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Abstract 
Pediatric patients suffering from obstructive sleep apnea (OSA) 
show different responses to treatment, being the reasons for this 
heterogeneity not completely understood. The phenotypic 
characterization of this disease could shed new light to 
personalized treatments by identifying predictive factors of the 
patient's evolution. In this context, the objective of this study is to 
identify subgroups of patients, as well as the most relevant 
variables to differentiate them. This was conducted using a 
modularity analysis applied to a subject-based association 
network. The Childhood Adenotonsillectomy Trial (CHAT)-
baseline dataset participated in the study. It comprises 464 
pediatric patients ranging 5-10 years of age that includes a 
variety of sociodemographic and clinical data. A novel variation 
of the association network generation methodology allowed to 
obtain a network where each node represents a subject, and the 
links represent the associations between its characteristics. After 
applying a bootstrap-based approach and network modularity 
analysis following Blondel's algorithm, 3 subgroups of patients 
with similar intragroup phenotypic characteristics, but 
significantly different intergroup features, were identified. The 
main defining characteristics of each group were age, sex, 
presence of hypertension, and weight-related characteristics. 
Together, these findings highlight the need for acquiring clinical 
and sociodemographic data beyond those purely derived from 
polysomnography to provide a tailored diagnosis and treatment, 
while showing the ability of the new proposed methodology to 
find modules of subjects with well-differentiated phenotypical 
characteristics. 

1. Introduction 
Pediatric obstructive sleep apnea (OSA) is a breathing 
disorder with high prevalence, affecting between 1 to 5% 
of the children worldwide [1]. It is characterized by the 
recurrent repetition of episodes of complete cessation 
(apneas) and decreases (hypopneas) of breathing during 
sleep that lead to hypoxemia, changes in intrathoracic 
pressure, surges in sympathetic activity, and changes in the 
heart rate regulation. Together, this get rise to the specific 
disruption of normal oxygenation and sleep patterns that 
depends on each patient [1]. 

OSA is diagnosed using standardized protocols based on 
overnight polysomnography (PSG) [2]. Then, 
adenotonsillectomy is the first line of treatment for the 
affected children. Nonetheless, the effectiveness of 
adenotonsillectomy is estimated to be no greater than 79% 

of cases [3]. Those children who are not candidates for 
adenotonsillectomy typically require continuous positive 
airway pressure (CPAP) therapy. Adherence and tolerance 
to treatment is highly heterogeneous though, which 
suggests the need for tailored treatments. There is therefore 
a need to develop personalized clinical protocols based on 
precision medicine for an objective characterization of the 
disease leading to more accurate diagnosis and treatments. 

In adult OSA, factors predicting treatment adherence have 
been scarcely studied, obtaining disparate results among 
the few works oriented to this problem. These findings 
varied among studies, with the most consistent ones being 
the severity of OSA based on the initial PSG parameters 
and the daytime sleepiness [4]. On the contrary, illness 
severity does not appear to be a predictive factor for 
adherence in children [5]. Although it has been suggested 
that OSA treatment maximize the reversibility of the 
adverse effects in the affected children [6], potential 
adherence predictors have remained even more unexplored 
to date. Therefore, the search of subgroups of pediatric 
OSA population with differentiating characteristics could 
help provide patient-oriented diagnosis and treatment. 

In this context, the objective of this study is to identify 
subgroups of pediatric OSA patients, as well as the most 
relevant variables of each subgroup. Some previous studies 
in adults successfully used an automatic analysis based on 
a k-means algorithm extension to determine 3 adult 
clusters/phenotypes [7]. Alternatively in this work, we 
propose a novel technique via modularity analysis applied 
to associations networks. Particularly, our proposal is the 
use of a variation of this technique to identify subgroups of 
patients with characteristics that could have been hidden by 
other conventional clustering techniques. This family of 
techniques, widely known in fields such as genetics [8], 
[9], has not been applied in the context of pediatric OSA, 
except for a single previous study in which it showed 
enormous potential to differentiate 
electroencephalographic patterns [6]. 

Based on the previous evidence shown in studies involving 
adults [4], [7], our starting hypothesis states that it is 
possible to find groups of pediatric OSA patients with well-
differentiated phenotypic characteristics. 



 

2. Materials and methods 
2.1. Participants 

In this study, we used the multicenter Childhood 
Adenotonsillectomy Trial (CHAT)-baseline dataset [3], 
after obtaining proper approval (www.sleepdata.org). This 
dataset is comprised of 464 pediatric patients ranging 5-10 
years of age. All these patients met the criteria for being 
considered for adenotonsillectomy. PSG was conducted 
and apnea/hypopnea events were scored according to the 
American Academy of Sleep Medicine 2007 guidelines 
[2]. The OAHI was defined as the number of all obstructive 
apneas and hypopneas. In addition to PSG data, clinical, 
and sociodemographic variables were also acquired. 
Among all the information, a total of 26 variables were 
used to try to identify the phenotyping subgroups. These 
were selected to get the set of variables with the highest 
coincidence degree with previous studies in adults among 
all the variables included in the CHAT database [7]. 

2.2. Association networks 

The association network analysis is a technique used in 
different fields to assess the relationship between 
categorical variables [6]. In this approach, the nodes in the 
network represent the variables under study, while the 
values of the connection between the nodes are an index of 
the association between each pair of variables. 

We here propose a modification of this approach in which 
the nodes represent the subjects under study (unlike the 
usual technique where each node represents a variable). 
Each subject is then characterized by a vector of 
categorized variables (26 in this case). Therefore, the 
values of each link between nodes are computed as the Χ-
square value (appropriate for categorical data) between the 
vector of a given pair of subjects. Thereby, subjects with 
higher degree of association between them will obtain a 
high value in their connection. 

In order to remove the links with a residual association 
between the respective nodes, we only maintain those links 
with a statistical degree of association between them (p < 
0.05). This results in a semi-weighted network, i.e., the 
values of non-significant links are set to zero, while the 
other links are set to the Χ-square value of a given pair of 
nodes.  

2.3. Bootstrap procedure 

Aiming at increasing the robustness of the results, a 
previously validated bootstrap procedure was applied [6], 
[9]. We first randomly selected a subgroup of 26 variables 
with possible repetition. Then, the association network, 
i.e., association matrix, was estimated following the 
previously described computations between nodes 
(subjects). This procedure was repeated 1000 times, 
selecting the mean value matrix for subsequent analysis 
among all those obtained. This methodology provides 
more robust networks in the sense of higher reproducible 
results, while allowing the evaluation of the stability of the 
network. Thus, if the parameters obtained in the generated 
networks have a high variance, it implies that the network 

is not very stable and, therefore, reaches less generalizable 
results [9], [10]. 

2.4. Network visualization 

The resulting network were represented using Gephy 
(version 0.9.6) software. It allows to represent the network 
using ForceAtlas2 approach [11]. ForceAtlas2 is based on 
visualizing the associations between nodes (subjects) by 
mirroring physical attraction and repulsion forces. 
Considering both the distance and the node degree (sum of 
the Χ-square values reaching a node) of the connected 
nodes, this method turns structural proximities into visual 
proximities. In this way, subjects with a higher level of 
association between them are more likely to appear closer 
in the network. 

2.5. Cluster analysis 

Cluster analysis aimed at finding similar groups of 
subjects, where "similarity" means a global measure over 
the full set of characteristics. In this study, we used an 
unsupervised learning algorithm for clustering the data in 
the association network, meaning in this context that the 
algorithm neither has prior information about the number 
of clusters that exist before running the model nor does it 
make assumptions about relationships within the data. 
Particularly, we used Blondel’s modularity [12]. This is a 
heuristic method based on modularity optimization. It is 
shown to outperform all other known community detection 
methods in terms of computation time, being important in 
large networks. The algorithm provides a modularity value 
that indexes the modular characteristic of the network and, 
more importantly, it gives a label for each node indicating 
the cluster to which said node belongs. 

3. Results 
The generated network model is shown in Figure 1. The 
color of the nodes (patients) indicates each of the 3 groups 
automatically identified by Blondel's algorithm. On the 
other hand, the size of each node represents the average 
level of association with the rest of the nodes in the 
network. In addition, after applying the ForceAtlas2 
algorithm, the nodes are placed so that those with the 
highest level of association between their parameters will 
appear spatially closer. As both the size of the nodes and 
the position of them depends on the level of association, a 
relationship between them can be observed. Thus, the 
largest nodes tend to appear centered in the network, while 
the smallest nodes are located on the periphery of the 
network. 

Among the 26 variables used, Table 1 shows the 8 with the 
highest differences among the 3 modules automatically 
defined. As observed, these modules showed well 
differentiated values among these variables. First, module 
A (green) consists of 136 subjects, all of them males. On 
the contrary, module B (orange) is composed of 123 female 
patients. Module C (purple) include both male and female 
patients with similar percentages (41.1% and 58.9%, 
respectively). Age also proved to be one of the most 
differentiating characteristics among modules. 
Interestingly, module C had a significantly higher mean 
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age, with 65.8% of patients in this module older than 7 
years of age.  

Module C showed other noteworthy characteristics 
frequently related to weight. A noticeable example is that 
the 98.52% of patients in this module are overweight or 

obese. Also, waist and neck circumference showed 
significant higher values compared to modules A and B. In 
fact, among all overweight/obese, increased waist, and 
increased neck subjects, 93.75%, 98.36%, and 69.37% out 
of them belong to module C.  

Finally, in line with the previously mentioned results, the 
subjects belonging to module C also showed differentiating 
clinical characteristics, as in the Epworth sleepiness scale 
(ESS). About a quarter of the subjects in this module 
showed excessive daytime sleepiness. Interestingly, OAHI 
was the characteristic with lower significant differences 
between the three modules. Together, these results 
highlight the noticeable association between different PSG, 
sociodemographic, and clinical parameters, as well as the 
ability of the proposed methodology to find modules of 
subjects with well-differentiated characteristics.  

4.  Discussion 
In this study, we applied a novel association network-based 
approach to identify phenotypic profiles in children with 
OSA. After the use of a robust bootstrap-based statistical 
assessment, the conducted unsupervised modularity 
analysis revealed 3 distinctive groups of pediatric OSA 
patients. 

One of the identified subgroups (module C) showed a 
distinctive profile in obesity-related variables, such as 
BMI, and waist and neck circumferences. Interestingly, 
previous studies related obesity to the ability to adhere to 
treatment in children suffering from OSA [13]. Moreover, 
and again in line with previous studies [5], this group did 
not show a higher OSA-severity profile in terms of OAHI. 
Indeed, OAHI was the characteristic with the lowest 
differences among the 8 variables of Table 1. 

 Module A (green) Module B (orange) Module C (purple) Χ-square test 
(Χ | p) 

Subjects (#) 136 126 202 - 

Sex (males% | females%) 100 | 0 0 | 100 41.1 | 58.9 267.8 | <0.001 

Age (% between 5-6 years | 7-
8 years | 9-10 years) 77.2 | 18.4 | 4.4 68.3 | 26.2 | 5.6 34.2 | 43.6 | 22.2 76.8 | <0.001 

OAHI (% < 1 event/hour | > 1 
event/hour) 1.5 | 98.5 11.9 | 88.1 3.0 | 97.0 12.1 | 0.002 

BMI (underweight% | 
normal% | overweight% | 

obese%) 
6.6 | 87.5 | 4.4 | 1.5 4.8 | 89.7 | 4.8 | 0.8 0 | 1.5 | 25.7 | 72.8 398.3 | <0.001 

Waist circumference 
(normal% | increased%) 73.0 |27.0 60.3 | 39.7 2.5 | 97.5 202.8 | <0.001 

Neck circumference (normal% 
| increased%) 100 | 0 99.2 | 0.8 70.3 | 29.7 51.4 | <0.001 

Arterial hypertension (No% | 
Yes%) 94.8 | 5.1 95.2 | 4.8 81.7 | 18.3 21.2 | <0.001 

Epworth sleepiness scale 
(No% | Yes%) 83.8 | 16.2 80.9 | 19.0 74.75| 25.25 27.1 | <0.001 

Table 1. Summary of the main differences between modules of the clinical, socio-demographic, and PSG data. 

 
Figure 1. Subject-based association network of the pediatric 
OSA patients. The network is derived from clinical, socio-
demographic, and PSG data after a bootstrap procedure. 
The size of each node (patient) is determined by the average 
level of association with the rest of the nodes in the network. 
The color represents the module to which it belongs 
according to Blondel's algorithm [12]. Its spatial distribution 
follows a heuristic of attractive and repulsive force to reach 
a stable position of all the nodes, following ForceAtlas2 
approach [11].  



 

In addition to the obesity-related variables, our subject-
based association networks let identify new characteristics 
that, although potentially associated with weight, have not 
been related to phenotypic subgroups of pediatric patients. 
This is the case of the age, sex, sleepiness, and arterial 
hypertension. All of them showed great significant 
differences between the subgroups of patients found. 
Based on these findings, it seems feasible to establish the 
hypothesis that patients belonging to module C may have 
either lower response to adherence or treatment [5], thus 
benefiting the most of personalized interventions. This, 
however, remains unexplored, so future studies with a 
longitudinal design could be conducted to evaluate it. 

Curiously, a recent work focused in adult OSA 
phenotyping, and using 40 variables, showed 3 different 
modules too [7]. Despite some of the variables defining the 
subgroups are not suitable for children, such as alcohol 
consumption, the authors also reported the high importance 
of obesity, neck circumference, sex, and age to define the 
groups [7].  

Among the limitations of the study, it is worth highlighting 
the lack of cognitive variables for the identification of 
subgroups of subjects. In this regard, recent works show 
the importance of exhaustively characterize the phenotypic 
profile of patients and recommend decreasing the threshold 
for conducting adenotonsillectomy from 5 event/hour of 
OAHI to 1 events/hour if the child presents associated 
neurocognitive symptoms [14]. Therefore, future studies 
should include these types of variables into account when 
establishing subgroups of patients with the aim of finding 
those who respond appropriately. In addition, a 
longitudinal study design could provide important clues 
regarding the adherence capability to treatment of each 
subgroup of pediatric patients. Finally, the use of variables 
tailored to children could derive in higher modularity 
degrees. 

5. Conclusions 
In this study, a new method grounded on subject-based 
association networks, and its modularity analysis, was 
proposed to identify subgroups of OSA patients with well-
differentiated phenotypic characteristics. Our novel 
proposal reached results coherent with other studies 
conducted in both adults and children. One of the three 
subgroups automatically identified shows a profile of 
variables consistent with lower adhere/response to 
treatment. Additionally, the usefulness of previously 
unexplored variables relevant for OSA subgrouping were 
determined. This opens the door to the search for new 
predictive variables of adherence and response to pediatric 
OSA treatment, while highlighting the need for 
simultaneously acquiring clinical and sociodemographic 
variables beyond those purely derived from PSG to provide 
tailored diagnosis and interventions. 
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