep sleep, and rapid-eye movement sleep)
using entire-night PR and SpO2 recordings. Furthermore, Semantic Segmentation
via Gradient-Weighted Class Activation Mapping (Seg-Grad-CAM), an eXplain-
able Artificial Intelligence methodology, is proposed to provide an interpretation
of the sleep scoring process. PR and SpO2 from 1,633 PSG recordings obtained
from the Childhood Adenotonsillectomy Trial database were used for these pur-
poses. The U-Net model showed a high performance for the 4-stage classification
procedure in an independent set, with 78.2% accuracy and 0.696 Cohen’s kappa.
The Seg-Grad-CAM heatmaps revealed that the PR signal has a higher contribu-
tion than SpO2 towards sleep staging, while also showing the key roles of mean
and variance in PR amplitude, along with changes in the content of PR spectral
bands, in the sleep staging process. These findings suggest that an explainable
DL model to analyze pulse oximetry signals could be integrated in the clinical
environment for automatic sleep staging in abbreviated pediatric OSA tests.

Keywords: Deep learning (DL) · explainable artificial intelligence (XAI) ·
pediatric obstructive sleep apnea (OSA) · pulse oximetry · sleep staging
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1 Introduction

Identification of sleep macro-structural changes (i.e., sleep stages) plays a crucial role
in diagnosing sleep-related disorders [1]. According to the American Academy of Sleep
Medicine (AASM) guidelines, each 30-s consecutive epoch of sleep must be scored as
wake (W), three levels of non-Rapid Eye Movement (non-REM) sleep (N1, N2, and
N3), or REM sleep [2]. Sleep technicians perform this scoring by manually examining
electroencephalography, electrooculography, and electromyography signals, which are
recorded along with cardiorespiratory signals during polysomnography (PSG) [2]. While
PSG is considered the gold standard, its analysis for sleep scoring is expensive, complex,
time-consuming, and often limited in availability, leading to delays in diagnosing sleep
disorders [3]. Additionally, manual sleep scoring faces significant inter-rater variability
[4], potentially impacting diagnostic accuracy.

With recent advances in deep-learning (DL) methodologies, various alternatives
based on the automated analysis of a reduced set of signals have been proposed to address
these PSG-related limitations [5]. Particularly, pulse oximetry devices have emerged as
a simplified option for sleep scoring and diagnosing sleep disorders, as they record
blood oxygen saturation (SpO2) and pulse rate (PR) signals at patient’s home through
a non-invasive probe [3, 5]. The time-frequency characteristics of PR and SpO2 signals
exhibit changes during sleep stages, leading to several studies using DL algorithms for
automatic sleep stage scoring from pulse oximetry signals [5].

A large proportion of these investigations has concentrated on sleep staging in indi-
viduals with obstructive sleep apnea (OSA), a highly prevalent sleep disorder affecting
nearly 1 billion people globally [3]. OSA diagnosis relies on the apnea-hypopnea index
(AHI: the number of apneas and hypopneas per hour of sleep), highlighting the impor-
tance of scoring sleep stages and calculating the total sleep time (TST) in this context
[2]. Importantly, most of these studies focused on adult OSA populations [6–9], whereas
only two conference papers developed by our own group have approached sleep stag-
ing from PR and SpO2 signals in pediatric OSA subjects [10, 11]. This imbalance is
not surprising, given that pediatric OSA involves distinct etiological, diagnostic, and
therapeutic considerations compared to adult subjects.

In these preliminary studies, sleep staging was performed using a standard convolu-
tional neural network (CNN) [10] and a CNN combined with a recurrent neural network
(CNN-RNN) [11], respectively. Despite proving valuable in learning stage-related fea-
tures from pulse oximetry signals, these DL architectures were trained on sequences of
10 and 100 30-s consecutive epochs [10, 11], respectively, limiting their performance
by not considering the whole-night dynamics of PR and SpO2 during sleep. Another
significant limitation in all state-of-the-art studies is the lack of interpretability of the
DL models [5], thus hindering broader acceptance in real clinical settings. On this note,
a recent report from the European Union emphasizes the necessity of enhancing the
reliability, transparency, and interpretability of artificial intelligence systems for their
responsible and well-informed implementation in society [12].

To overcome these limitations of the state-of-the-art, this study presents two novel
contributions. On the one hand, a DL architecture based on the U-Net framework is pro-
posed to point-wise identify W, light sleep (N1 and N2), deep sleep (N3) and REM sleep
stages in pediatric OSA patients from whole-night (subject-based) pulse oximetry (PR
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and SpO2) recordings. Conversely, an eXplainable Artificial Intelligence (XAI) analy-
sis based on Semantic Segmentation via Gradient-Weighted Class Activation Mapping
(Seg-Grad-CAM) is proposed to provide an interpretation of the features of PR and SpO2
signals linked with W, light sleep, deep sleep, and REM sleep stages. We hypothesize
that the application of subject-based DL and XAI algorithms to pulse oximetry signals
can derive in high-performance, interpretable, and consequently, clinically applicable
models for the automated detection of sleep stages in childhood OSA patients. Accord-
ingly, our main objective is to assess an explainable DL model with PR and SpO2 data
aimed at accurately detecting sleep stages in pediatric OSA patients.

2 Materials and Methods

2.1 Subjects and Signals

The Childhood Adenotonsillectomy Trial (CHAT) database was used in this work. CHAT
is a semi-public dataset comprising 1639 sleep studies conducted on pediatric subjects
aged 5–10 years old who were assessed due to clinical suspicion of OSA. Within this
dataset, there were 1633 PSG-derived PR and SpO2 recordings [13]. Each sleep study
in the database also includes annotations of sleep stages and apnea/hypopnea events,
which were performed following the AASM 2007 rules [14].

Data was partitioned into three independent sets: training, validation, and test. To
prevent potential biases arising from including PR and SpO2 recordings from the same
pediatric subject in multiple sets, the test set was composed of 858 PR and SpO2 record-
ings from the baseline (453 subjects) and follow-up (405 subjects) groups of the CHAT
database, whereas the subjects from the non-randomized (775 subjects) group of the
CHAT dataset were randomly allocated into training (75%, 588 subjects) and validation
sets (25%, 187 subjects). Table 1 presents the clinical and polysomnographic information
of the population under study.

PR and SpO2 recordings, originally acquired using sampling rates ( fs) from 1 to
512 Hz, were resampled to a common fs of 1 Hz [10, 11]. Subsequently, subject-based
standardization was implemented to normalize PR and SpO2 baseline levels across dif-
ferent children. Finally, adhering to the input requirements of the DL model and the total
recording time, all PR and SpO2 recordings were either padded or truncated to a com-
mon length of 12 h (L = 43200 samples). Truncation or zero padding was exclusively
applied to the start of each recording, and a value of 12 h was chosen to ensure that only
initial wake periods were either removed or added. According to the sleep stage label
of the corresponding 30-s epoch, every sample of the whole recordings is individually
labeled as W, light sleep, deep sleep, or REM sleep.

2.2 Proposed Deep-Learning Architecture

Figure 1 shows the overall U-Net-based DL architecture employed in this study. U-Net
is an encoder-decoder deep neural network originally designed for image segmentation
that allows point-wise prediction. U-Net has already shown its usefulness for sleep
scoring in adult OSA subjects [15]. The input section of the proposed U-Net consists
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of 12-h of resampled PR and SpO2 data (2xL samples). This input is first processed
through an encoder consisting of four layers, aimed at learning low-level stage-related
features from PR and SpO2 signals. Each layer consists of a convolutional block (conv
block) followed by a max-pooling and a dropout layer. Each conv block comprises three
stacked sub-blocks, being each sub-block composed of a 2D convolution operation with
Nf filters and a kernel size of 2 × 3, a Rectified Linear Unit (ReLU) activation, and
batch normalization. As in the standard U-Net, Nf is initially set as 64 and its value is
doubled with the level of depth (layer) of the network.

After the encoder, the extracted feature maps are further processed at the bottleneck
of the network through one conv block prior to the decoder. Analogously to the encoder,
the decoder consists of four layers intended to extract high-resolution feature maps, each
of them comprising a dropout layer, a 2D transposed convolution (Conv2DTranspose),
and a conv block. To preserve the low-level features, skip connections are added from the
encoder layers to the corresponding decoder layers. Finally, the last layer of the U-Net
is a softmax activation, which is used to generate a point-wise prediction as the output
(Lx4 samples), which describes the probability of each sample belonging to W, light,
deep, and REM sleep stages.

For the sake of completeness, U-Net was not only trained using PR and SpO2 data
(U-NetPR-SpO2), but also using single-channel PR (U-NetPR) and SpO2 (U-NetSpO2) data.

Table 1. Clinical and polysomnographic data of the children in the CHAT database. TRT = total
recording time. Data are presented as median [interquartile range] or n (%).

All Training set Validation set Test set

Subjects (n) 1633 (100) 588 (36.0) 187 (11.5) 858 (52.5)

Age (years) 7 [6–8] 7 [6–8] 7 [6–8] 7 [6–8]

Males (n) 776 (47.5) 278 (47.3) 82 (43.9) 416 (48.5)

AHI (e/h) 2.5 [1.1–5.9] 1.4 [0.8–2.8] 1.5 [0.7–3.0] 4.1 [2.2–8.0]

TRT (hours) 9.8 [9.1–10.8] 9.6 [8.9–10.6] 9.7 [9.1–10.8] 9.9 [9.2–10.9]

Wake (%) 22.8 [15.8–29.4] 21.9 [14.7–28.5] 23.3 [16.5–30.0] 23.3 [16.3–30.0]

Light (%) 38.7 [33.0–44.5] 39.2 [33.1–45.0] 37.6 [32.6–43.4] 38.4 [33.0–44.2]

Deep (%) 23.1 [19.5–27.8] 23.3 [19.6–28.2] 23.8 [19.4–28.2] 22.9 [19.5–27.4]

REM (%) 14.1 [11.6–16.8] 13.9 [11.1–16.9] 14.3 [11.5–16.8] 14.1 [11.7–16.7]

2.3 eXplainable Artificial Intelligence Analysis

In this study, XAI has been applied using the Seg-Grad-CAM method to understand
the internal processes of the U-Net in relation to the prediction of sleep stages [16].
Seg-Grad-CAM is an extension of the well-known Grad-CAM method for semantic
segmentation, which can produce heatmaps that explain the relevance for the decision
of individual points or regions of interest (ROI) in the input data [16]. Given a target
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Fig. 1. Overview of the proposed U-Net-based DL architecture for sleep staging.

class c, a region of interest ROIc, and the feature map Ak of a chosen 2D convolutional
layer, Seg-Grad-CAM computes the heatmap Lc using the following expression:

Lc = ReLU
(∑

k
αc

k · Ak
)
, (1)

where αc
k are the weights denoting the importance of each feature map for the output

class c, yc, in the region ROIc:

αc
k = 1

Z

∑
u,v

∂
∑

i∈ROIc yc
i

∂Ak
u,v

. (2)

In this study, c is one out of the four sleep stages (W/Light/Deep/REM), ROIc is the
region of points predicted as c, and Ak are the feature maps at the last 2D convolution
of the bottleneck layer [16]. Seg-Grad-CAM-derived heatmaps were finally normalized
and resized for a joint visualization with the raw PR and SpO2 data.

2.4 Statistical Analysis

The DL models output prediction probabilities for each of the 4 sleep stages at each
point of the recordings, which were converted into sleep stage predictions by selecting
the class with the highest probability. As manual sleep scoring is performed for each
30-s epoch, the per-epoch output label was obtained as the predicted sleep stage most
represented within the 30-s epoch. All zero-padded regions were removed before calcu-
lating performance measures. The overall performance of the U-Net for automatic sleep
staging was finally assessed by means of the 4-class accuracy (Acc), Cohen’s kappa
index (kappa), macro F1-score (MF1), and per-class F1-score (F1).

3 Results

3.1 Sleep Staging Performance

Table 2 shows the performance metrics of the three U-Net models (U-NetPR-SpO2, U-
NetPR, and U-NetSpO2) for the four-stage classification procedure (W/Light/Deep/REM)
in the test set. As expected, the U-NetPR-SpO2 model achieved a higher performance (Acc
= 78.2%, kappa = 0.696, and MF1 = 78.3%) than the U-NetPR (Acc = 75.5%, kappa
= 0.659, and MF1 = 75.7%) and U-NetSpO2 (Acc = 60.7%, kappa = 0.447, and MF1
= 58.9%) models.
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Table 2. Sleep staging performance metrics for U-NetPR-SpO2, U-NetPR, and U-NetSpO2 models.

Overall metrics Per-class F1-score (F1) (%)

Acc (%) kappa MF1(%) W Light Deep REM

U-NetPR-SpO2 78.2 0.696 78.3 86.7 75.1 76.3 74.9

U-NetPR 75.5 0.659 75.7 85.7 71.9 73.9 71.3

U-NetSpO2 60.7 0.447 58.9 76.6 59.1 59.6 40.2

3.2 Identification of PR and SpO2 Patterns

Figure 2 and Fig. 3 show Seg-Grad-CAM visualizations of the PR and SpO2 signals
of a representative subject, respectively. These heatmaps were computed for samples
predicted as W, Light, Deep, and REM sleep stages by the U-NetPR-SpO2 model. For
each heatmap, a zoom in a relevant region of the heatmap is included at the right,
together with the short-time Fourier transform, which better shows the time-frequency
characteristics of the PR and SpO2 patterns that the model is focusing on to make the
prediction. Notice that the PR signal has a remarkably higher contribution than SpO2
towards sleep staging, as derived from the heatmap amplitude in Figs. 2 and 3. In this
respect, the heatmaps are highlighting well-known time-frequency PR characteristics
(Fig. 2): mean and variance in PR, as well as predominance of very low frequency
(VLF), low frequency (LF), and/or high frequency (HF) content. Despite having a lower
importance for sleep staging, SpO2 baseline amplitude and the presence and depth of
oxygen drops (desaturations) are also emphasized by Seg-Grad-CAM (Fig. 3).

4 Discussion and Conclusions

To our knowledge, this is the first study combining DL and XAI approaches for the
accurate and interpretable detection of sleep stages from pulse oximetry signals. The
proposed DL model based on U-Net (U-NetPR-SpO2) showed a remarkable performance,
with 78.2% Acc, 0.696 kappa, and 78.3% MF1 for W/Light/Deep/REM sleep scor-
ing. The superior performance of U-NetPR-SpO2 over U-NetPR, and U-NetSpO2 models
indicates that SpO2 and PR show complementarity in sleep stage detection, as we also
reported in [10]. The obtained kappa value (in the range 0.61–0.80) highlights substantial
agreement with manual PSG scoring [10, 11], suggesting its potential for sleep staging
in at-home pulse oximetry tests for childhood OSA screening.

Our results also showed that the proposed XAI approach based on Seg-Grad-CAM
can identify time-frequency PR and SpO2 features used by the U-Net model to point-wise
predict each stage through the entire sleep recording. Regarding PR, the Seg-Grad-CAM
heatmaps showed that PR amplitude is higher in W than in NREM (Light and Deep)
sleep, which agrees with a recent work by Martín-Montero et al. [17] in the pediatric
OSA context. We also showed the influence of: (i) HF activity during light and deep
sleep, which is consistent with the higher content during NREM sleep found by Martín-
Montero et al. [17] within a subject-adaptive respiratory band; (ii) LF activity during W
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and deep sleep, which warrants further research; (iii) VLF activity in W, Light and REM
sleep stages, which agrees with a macro-sleep disruptions band found by Martín-Montero
et al. [17] within this range (0.001–0.005 Hz).

Fig. 2. Seg-Grad-CAM visualizations of the PR signal of a representative subject for: (A) Wake;
(B) Light sleep; (C) Deep sleep; (D) REM sleep. Blue lines delineate the regions of interest
containing samples predicted as the corresponding sleep stage.
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Fig. 3. Seg-Grad-CAM visualizations of the SpO2 signal of a representative subject for: (A)
Wake; (B) Light sleep; (C) Deep sleep; (D) REM sleep. Blue lines delineate the regions of interest
containing samples predicted as the corresponding sleep stage.

Seg-Grad-CAM heatmaps also revealed some changes in SpO2 baseline amplitude
and oxygen drops during sleep stages, although their contribution towards sleep staging
was considerably lower than PR patterns (see Figs. 2 and 3), which can be explained by
the higher performance of U-NetPR with respect to U-NetSpO2. In light of the reported
findings, our XAI approach could facilitate: (i) the development of a novel guideline for
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scoring sleep stages from pulse oximetry; (ii) its implementation in a remote processing
server or portable devices to offer automatic and interpretable sleep stage predictions.

Recent studies have shown the usefulness of DL approaches applied to pulse oximetry
signals for sleep staging in adult [6–9] and pediatric OSA patients [10, 11]. While prior
research in adults reported kappa values between 0.64–0.75 for W/Light/Deep/REM
detection [6–9], our study focuses on pediatric OSA, introducing an explainable DL
model that obtained a kappa value within this range (0.696). In this respect, the dif-
ferences in cardiorespiratory and neurophysiological activity during sleep in children
compared to adults emphasize the need for specific automatic sleep scoring models for
pediatric subjects [2]. Conversely, two preliminary works by our group reported kappa
values of 0.680 [10] and 0.743 [11] for W/NREM/REM (3-stage) sleep detection in
pediatric subjects, whereas the kappa value for 3-stage classification derived from our
U-Net model is 0.787. This highlights the importance of considering the whole-night
dynamics of PR and SpO2 during sleep. The current study also contributes with a XAI
analysis based on Seg-Grad-CAM that offers an interpretation of pulse oximetry patterns
considered by the U-Net for sleep staging.

Despite these interesting results, some limitations remain. First, although the sample
size is large, additional pediatric datasets would be desirable to improve model generaliz-
ability. Similarly, another potential future goal could be to design and assess a DL model
tailored for sleep scoring across various age groups (children, adolescents, adults, and
elderly patients). While the proposed interpretability and visualization approach based
on Seg-Grad-CAM has successfully identify PR and SpO2 patterns influencing stage
predictions, it has been claimed that current XAI approaches may present challenges
for individual patient decision-making [18]. Thus, further research exploring alternative
XAI and visualization techniques is warranted for a comprehensive analysis.

In summary, we obtained an accurate U-Net-based DL model to automatically score
sleep stages in childhood OSA patients from PR and SpO2, with a higher performance
than the reported by previous studies. Furthermore, our XAI approach based on Seg-
Grad-CAM allowed to identify those PR and SpO2 features contributing to the detection
of wake, light sleep, deep sleep, and REM sleep stages. In particular, the following time-
frequency patterns of the PR signal have been here highlighted as important for sleep
stage detection: mean and variance in PR amplitude, as well as changes in the spectral
content of PR within VLF, LF, and HF bands. These results suggest that combining DL
and XAI analysis can be useful to accurately perform automatic sleep staging in pulse
oximetry tests for pediatric OSA diagnosis.
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