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1.  Introduction

Childhood sleep apnoea–hypopnoea syndrome (SAHS) is a breathing disorder whereby paediatric subjects 
manifest recurrent episodes of either complete cessation (apnoea) or significant reductions (hypopnoea) 
of airflow while sleeping (Marcus et al 2012). Paediatric SAHS has become a major health problem due to its 
high prevalence and negative effects. SAHS has an estimated prevalence in the range of 1%–5% in the general 
paediatric population (Marcus et al 2012). In addition, cognitive deficits, behavioural abnormalities, daytime 
sleepiness, cardiac and metabolic derangements, and systemic inflammation are all morbid consequences that 
adversely affect the optimal development of children affected by SAHS (Marcus et al 2012).

Based on the aforementioned considerations, an early diagnosis of paediatric SAHS is vital. The gold standard 
diagnostic approach to childhood SAHS is overnight polysomnography (PSG) (Marcus et al 2012). It requires 
patients to spend the night in a specialised sleep laboratory while being recorded for a wide range of biomedical 
signals, including electrocardiogram, electroencephalogram, electrooculogram, submental and leg electromyo-
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Abstract
Objective: To evaluate whether detrended fluctuation analysis (DFA) provides information that 
improves the diagnostic ability of the oximetry signal in the diagnosis of paediatric sleep apnoea–
hypopnoea syndrome (SAHS). Approach: A database composed of 981 blood oxygen saturation 
(SpO2) recordings in children was used to extract DFA-derived features in order to quantify the 
scaling behaviour and the fluctuations of the SpO2 signal. The 3% oxygen desaturation index (ODI3) 
was also computed for each subject. Fast correlation-based filter (FCBF) was then applied to select 
an optimum subset of relevant and non-redundant features. This subset fed a multi-layer perceptron 
(MLP) neural network to estimate the apnoea–hypopnoea index (AHI). Main results: ODI3 and 
four features from the DFA reached significant differences associated with the severity of SAHS. An 
optimum subset composed of the slope in the first scaling region of the DFA profile and the ODI3 
was selected using FCBF applied to the training set (60% of samples). The MLP model trained with 
this feature subset showed good agreement with the actual AHI, reaching an intra-class correlation 
coefficient of 0.891 in the test set (40% of samples). Furthermore, the estimated AHI showed high 
diagnostic ability, reaching an accuracy of 82.7%, 81.9%, and 91.1% using three common AHI 
cut-offs of 1, 5, and 10 events per hour (e h−1), respectively. These results outperformed the overall 
performance of ODI3. Significance: DFA may serve as a reliable tool to improve the diagnostic 
performance of oximetry recordings in the evaluation of paediatric patients with symptoms 
suggestive of SAHS.
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gram, oronasal airflow, and blood oxygen saturation (SpO2) by pulse oximetry (Alonso-Álvarez et al 2011, Kadi-
tis et al 2016). However, PSG is a complex text which is also quite costly due to the necessary equipment and spe-
cialized medical personnel that is required to supervise the PSG and to score the recordings. PSG is also intrusive, 
especially for children, due to the use of multiple sensors. Additionally, PSG shows limited availability in many, if 
not most, places around the world, which results in long waiting lists, thus delaying the diagnosis and treatment 
of the affected children (Nixon et al 2004, Katz et al 2012).

Considering the inherent disadvantages and limitations of PSG, along with the need for an early and timely 
diagnosis of SAHS, the search for simplified alternative techniques has emerged in recent years. In this regard, one 
common approach consists of the automated analysis of a reduced subset of cardiorespiratory signals that is nor-
mally included in the overnight PSG. One of these alternatives is nocturnal pulse oximetry (NPO), which records 
the blood oxygen saturation signal (SpO2) with a pulse oximeter probe, usually placed on a finger (Netzar et al 
2001). NPO can be readily performed without the need for professional supervision in the patient’s home and is 
widely available, as reflected by the large number of commercially available portable pulse oximeters (Nixon et al 
2004, Garde et al 2014). Thus, NPO is a technically simple test for children, and the SpO2 signal from NPO pro-
vides moment-to-moment oxygen content in haemoglobin (McClatchey 2002), a signal that contains essential 
information about the apnoeic events from SAHS, since these events induce recurrent decreases in blood oxygen 
levels, otherwise termed oxygen desaturations (Berry et al 2012).

Previous studies have examined the SpO2 signal as a potential alternative to PSG in the screening of paediatric 
SAHS. These studies employed different signal processing techniques (Kirk et al 2003, Tsai et al 2013, Garde et al 
2014, Eyck et al 2015, Álvarez et al 2017, Crespo et al 2017, Hornero et al 2017, Vaquerizo-Villar et al 2018), and 
more specifically, conventional oximetry indices, common statistics, frequency domain analysis techniques, and 
nonlinear methods. Among these approaches, nonlinear parameters proved useful to characterise the oxygen 
desaturations caused by apnoeic events in adults and children. However, a recent study using a very large data-
base of 4191 paediatric subject recordings showed that traditional nonlinear metrics (central tendency measure, 
Lempel–Ziv complexity and sample entropy) were redundant with respect to the 3% oxygen desaturation index 
(ODI3) (Hornero et al 2017), an oximetry index commonly used in the clinical practice for simplified screening 
purposes. Therefore, additional research is needed to find alternative and better performant nonlinear methods 
that may provide further insights into the properties of the oximetry signal and allow for the extraction of addi-
tional information to that provided by ODI3. In this regard, detrended fluctuation analysis (DFA) is a nonlinear 
analysis technique widely used to detect the correlation properties of a non-stationary signal (Peng et al 1994, 
1995). DFA computes the logarithm of the fluctuation function of a time series versus the logarithm of a window 
time length (scale). DFA provides a quantitative parameter, the scaling exponent (α), which measures the linear 
relationship between the fluctuation function and the scale (Peng et al 1994). The variation of α value for dif-
ferent ranges of scales (different window time lengths) identifies regions with different correlations (Peng et al 
1995). In this sense, the scaling behaviour of a signal is given by the different regions observed in the DFA profile 
and the value of α in these regions (Peng et al 1995). Thus, DFA is a useful tool to analyse signals with segments 
that modify its scaling behaviour, such as random spikes or segments which have a different local behaviour 
(Chen et al 2002, Hua and Yu 2017). Apnoeic events produce random spikes and/or irregular fluctuations in the 
SpO2 signal. Hence, DFA could be useful to analyse the oximetry signal in the context of SAHS.

Previous work has suggested the ability of DFA to analyse the correlation properties of physiological signals 
in the context of both adult and paediatric SAHS (Lee et al 2002, Penzel et al 2003, Dehkordi et al 2016, Kaim-
akamis et al 2016, Hua and Yu 2017). Hua and Yu (2017) applied DFA to SpO2 signals in the context of diagnosing 
adult SAHS. However, no studies have focused on applying DFA to SpO2 recordings in the context of paediatric 
SAHS. SpO2 signal properties in children differ from those of adults. Furthermore, the frequency of events that 
are required to define abnormality or severity markedly differ between adults and children. In addition, scor-
ing rules for apnoeas and hypopnoeas are also more restrictive in the case of paediatric SAHS (Berry et al 2012). 
Thus, the diagnosis of SAHS in children is vastly more challenging than in adults.

Thus, we hypothesised that DFA could extract additional information from the oximetry signal, which could 
be associated with the presence and severity of SAHS in children and could therefore assist in the diagnostic 
accuracy of overnight oximetry. Accordingly, the aim of this study was to assess the usefulness of DFA-derived 
features obtained from the oximetry signal to simplify the diagnosis of paediatric SAHS.

2.  Methods

2.1.  Subjects and signals under study
The dataset included 981 children (602 boys and 379 girls) ranging from 2–13 years of age. All children were 
consecutively and prospectively referred to the Pediatric Sleep Unit at the University of Chicago Medicine 
Comer Children’s Hospital (Chicago, IL, USA) due to clinical suspicion of SAHS. Their legal caretakers gave 
their informed consent as a prerequisite to participate in the study. The Ethical Committee of the University 
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of Chicago Medicine approved the research protocols (#11-0268-AM017, # 09-115-B-AM031, and # IRB14-
1241).

A digital polysomnography system (Polysmith; Nihon Kohden America Inc., CA, USA) was used to moni-
tor the childrens’ sleep. SpO2 recordings were obtained during overnight PSG at sampling rates of 25 Hz,  
200 Hz, or 500 Hz. They were exported and processed offline. Artefacts were rejected from oximetric recordings 
by removing those SpO2 values below 50% and sudden changes between consecutive SpO2 samples faster than 
4%/second (Magalang et al 2003). Then, a non-overlapping averaging-window of 1 s was applied (effective sam-
pling rate  =  1 Hz) to speed up the signal processing stage, which has been found to be appropriate to perform a 
multiscale analysis of the oximetry signal (Crespo et al 2017, Hua and Yu 2017). This window size is lower than 
3 s, which is the maximum averaging-time recommended by the American Academy of Sleep Medicine (AASM) 
(Berry et al 2012). The resolution of the SpO2 signals was set to two decimal points to ensure the resolution was 
the same (Hornero et al 2017).

Sleep and cardiorespiratory events were scored and quantified by specialised technologists and further con-
firmed by paediatric sleep medicine specialists who were unaware of the study purpose. The AHI was estimated 
according to the AASM guidelines (Berry et al 2012). In this sense, there is no consensus regarding the AHI cut-
off used to determine SAHS and its severity (Alonso-Álvarez et al 2011, Church 2012, Marcus et al 2012, Tan et al 
2014). However, a wide range of studies typically classify children into four SAHS severity degrees: no-SAHS 
(AHI  <  1 e h−1), mild SAHS (1  ⩽  AHI  <  5 e h−1), moderate SAHS (5  ⩽  AHI  <  10 e h−1), and severe SAHS 
(AHI  ⩾  10 e h−1) (Alonso-Álvarez et al 2011, Church 2012, Tan et al 2014, Hornero et al 2017). Thus, the AHI 
cut-offs of 1, 5, and 10 e h−1 were adopted in this study.

The dataset was randomly divided into a training set (60%) and a test set (40%). Table 1 shows the clinical and 
demographic data of the population under study. No statistically significant differences (p-value  <  0.01) were 
found in either age or body mass index.

2.2.  Automated signal processing
Our approach consisted of three sequential stages. First, features derived from DFA and ODI3 were obtained from 
the SpO2 recording of each subject. Then, a smaller subset of relevant and non-redundant features was selected 
using the fast correlation-based filter (FCBF) method (Yu and Liu 2004). Finally, a multi-layer perceptron (MLP) 
neural network (Bishop 1995) was applied to this optimum subset in order to estimate the AHI of each patient.

2.2.1.  Detrended fluctuation analysis
DFA performs a multiscale analysis of a time series to study its correlation properties (Peng et al 1994). The DFA 
profile shows changes in the correlation properties for different ranges of scales, termed ‘crossovers’, which may 
be caused by different non-stationarities in the signal such as (Chen et al 2002): (i) segments removed from the 
signal; (ii) random spikes with variable amplitude; (iii) segments with different local behaviour. Segments of the 
SpO2 signal associated with apnoeic events typically have different statistical properties, presenting fluctuations 
and spikes (Crespo et al 2017, Hua and Yu 2017). Thus, these properties of the SpO2 signal may be reflected in the 
DFA profile.

Given a signal x(t), the DFA method consists of the following steps (Peng et al 1994):

	1.	�The time series x(t) is integrated:

y (i) =
i∑

j=1

[
x ( j)− xavg

]
, i = 1, . . . , N,� (1)

where xavg is the average of the whole signal x(t), and N is the length of the SpO2 signal.
	2.	�The integrated signal y(i) is divided into B non-overlapping windows of equal size. In the case of SpO2 

recordings, the minimum length of the signal is 3 h (10 800 samples) to ensure there were enough sleep 
cycles (Berry et al 2012). Thus, the length of each window (i.e. the scale), k, is between 3 and 1080, since the 
maximum box size in DFA must be one-tenth of the signal length (Chen et al 2002).

	3.	�For each window b (b  =  1, …, B), the local trend was obtained as a straight line, yb, estimated by applying a 
least squares fitting to yi.

	4.	�The variance of the fluctuation in each window, F2
b (k), is defined as follows:

F2
b (k) =

1

k

bk∑
j=(b−1)k+1

Ä
y ( j)− yb ( j)

ä2
.� (2)
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	5.	�The fluctuation function, F(k), is obtained as the square root of the average of F2
b (k) over all windows:

F (k) =

Ã
1

B

B∑
b=1

F2
b (k).� (3)

Steps 2–5 are iterated until the highest scale is used.
A double logarithmic plot was used to analyse the evolution of the DFA plot along scales: log (F(k)) versus log 

(k) (Penzel et al 2003, Dehkordi et al 2016, Hua and Yu 2017). Figure 1 shows the averaged DFA plot for the four 
SAHS severity groups (AHI  <  1 e h−1, 1  ⩽  AHI  <  5 e h−1, 5  ⩽  AHI  <  10 e h−1, and AHI  ⩾  10 e h−1) in the train-
ing set. It can be shown that higher fluctuations are observed as the SAHS severity increases. Additionally, two 
scaling regions can be observed in the DFA plot:

	 •	�Region 1 for scales in the range 0.48  ⩽  log (k)  ⩽  1.3 (3  ⩽  k  ⩽  20).
	 •	�Region 2 for scales in the range 1.60  ⩽  log (k)  ⩽  3.03 (40  ⩽  k  ⩽  1080).

A crossover is produced in the space between these two regions of the DFA profile. Robust linear regression 
(Hua and Yu 2017) was applied to estimate the line that fits both regions for each SpO2 recording.

Figure 2 shows the lines fitted in both regions in an illustrative example of a patient from the training set. We 
characterised the DFA plot by extracting the following features, as can be seen in figure 2 (Penzel et al 2003, Hua 
and Yu 2017):

	 •	�Slopes (scaling exponents) in the line that fits the DFA profile in both regions (slope1 and slope2), as well as 
their ratio (slope1/2). These parameters measure the scaling behaviour of the oximetry signal in each region 
(slope1 and slope2) and the relative differences in this behaviour between both regions (slope1/2).

	 •	�Coordinates (k12 and F(k12)) of the intersection formed by the lines fitted in regions 1 and 2. These 
parameters are intended to characterise the crossover point of the DFA plot.

	 •	�Fluctuation function in the scale with a maximum correlation with the severity of SAHS (F(kx)). This 
parameter was extracted to quantify the fluctuations of the oximetry signal. In order to obtain the optimum 
value of kx, Spearman’s correlation was computed for each scale between F(k) and the AHI. Kx  =  21 was 
therefore obtained as the scale with a maximum Spearman’s correlation with the AHI.

It is expected that these parameters allow for the quantification of the differences in the scaling behaviour and 
the fluctuations of the SpO2 signal are associated with the severity of SAHS, as shown in figure 1.

Table 1.  Clinical and demographic data of the population under study.

Characteristics All AHI  <  1 1  ⩽  AHI  <  5 5  ⩽  AHI  <  10 AHI  ⩾  10

All subjects

  Subjects (n) 981 175 401 176 229

  Age (years) 6 [3,9] 7 [4,10] 6 [4,9] 5 [2,8] 4 [2,8]

  Males (%) 602 (61.4%) 109 (62.3%) 247 (61.6%) 107 (60.8%) 139 (60.7%)

  BMI (kg m−2) 17.9 [15.8,21.9] 17.4 [15.5,20.9] 17.7 [15.9,21.2] 18.6 [16.2,24.0] 18.3 [16.0,23.2]

  AHI (e h−1) 3.8 [1.5,9.3] 0.5 [0.1,0.8] 2.5 [1.7,3.5] 6.8 [5.8,8.3] 19.1 [13.9,31.1]

Training set (60%)

  Subjects (n) 589 98 232 113 146

  Age (years) 6 [3,8] 6 [4,8] 7 [4,9] 5 [2,8] 5 [3,8]

  Males (%) 348 (59.1%) 61 (62.2%) 140 (60.3%) 72 (63.7%) 75 (51.4%)

  BMI (kg m−2) 17.6 [15.9,22.0] 17.0 [15.4,19.9] 17.5 [15.9,21.6] 18.6 [16.2,23.7] 18.1 [15.9,23.6]

  AHI (e h−1) 4.1 [1.7,9.9] 0.4 [0.0,0.8] 2.5 [1.8,3.6] 6.9 [5.8,8.5] 18.9 [13.8,33.5]

Test set (40%)

  Subjects (n) 392 77 169 63 83

  Age (years) 6 [3,9] 8 [5,10] 5 [2,9] 6 [4,9] 4 [2,8]

  Males (%) 254 (64.8%) 48 (62.3%) 107 (63.3%) 35 (55.6%) 64 (77.1%)

  BMI (kg m−2) 18.1 [15.8,21.7] 18.0 [15.6,21.7] 18.0 [15.8,20.7] 18.9 [15.7,26.3] 18.3 [16.0,22.1]

  AHI (e h−1) 3.3 [1.4,7.8] 0.5 [0.3,0.8] 2.5 [1.7,3.4] 6.8 [5.8,7.8] 19.2 [15.1,28.2]

BMI: body mass index; AHI: apnoea hypopnoea index. Data are presented as median [interquartile range], n or %.

Physiol. Meas. 39 (2018) 114006 (13pp)
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2.2.2.  Oxygen desaturation index
ODI3 was computed as the number of oxygen desaturations from the preceding baseline greater than or equal to 
3% per hour of recording (Taha et al 1997). This clinical parameter has commonly been used in the SAHS context 
(Kirk et al 2003, Chang et al 2013, Tsai et al 2013). Higher values of ODI3 are expected in patients with a higher 
severity of SAHS, since oxygen desaturations are associated with apnoea or hypopnoea events (Berry et al 2012).

2.2.3.  Feature selection: FCBF
FCBF was applied to evaluate the relevance of the extracted features and their redundancy within them (Yu and 
Liu 2004). FCBF has proven its utility in the context of paediatric SAHS diagnosis to obtain subsets of relevant and 
non-redundant features (Hornero et al 2017, Vaquerizo-Villar et al 2018). First, FCBF computes the symmetrical 
uncertainty (SU) between each feature xi and the dependent variable y in order to assess its relevancy (Yu and Liu 
2004):

SU (xi, y) = 2

Å
IG (xi |y )

H (xi) + H (y)

ã
, i = 1, 2, . . . , N,� (4)

where IG(xi|y)  =  H(xi)  −  H(xi|y), N is the total number of features extracted (N  =  7), y is the AHI value of each 
subject, and H refers to Shannon’s entropy (Yu and Liu 2004). SU values vary between 0 and 1. SU  =  1 means 
that one variable is completely predictable from the other, whereas SU  =  0 indicates that the two variables are 
independent.

According to their SU value, features are ranked from the most relevant (highest SU with the AHI) to the least 
relevant one (lowest SU with the AHI). Different SU-based thresholds can be used to discard non-relevant fea-
tures. Nevertheless, the number of features comprising our original feature set is not high. Therefore, as proposed 

Figure 1.  Averaged DFA profile for the four SAHS severity groups: (a) AHI  <  1 e h−1, (b) 1  ⩽  AHI  <  5 e h−1, (c) 5  ⩽  AHI  <  10 e 
h−1, and (d) AHI  ⩾  10 e h−1 in the training set.

Figure 2.  Illustrative example of the DFA plot of the SpO2 signal of a patient from the training set.

Physiol. Meas. 39 (2018) 114006 (13pp)
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by Yu and Liu (2004), no relevance threshold was applied to discard non-relevant features in order to maximize 
the relevancy of information derived from oximetry (Gutierrez-Tobal et al 2018, Hornero et al 2017). In this 
regard, a feature that is useless by itself still may provide useful information when being selected with others 
(Guyon 2003). A redundancy analysis of each feature is then performed. The SU value between each pair of fea-
tures (xi, xj) is computed, beginning with the most relevant one (Yu and Liu 2004). When SU (xi, xj)  ⩾  SU (xi, y), 
the feature xj is considered redundant with respect to the feature xi and discarded. In this way, an optimum subset 
composed of the most relevant and non-redundant features is obtained (Yu and Liu 2004).

A bootstrap methodology was used in order to compose a stable optimum feature subset independent of a 
particular dataset. FCBF was applied to 1000 bootstrap replicates built from our training data (Efron and Tib-
shirani 1994, Guyon 2003). Those variables which were selected for at least half of the runs (500) formed the 
optimum subset (Hornero et al 2017, Vaquerizo-Villar et al 2018).

2.2.4.  AHI estimation: MLP neural network
MLP was applied to estimate the AHI of the subjects under study using the optimum feature subset obtained  
with FCBF. MLP is one of the most widely used artificial neural networks (ANNs). This ANN has already 
demonstrated its usefulness in the screening of paediatric SAHS diagnosis using SpO2 recordings (Hornero 
et al 2017). MLP is arranged in several interconnected layers (input, hidden layers, and output) composed of 
simple units called perceptrons or neurons (Bishop 1995). Each neuron consists of an activation function gi and 
adaptive weights wjk representing connections with neurons from the following layer. In our case, the output 
layer has one neuron y, which represents the estimated AHI. Additionally, a single hidden layer configuration was 
implemented, since it is able to provide universal approximation to any function (Bishop 1995). Thus, the output 
unit in our MLP architecture is calculated as follows:

y = gl




NH∑
j=1

wjkgt

{
d∑

i=1

wijxi + bj

}
+ bk


 ,� (5)

where gl and gt are the activation functions of the output and hidden layer, respectively, wjk are the weights 
connecting the hidden layer to the output layer, wij are the weights connecting the input layer to the hidden layer, 
xi is the input feature i, bj and bk are the biases associated with the hidden and the output units respectively, NH 
is the number of units in the hidden layer, and d is the number of input features (Bishop 1995). Weights of the 
network were randomly initialised. Then, the scaled conjugate gradient with weight-decay regularisation was 
applied to optimise these weights. This optimisation algorithm minimises the cross-entropy error function and 
achieves good generalisation, as recommended for pattern recognition tasks (Bishop 1995).

Our MLP network was implemented using the Netlab toolbox (Nabney 2002). The design parameters of the 
MLP network (the regularisation parameter (α) and NH) were optimised by means of 10-fold cross-validation 
using the training set. This optimisation allows us to control the complexity of the MLP network, thus minimis-
ing under-fitting and overfitting. Once these parameters were optimised, the MLP model was built using the 
whole training dataset.

2.2.5.  Statistical analysis and diagnostic performance
Matlab R2016a (The MathWorks Inc., Natick, MA, USA) was used to implement automated signal processing 
algorithms, as well as to perform statistical analyses. The Kruskal–Wallis test was used to assess the statistical 
differences (p-value  <  0.01) between groups, since the extracted features did not pass the Lilliefors normality 
test. The Bonferroni correction was applied to deal with multiple comparisons. Both agreement between 
estimated AHI (AHIMLP) and actual AHI (AHIPSG), as well as agreement between ODI3 and AHIPSG were assessed 
by means of Bland–Altman plots and the intra-class correlation coefficient (ICC). Cohen’s kappa index (kappa) 
was used to measure the agreement between AHIMLP and AHIPSG, the agreement between ODI3 and AHIPSG to 
estimate the severity of SAHS (Cohen 1960). The diagnostic ability of ODI3 and AHIMLP was assessed in terms 
of sensitivity (Se, percentage of SAHS positive patients correctly classified), specificity (Sp, percentage of SAHS 
negative children correctly classified), positive predictive value (PPV, proportion of subjects classified as positive 
that are true positives), negative predictive value (NPV, proportion of subjects classified as negative that are true 
negatives), positive likelihood ratio (LR+, likelihood ratio for subjects classified as positive), negative likelihood 
ratio (LR−, likelihood ratio for subjects classified as negative), accuracy (Acc, percentage of subjects correctly 
classified), and area under the ROC curve (AUC). A bootstrapping approach was employed in order to compare 
the ICC, kappa, overall Acc (four classes), and AUC values between ODI3 and AHIMLP. The number of bootstrap 
replicates built from the test data was set to 1000, since it ensures a proper estimation of the 95% confidence 
interval (Efron and Tibshirani 1994). ICC, kappa, overall Acc, and AUC values were obtained for ODI3 and 
AHIMLP from each of these replicates. Then, the p-value between ODI3 and AHIMLP was computed for each of 
these metrics according to the Mann–Whitney U test.
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3.  Results

3.1.  Training set
3.1.1.  Features separability
A total of seven features were obtained for each subject: ODI3, and six DFA-derived features. Table 2 shows the 
median and interquartile range of these features in the training set for each SAHS severity group, along with 
their corresponding p-values. ODI3 and four out of six DFA-derived features (slope1, slope1/2, F(k12), and F(kx)) 
showed statistically significant differences (p-value  <  0.01 after Bonferroni correction).

3.1.2.  Optimum feature subset
Figure 3 displays the histogram with the number of times that each feature was selected over the 1000 bootstrap 
replicates. ODI3 was selected all the time, which agrees with previous studies (Hornero et al 2017, Vaquerizo-
Villar et al 2018). Additionally, slope1 was selected more than half the time (535). Thus, ODI3 and slope1 were 
chosen as the optimum subset.

3.1.3.  MLP model optimisation and training
The MLP network was designed and trained using this optimum feature subset (ODI3 and slope1). In order to 
find the optimum values, NH and α were varied from NH  =  2 up to NH  =  30 and α  =  0 up to α  =  10, respectively. 
For each NH-α pair, kappa was obtained through ten-fold cross validation. Since the network is sensitive to the 
initial random values of the weights, kappa was computed on the cross validation set and averaged for a total of 
ten runs for each NH-α pair. Figure 4 shows the kappa value obtained for each NH-α pair. According to this figure, 
the optimum values NH  =  5 and α  =  6 were obtained as those for which kappa was higher. Finally, the optimum 
feature subset (ODI3 and slope1) from the entire training set was used to train the MLP model (AHIMLP) with 
these optimum user-dependent network parameters.

3.2.  Test set
Figures 5(a) and (b) show the Bland–Altman plots of ODI3 and AHIMLP compared with AHIPSG, respectively, in 
the test set. ICC between ODI3 and AHIMLP with AHIPSG is also shown. AHIMLP reached a lower mean difference 
(bias) with AHIPSG than ODI3 (0.75 versus  −1.65), whereas ODI3 achieved a slightly lower confidence interval 
than AHIMLP (23.2 versus 24.3). Notice that ODI3 underestimates AHI, whereas AHIMLP corrects this behaviour 
by showing a slight overestimation. In addition, AHIMLP achieved better agreement with AHIPSG (ICC  =  0.891) 
than ODI3 (ICC  =  0.866). Regarding the diagnostic performance, table 3 shows the confusion matrices of ODI3 
and AHIMLP in the test group. These matrices show the class predicted by both original ODI3 and AHIMLP for each 
subject versus the actual SAHS severity group, according to AHIPSG. Using ODI3, 55.4% of the subjects (217/392) 
were correctly assigned to their actual group of SAHS severity (sum of the main diagonal elements of the matrix). 
Conversely, AHIMLP rightly assigned 60.0% (235/392) of the subjects to their SAHS severity group. Kappa values 
were 0.355 (ODI3) and 0.412 (AHIMLP). Table 4 shows the diagnostic ability of both ODI3 and AHIMLP for the 
AHIPSG-based cut-offs of 1, 5, and 10 e h−1. AHIMLP outperformed single ODI3 in terms of ICC, overall Acc and 
kappa. Additionally, our AHIMLP reached higher Acc for the single AHI cut-offs of 1 and 10 e h−1. With respect to 
the comparison of the results of ODI3 and AHIMLP, statistically significant higher values (p-value  <  0.01) were 
obtained using AHIMLP in the case of ICC, kappa, and overall Acc. In addition, statistically significant differences 
were found for the AHI cut-offs of 5 and 10 e h−1 between AUC of ODI3 and AHIMLP.

4.  Discussion

This study evaluated the usefulness of DFA to provide additional information from oximetry dynamics in order 
to assist with the screening of children at risk for paediatric SAHS. To our knowledge, the application of DFA 

Table 2.  Feature values for the SAHS severity groups (median [interquartile range]) in the training set.

Features AHI  <  1 1  ⩽  AHI  <  5 5  ⩽  AHI  <  10 AHI  ⩾  10 p-value

ODI3 1.04 [0.52,2.47] 2.03 [0.93,3.89] 3.69 [1.94,7.23] 12.35 [6.65,24.49] <0.01

slope1 1.63 [1.58,1.68] 1.64 [1.58,1.70] 1.67 [1.60,1.71] 1.74 [1.66,1.79] <0.01

slope2 0.96 [0.90,1.05] 0.95 [0.87,1.03] 0.92 [0.85,1.02] 0.94 [0.88,1.01] 0.18a

slope12 1.66 [1.53,1.82] 1.69 [1.55,1.87] 1.77 [1.60,1.94] 1.82 [1.68,1.95] <0.01

k12 1.33 [1.23,1.42] 1.36 [1.26,1.44] 1.38 [1.29,1.45] 1.34 [1.23,1.42] 0.04a

F(k12) 0.01 [−0.18,0.18] 0.12 [−0.12,0.26] 0.22 [0.04,0.38] 0.42 [0.16,0.61] <0.01

F(kx) −0.05 [−0.13,0.04] 0.02 [−0.07,0.11] 0.10 [0.00,0.20] 0.31 [0.18,0.52] <0.01

a Not lower after Bonferroni correction (p-value  =  0.01/6).
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to SpO2 recordings is novel in the context of paediatric SAHS. Our proposed approach shows a high diagnostic 
ability which outperforms the conventional oximetric index ODI3.

ODI3 and four out of six features from DFA (slope1, slope1/2, F(k12), and F(kx)) reached significantly higher 
values that were associated with increased severity of SAHS. The statistical differences shown by these DFA-
derived parameters indicate that the scaling behaviour of the DFA profile of the SpO2 signal is affected in the 
presence of SAHS, as illustrated by figure 1. This change in the correlation properties of the SpO2 signal along 
time scales may be caused by the presence of spikes or segments with different statistical properties (Chen et al 
2002, Hua and Yu 2017). Figure 1 shows two regions with different scaling exponents (correlation)—one region 
for short-time scales (region 1) and another region for long-time scales (region 2). Two scaling regions were also 
obtained in the studies developed by Dehkordi et al (2016) and Penzel et al (2003). Dehkordi et al and Penzel et al 
applied DFA to analyse the scaling behaviour of the pulse rate variability (PRV) and heart rate variability (HRV) 
signals in the context of SAHS, respectively. According to these studies (Dehkordi et al 2016, Penzel et al 2003), the 
time scales of these regions may be related to the duration of apnoeic events. In these studies, short-time scales 
relate to the effects of respiration on the heart rate, whereas long time scales relate to the effects of sleep stages and 
circadian rhythm (Penzel et al 2003).

According to the physiological interpretation of both regions in the DFA profile, the higher values shown 
by slope1 and slope1/2 that are associated with the severity of SAHS may be related to the variations in the SpO2 
signals caused by respiratory events (Hua and Yu 2017, Peng et al 1995, Penzel et al 2003) which directly affect the 
oximetry dynamics. On the contrary, slope2 did not show statistically significant differences. According to Penzel 
et al (2003), slope2 is related to the effects of slower brain functions on the HRV signal. Nevertheless, slower brain 
functions may not be related to the effects of SAHS in the oximetry signal. That is one possible reason why the 

Figure 3.  Histogram with the number of times each feature is selected over the 1000 bootstrap iterations.

Figure 4.  Averaged kappa for each NH-α pair.
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value of slope2 does not increase with the severity of SAHS. Figure 1 also shows higher values of F(k) in the SpO2 
signal as the severity of SAHS increases. These differences may be due to the fluctuations produced in the SpO2 
signal by apnoeic events (Hua and Yu 2017). These fluctuations are reflected in the significantly higher values of 
F(k12) and F(kx) associated with a higher SAHS severity. Finally, it can be seen in figure 1 that the crossover point 
between the two regions of the DFA profile occurs at similar time scales for the different SAHS severity groups. 
The scale value k of the crossover point is related to the duration of apnoeic events (Penzel et al 2003), which does 

Figure 5.  Bland–Altman plots comparing (a) ODI3 with AHIPSG and (b) AHIMLP with AHIPSG.

Table 3.  Confusion matrices of ODI3 and AHIMLP in the test set. Regarding ODI3, average Acc  =  55.4% and kappa  =  0.355, whereas for 
AHIMLP, average Acc  =  60.0% and kappa  =  0.412.

ODI3 AHIMLP

AHI  <  1 1  ⩽  AHI  <  5 5  ⩽  AHI  <  10 AHI  ⩾  10 AHI  <  1 1  ⩽  AHI  <  5 5  ⩽  AHI  <  10 AHI  ⩾  10

AHIPSG AHI  <  1 39 36 1 1 18 55 3 1

1  ⩽  AHI  <  5 47 107 12 3 8 125 33 3

5  ⩽  AHI  <  10 5 33 17 8 1 22 28 12

AHI  ⩾  10 0 13 16 54 0 8 11 64

Table 4.  Diagnostic ability of ODI3 and AHIMLP in the test set for AHI cut-offs  =  1, 5, and 10 e h−1.

AHI cut-off  =  1 e h−1

Features Se Sp PPV NPV LR+   LR−   Acc AUC

ODI3 83.5 50.6 87.4 42.9 1.7 0.33 77.0 0.811

AHIMLP 97.1 23.3 83.9 66.7 1.3 0.12 82.7 0.813

AHI cut-off  =  5 e h−1

Features Se Sp PPV NPV LR+   LR−   Acc AUC

ODI3 65.1 93.1 84.8 81.8 9.4 0.37 82.7 0.883

AHIMLP 78.8 83.7 74.2 86.9 4.8 0.25 81.9 0.888

AHI cut-off  =  10 e h−1

Features Se Sp PPV NPV LR+   LR−   Acc AUC

ODI3 65.1 96.1 81.8 91.1 16.7 0.36 89.5 0.921

AHIMLP 77.1 94.8 80.0 93.9 14.9 0.24 91.1 0.930
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not depend on the severity of SAHS. This may be the reason why k12 did not show statistically significant differ-
ences.

Regarding the results of the feature selection stage, figure 3 shows that only ODI3 and slope1 were selected 
more than 500 times after the bootstrapping approach. The remaining features showed high redundancy. ODI3 
and slope1 come from different methodological approaches. Therefore, this suggests that information from DFA 
is complementary to that obtained from the conventional ODI3. As aforementioned, an MLP neural network 
fed with this optimum subset outperformed the ODI3 (tables 3 and 4). A better agreement with the AHIPSG was 
achieved with our AHIMLP, as well as a higher diagnostic ability to predict SAHS severity. This highlights the use-
fulness of FCBF, the feature selection method employed in our proposal. According to our results, slope1, which 
was involved in the optimum subset, quantifies changes in the scaling behaviour of the DFA profile that provides 
additional information regarding oximetry dynamics able to enhance its diagnostic ability.

Previous studies also evaluated the usefulness of DFA to characterise SAHS in both adults (Lee et al 2002, 
Penzel et al 2003, Kaimakamis et al 2016, Hua and Yu 2017) and children (Dehkordi et al 2016). Penzel et al (2003) 
and Dehkordi et al (2016) extracted the slopes in the scaling regions of the DFA profile from the HRV and PRV 
signals in order to discriminate sleep stages and detect the presence of SAHS in adults and paediatric patients, 
respectively. Their findings indicate that the scaling analysis provided by DFA is suitable to quantify the changes 
of the cardiac signals during sleep stages, as well as the properties of these signals associated with apnoeic events. 
These results agree with Lee et al (2002), who also reported that the scaling exponents of the DFA of the electro-
encephalogram signal are useful to discriminate between sleep stages in adult patients. Kaimakanis et al (2016) 
reported a 0.77 correlation coefficient in predicting AHI with a linear regression model fed with DFA and other 
nonlinear methods applied to airflow and thoracic signals from adult patients. Finally, Hua and Yu (2017) evalu-
ated the diagnostic ability of the slopes of four different scaling regions and the coordinates and angles of the 
intersections of these regions in the DFA plot of the SpO2 signal in the context of adult SAHS. A high diagnostic 
performance was achieved with these features, with an accuracy of 90.8%, 80.1%, and 87.4% for the common 
adult SAHS cut-offs of 5, 15, and 30 e h−1, respectively. Importantly, our research is not limited to the analysis of 
individual features from DFA, and it assesses the capability of DFA to provide additional and relevant informa-
tion complementary to conventional approaches (i.e. ODI3) to simplify the diagnosis of paediatric SAHS.

Table 5.  Summary of state-of-the-art in the context of the analysis of SpO2 recordings to assist in the diagnosis of paediatric SAHS.

Studies (year)

Subjects  

(n)

AHI  

cut-off Methods Validation

Se 

(%)

Sp 

(%)

Acc 

(%)

Kirk et al 

(2003)

58 5 ODI3 Direct validationb 67 60 64a

Tsai et al 

(2013)

148 1 ODI4 No 77.7 88.9 79.0a

5 83.8 86.5 85.1a

10 89.1 86.0 87.1a

Garde et al 

(2014)

146 5 Statistical, nonlinear features, classical 

indices, and PSD

Four-fold cross  

validation

80.0 83.9 78.5

Van Eyck et al 

(2015)

130 2 ODI3 and clusters of desaturations Train-test for ODI3 57 73 68a

58 88 78a

66 69 68a

Álvarez et al 

(2017)

50 1 Statistical, nonlinear features, PSD, and 

classical indices

Bootstrap 0.632 89.6 71.5 85.5

3 82.9 84.4 83.4

5 82.2 83.6 82.8

Crespo et al 

(2017)

50 3 Multiscale entropy and classical indices Bootstrap 0.632 84.5 83.0 83.5

Hornero et al 

(2017)

4191 1 Statistical, nonlinear features, PSD, and 

ODI3

Training-test 84.0 53.2 75.2

5 68.2 87.2 81.7

10 68.7 94.1 90.2

Vaquerizo et al 

(2018)

298 5 Bispectrum, PSD, ODI3, anthropomet-

ric variables

Feature optimisation-

training-test

61.8 97.6 81.3

10 60.0 94.5 85.3

Our proposal 981 1 DFA and ODI3 Training-test 97.1 23.3 82.7

5 78.8 83.7 81.9

10 77.1 94.8 91.1

a Computed from reported data. 
b Direct validation of a scoring criteria against AHI from PSG.
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Table 5 summarises the performance of previous studies focused on the analysis of SpO2 as a simplified tech-
nique in the screening of paediatric SAHS (Kirk et al 2003, Tsai et al 2013, Garde et al 2014, Eyck et al 2015, Álvarez 
et al 2017, Crespo et al 2017, Hornero et al 2017, Vaquerizo-Villar et al 2018). Some of them have applied the ODI 
and clusters of desaturations (Kirk et al 2003, Tsai et al 2013, Eyck et al 2015). However, only Tsai et al (2013) 
reached accuracies higher than 80%. Notwithstanding, further validation was felt to be still necessary in order to 
independently assess the proposed ODI-based cut-offs.

Recent studies have focused on the application of automated signal processing approaches to enhance the 
diagnostic ability of the SpO2 signal (Garde et al 2014, Álvarez et al 2017, Crespo et al 2017, Hornero et al 2017, 
Vaquerizo-Villar et al 2018). From these studies, only Hornero et al (2017) assessed an AHI estimation model. 
Hornero et al (2017) built an MLP regression model with ODI3 and the skewness of the PSD extracted from 4191 
SpO2 recordings from 13 sleep laboratories worldwide. Our study outperformed the state-of-the-art approaches 
except the performance reported by the study of Álvarez et al (2017), which achieved higher accuracies for the 
AHI cut-offs of 1 and 5 e h−1. However, the database used by Álvarez et al (2017) had only 50 subjects. As a con-
sequence, their results are less generalizable, and they performed binary classification instead of estimating the 
AHI of each patient.

 In spite of the promising results of our proposed approach, several limitations must be taken into account. 
First, the number of subjects belonging to the no-SAHS (AHI  <  1 e h−1) group is low when compared to the 
other severity groups. This issue likely contributes to the slight trend of the MLP model to overestimate the AHI 
of the subjects belonging to this group, thus resulting in a low specificity for an AHI-threshold of 1 e h−1. How-
ever, this is likely the situation in clinical settings when only symptomatic children would be referred for evalua-
tion. Nonetheless, a more balanced proportion of subjects among SAHS severity groups would likely minimise 
this effect. Another limitation concerns the use of the SpO2 signal alone to detect SAHS, since some physiological 
perturbations of SAHS may not be detected by the oximetry signal, such as airflow reductions, electroencepha-
lographic arousals, or increased intrathoracic pressure swings (Marcus et al 2012). The use of SpO2 together with 
other biomedical signals could detect these perturbations and, consequently, enhance the detection of SAHS. 
However, this would increase the complexity of the screening method. Additionally, the application of more 
advanced machine learning algorithms could be potentially useful to improve the diagnostic ability of our pro-
posal. It would also be appropriate to evaluate our methodology in a database of oximetry recordings obtained 
with the patients being evaluated at home. Finally, the implementation of our proposal in a portable oximeter 
could facilitate its use in ambulatory settings.

5.  Conclusion

In summary, we investigated the usefulness of DFA to obtain additional information from SpO2 recordings 
in order to simplify the detection of paediatric SAHS. Four features extracted from DFA showed significant 
differences between the SAHS severity groups. An optimum subset composed of ODI3 and slope1 was obtained 
with FCBF, which suggests that these features are complementary and non-overlapping. An MLP model fed with 
this optimum subset achieved a good agreement with the AHI from PSG, obtaining 0.891 ICC and 0.412 kappa, 
as well as high diagnostic ability. This MLP model achieved better agreement (ICC and kappa) than ODI3, as well 
as higher accuracies for the cut-offs of 1 and 10 e h−1. Our methodology achieved a high diagnostic performance 
in comparison with state-of-the-art techniques. This suggests that the changes in the scaling behaviour of the 
DFA profile quantified by slope1 can provide additional information to enhance the diagnostic ability of the 
oximetry signal in the context of paediatric SAHS.
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