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Towards Automatic Artifact Rejection in Resting-State MEG
Recordings: Evaluating the Performance of the SOUND Algorithm

Vı́ctor Rodrı́guez-González, Jesús Poza, IEEE Senior Member, Pablo Núñez,
Carlos Gómez, IEEE Senior Member, Marı́a Garcı́a, IEEE Senior Member, Yoshihito Shigihara,

Hideyuki Hoshi, Eduardo Santamarı́a-Vázquez, Roberto Hornero, IEEE Senior Member

Abstract— In this study, a new automated noise rejection
algorithm, the SOurce-estimate-Utilizing Noise-Discarding al-
gorithm (SOUND), was evaluated on magnetoencephalographic
(MEG) resting-state signals in order to select its optimal
configuration parameters. Different values of the epoch length
and the regularization parameter λ0 were assessed in three
scenarios with ascending noise levels. Results show that it
is possible to remarkably improve the Signal-to-Noise Ratio,
without overly altering the signal of interest. An optimal λ0
value of 0.1 was obtained. However, the epoch length should
be adapted to the specific problem. In conclusion, our results
suggest that the SOUND algorithm is an appropriate and useful
tool to be applied in a preprocessing pipeline for MEG resting-
state signals.

I. INTRODUCTION

Magnetoencephalography (MEG) is an electrophysiolog-
ical brain imaging method, which records magnetic signals
generated by neurons at the scalp level. MEG has a high
economic cost, but provides low invasivity and high temporal
and spatial resolution [1]. This offers advantages over other
brain imaging techniques like electroencephalography, func-
tional magnetic resonance imaging and positron emission
tomography, which suffer from low spatial resolution, low
temporal resolution and high invasivity level, respectively
[1].

MEG can be used in clinical environments to detect
cerebral injuries or tumors, to study cognitive processes in
fetuses and newborns, or to localize foci on epileptic patients,
among others [2]. MEG is also widely used in research
scenarios related to many neurodegenerative diseases, such
as Alzheimer [3], schizophrenia, or bipolar disorder [4].
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Ciencia, Innovación y Universidades’ and FEDER under project DPI2017-
84280-R.
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There are two main types of MEG recordings: (i) evoked
responses, which measure the brain response to a certain
motor, sensory or cognitive event; and (ii) resting-state,
where the brain activity is recorded when an explicit task
is not being performed [1].

In both cases, in order to perform an effective analysis,
a preprocessing of the MEG signals has to be applied. This
process should reduce the presence of noise from different
sources in the cortical signals. For this purpose, different
methods can be applied, like filtering, umbralization, inde-
pendent component analysis or source space projection [5],
[6], [7]. However, some of these procedures are not purely
objective and suffer from a great dependence on the criteria
of the professional who performs the analyses [6], [7].

In order to develop a fully automated preprocessing al-
gorithm, a quantitative way of rejecting noise is required.
This would allow an objective and professional-independent
noise rejection process [8], [9]. This issue has been addressed
by many research groups, which have developed different
automated processes for noise rejection [8], [9], [10], [11].
In this paper, we have assessed the SOurce-estimate-Utilizing
Noise-Discarding (SOUND) algorithm due to its outperfor-
mance over other preprocessing techniques and its ease of
use [8]. The SOUND algorithm provides a fully automated
artifact rejection method. It uses the source-level signals
to cross-validate the information between sensors. The al-
gorithm has been previously tested with evoked responses
[8], but not with resting-state signals. Hence, this paper
focused on evaluating the algorithm with the latter. Moreover,
we wanted to determine the optimal parameter values to
establish a fully automated pipeline of applying SOUND on
MEG resting-state recordings.

II. SUBJECTS AND MEG RECORDINGS

The sample consisted of 3 subjects: 2 male (aged 83 and
85 years) and 1 female (aged 94 years). The corresponding
MEG recordings were inspected by a specialist and classified
in three scenarios with ascending noise levels (low, medium,
and high) showing different types of artifacts (cardiac, ocular,
movement, etc.).

The Ethical Committee of the Hokuto Hospital (Obihiro,
Japan) approved the study according to the Code of Ethics
of the World Medical Association (Declaration of Helsinki).

MEG recordings were obtained using a 160-channel axial
gradiometer MEG system (Yokogawa-KIT, Yokogawa Elec-
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tric) at the Hokuto Hospital, Obihiro, Japan. MEG activity
was recorded at a sampling rate of 1000 Hz. Subjects were
asked to keep their eyes closed and to remain still and
awake during MEG acquisition. To prevent somnolence,
MEG activity was monitored in real time. Eighty seconds
of resting-state MEG activity were selected for each subject.

III. METHODS

A. The SOUND Algorithm

The SOUND algorithm is a Wiener estimator that mini-
mizes the mean-squared error in the estimated clean signal
[8]. SOUND uses anatomical information of the head from a
forward model to make a cross-validation of the information
in different sensors. Thereby, noise and artifacts can be
identified and removed from the signal of interest [8].

The signal measured by sensor S at T time points, Y, can
be written as [8]:

Y = Y + N = LJ + N, (1)

being Y the measured data, Y the noiseless data, N the
noise, L the leadfield matrix, and J the clean source-level
data.

To estimate Y from Y, a clean estimation of the noiseless
source-level signal, J, is needed. For this task, the noise
covariance matrix, Σ, is needed. If we consider the noise
to be uncorrelated across sensors, Σ becomes a diagonal
matrix Σ=diag(σ1,σ2,...,σs) [8]. Thus, it can be calculated
by estimating the noise signal, σs, in each sensor as [8]:

σs =

√∑T
t=1 ys,t − lsj.,t

T
, (2)

where ys,t is the signal measured by the sensor s in the
instant t, ls is the row s of the leadfield matrix, and j.,t is
the source-level signal in the time instant t.

SOUND estimates the noise iteratively [8]:
1) Re-reference the data to a sensor with a low noise level,

producing an initial Σ estimate.
2) Estimate σs in all sensors and update the Σ value.
3) Repeat step 2 until the convergence of Σ.
With the final Σ estimation, the clean source-level signal

estimation Ĵ , and thus the estimated denoised sensor-level
signal Ŷ can be reconstructed [8].

In short, SOUND uses the multidimensional nature of the
data and anatomical information to estimate the reliability of
the sensors, cleaning the data accordingly [8].

B. Configuration of SOUND parameters

To apply SOUND properly, a leadfield matrix is needed for
the transformation between scalp and source level. The com-
putations of the leadfield matrices was accomplished using
the MEAW Toolboox, developed by Yoshihito Shigihara and
Hideyuki Hoshi [12]. Additionally, to construct the leadfield
matrix, a MNI152 template was used.

The number of iterations has to be large enough to allow
the convergence of the algorithm [8]. Several tests were

performed, showing that 20 iterations are enough to converge
in all the scenarios.

C. Evaluation of the algorithm performance

1) Visual signal inspection: In a first step, MEG signals
were visually inspected to identify whether an artifact had
been removed.

2) Signal-to-Noise Ratio and Overcorrection Tradeoff:
In order to make a quantitative evaluation of the perfor-
mance of SOUND, two parameters had to be optimized: the
signal-to-noise ratio variation between trials (∆SNR) and the
overcorrection (OC). ∆SNR measures the quantity of noise
rejected from the signal, whereas OC shows the amount of
information (signal of interest) that has been removed along
with the noise. A tradeoff between both parameters should
be found. ∆SNR is calculated as follows [8]:

∆SNR =

〈 ‖ŷ1s‖
‖ŷs‖
− ‖y1s‖

‖ys‖
‖y1s‖
‖ys‖

× 100

〉
, (3)

where ys and ŷs are the original and the denoised signals
in sensor s, respectively, ‖·‖ refers to the L2 norm, and
〈·〉 is the mean value [8]. The superscript 1 indicates that
the signals have been filtered around the individual alpha
frequency (IAF) ±2.5 Hz (Hamming window, order 3000).
The IAF was calculated as the median frequency of the
power spectral density in the range of 4 to 15 Hz [13], [14].
The IAF±2.5 Hz band has been considered since it encloses
the dominant activity during resting-state recordings [13],
[14].

OC was calculated as the absolute value of the correlation
coefficient between the noiseless signal and the estimated
noise [8]:

OC =

〈 ∣∣ŷs(ys − ŷs)
T
∣∣

‖ŷs‖2 ‖ys − ŷs‖2

〉
. (4)

Additionally, λ0 is a regularization parameter that controls
the balance between preserving the signal of interest and
removing noise. More details about λ0 could be found in
[8]. In order to objectively choose λ0, a trade-off parameter,
κ, was defined. κ has to be maximized to offer the optimal
compromise between maximizing the ∆SNR and minimizing
the OC. The algorithm tradeoff was then calculated as
follows:

κ =
∆SNRn

OCn
, (5)

where the superscript n means that the values have been z-
normalized.

IV. RESULTS AND DISCUSSION

A. Optimizing the epoch length

Lower values of the epoch length yield a greater ∆SNR
and slightly lower OC, as shown in Fig. 1. However, they
also cause new artifacts due to edge effects. The number of
emerged artifacts is related to the epoch length, which deter-
mines the number of epochs. Likewise, the artifact amplitude
depends on the local power of each epoch. Consequently,
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Fig. 1. SNR and OC values as a function of λ0 parameter and epoch
length: the first row shows the high noise scenario, the second row the
medium noise scenario, and the last row the low noise scenario.

a compromise when choosing an optimal epoch length is
needed. Using smaller epoch lengths increase the algorithm
performance because it improves the assumption of noise
stationarity. Nevertheless, the artifacts related to edge effects
are not reflected in Fig. 1, due to the ∆SNR estimation used
[8]. Fig 2 shows an example of the aforementioned artifact
caused by the edge effects. Additionally, these artifacts would
not be removed because they appear after applying SOUND.

In conclusion, the epoch length should be adapted to
the particular characteristics of the problem at hand. When
using SOUND as a first stage in an automated pipeline,
the selection of the epoch length should take into account
the remaining stages of the method and the effect of the
aforementioned artifacts on the signal.

B. Optimizing λ0

The dependence of the ∆SNR and OC values as a function
of λ0 and epoch length can be seen in Fig. 1. Both parameters
increase their values with λ0 for all the assessed scenarios.
The objective was to obtain a high ∆SNR, while keeping the
OC low; therefore a compromise between these two variables
when choosing the λ0 parameter has to be found. An overly
large λ0 value would lead to a large quantity of the signal
of interest to be removed. On the other hand, if the value of
λ0 is not high enough, the artifacts would not be removed
at all.

Fig. 3 shows the κ values as a function of λ0. The largest
values of κ were obtained for λ0=0.1. This value yielded
the best compromise between maximizing the ∆SNR and
minimizing the OC. These results agree with the findings in
the original SOUND paper [8].

Fig. 2. Artifact caused by edge effects after applying SOUND with 250ms
epoch length. Red boxes marks the aforementioned artifacts

Fig. 3. Algorithm tradeoff κ as a function of λ0 parameter. The figure
shows the mean and standard error of the algorithm tradeoff for the high
(blue), medium (green) and low (orange) noise level scenarios.

C. Assessing the performance of the algorithm

Table I shows ∆SNR and OC values for the three studied
scenarios. ∆SNR values have been split between the channels
where the signal-to-noise ratio increased or decreased.

These values show that, quantitatively, SOUND increases
the signal-to-noise ratio from the resting-state MEG signals,
while keeping the OC low. These results are in agreement
with those obtained by Mutanen et al. [8], which support the
use of SOUND with MEG resting-state recordings.

In Fig. 4 the noise rejection performed by SOUND is
illustrated. This figure shows different types of artifacts,
and how the SOUND algorithm can detect and remove
them. Moreover, Fig 4 depicts the topography of the log-
transformed power in the IAF±2.5 Hz band, before and
after applying SOUND. After the application of the SOUND
algorithm, alpha activity in posterior brain regions appears,
which is typically observed in resting-state studies [13], [14].

TABLE I
∆SNR AND OC VALUES OBTAINED FOR THE DIFFERENT NOISE LEVEL

SCENARIOS UNDER STUDY

SCENARIOS
High noise Medium noise Low noise

Value Value Value

∆SNR (%) 36.9 (160) 87.0 (160) 14.0 (160)

∆SNR↑ (%) 51.5 (152) 176.6 (149) 25.8 (137)

∆SNR↓ (%) -3.1 (8) -6.7 (11) -3.9 (23)

OC 0.46 (160) 0.33 (160) 0.20 (160)

∆SNR, ∆SNR↑, and ∆SNR↓ represent respectively all, improved, and
worsened channels after applying SOUND. The values in brackets show
the number of channels in each category
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Fig. 4. Left column shows the topography of the log-transformed power for the band centered on the individual alpha peak (IAF±2.5 Hz), before (upper
row) and after (lower row) applying SOUND. Central and right columns show different types of noise artifacts that the algorithm has been able to remove.
The red curves show the noisy MEG signals, while the black curves show the reconstructed signals.

D. Limitations and future lines

Several limitations of this study should be pointed out.
Firstly, the SOUND algorithm was evaluated in three MEG
recordings with different noise levels. Future studies should
include a larger database. No synthetic signals were used
altough they could provide higher accuracy when measuring
the performance of SOUND. However, generating synthetic
real-wise signals is not straightforward and requires further
research. The high computational cost associated with the
SOUND algorithm has prevented us from studying a large
range of λ0 and epoch length values. Future studies would
be aimed at analyzing additional values of these parameters.

V. CONCLUSIONS

The SOUND algorithm has been assessed on MEG
resting-state signals. Our results suggest that the SOUND
algorithm is an appropriate method to be included in a
fully automated preprocessing protocol of MEG resting-state
signals.

Our results also indicate that a λ0 = 0.1 value offers
an optimal balance between maximizing the SNR in the
reconstructed signal, while keeping the overcorrection as low
as possible. On the other hand, it has not been possible to
establish an optimal value of epoch length, suggesting that
it should be adapted to each specific problem.
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