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Abstract

Most SNPs associated with complex diseases seem to lie in non-coding regions of the genome; however, their contribution to gene
expression and disease phenotype remains poorly understood. Here, we established a workflow to provide assistance in prioritising
the functional relevance of non-coding SNPs of candidate genes as susceptibility loci in polygenic neurological disorders. To illustrate
the applicability of our workflow, we considered the multifactorial disorder migraine as a model to follow our step-by-step approach.
We annotated the overlap of selected SNPs with regulatory elements and assessed their potential impact on gene expression based on
publicly available prediction algorithms and functional genomics information.
Some migraine risk loci have been hypothesised to reside in non-coding regions and to be implicated in the neurotransmission pathway.
In this study, we used a set of 22 non-coding SNPs from neurotransmission and synaptic machinery-related genes previously suggested
to be involved in migraine susceptibility based on our candidate gene association studies. After prioritising these SNPs, we focused on
non-reported ones that demonstrated high regulatory potential: (1) VAMP2_rs1150 (3′ UTR) was predicted as a target of hsa-mir-5010-3p
miRNA, possibly disrupting its own gene expression; (2) STX1A_rs6951030 (proximal enhancer) may affect the binding affinity of zinc-
finger transcription factors (namely ZNF423) and disturb TBL2 gene expression; and (3) SNAP25_rs2327264 (distal enhancer) expected
to be in a binding site of ONECUT2 transcription factor.
This study demonstrated the applicability of our practical workflow to facilitate the prioritisation of potentially relevant non-coding
SNPs and predict their functional impact in multifactorial neurological diseases.
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Introduction
In complex diseases, the identification of susceptibility loci and
genes usually implies detecting differences in single nucleotide
polymorphisms (SNPs) allele frequencies between cases and con-
trols. Genome-wide association studies and candidate gene asso-
ciation studies, as well as linkage studies, have contributed to the
identification of many risk genes and related pathways; however,
the disease-associated SNP may not necessarily be functionally
relevant but be in linkage disequilibrium with the (still unidenti-
fied) deleterious SNP [1–3]. An additional problem underlies non-
coding SNPs since they are often excluded from these analyses

or classified as variants of uncertain significance, mainly due to
difficulties in predicting or defining their functional impact [4].

Most SNPs associated with complex diseases lie in intronic
or intergenic regions, which makes them more likely to confer
disease susceptibility by altering gene regulation rather than
affecting protein function [2, 5]. Recently, regulatory data related
to chromatin accessibility and state became publicly available [6–
8], proposing that SNPs overlapping regulatory elements might
alter the binding sites of gene expression regulators such as
transcription factors (TFs) and micro RNAs (miRNAs) [2, 5]. These
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Figure 1. Workflow to prioritise regulatory SNPs possibly associated with complex neurological disorders through feature annotation with Ensembl
VEP tool and SNPnexus (IW Scoring), and functional genomics analyses with FANTOM, ENCODE and Roadmap Epigenomic databases (Phases I and II).
To assess if candidate regulatory SNPs may alter important motifs for gene expression, it is crucial to predict TFs (PERFECTOS-APE, MEME
SUITE—Tomtom and PROMO) and miRNAs (miRDB, STarMir and RNAhybrid) binding sites (Phase III).

data sources offer an opportunity to interpret non-coding SNPs
and find common regulatory features necessary to discriminate
functionally relevant SNPs from benign ones [1]. A regulatory
SNP located in an enhancer/promoter may increase or decrease
the expression of a given gene by affecting the binding affinity
or creating a novel binding site for TFs or miRNAs [4]. A bioin-
formatics approach can be used to predict the effect of SNPs
by recurring to epigenomic and genomic data, and to determine
probable transcription start sites (TSSs), splice sites, TFs and
miRNAs binding sites [2, 4, 9]. Yet, the impact of regulatory SNPs is
difficult to interpret since (1) quantitative rather than qualitative
effects on gene expression may be present, and (2) distinct tis-
sues, developmental stages and even individuals may be affected
differently [4, 10].

In our study, we developed a detailed protocol to prioritise
common regulatory non-coding SNPs from synaptic machinery-
related genes, previously found to be associated with migraine
risk or protection in the Portuguese population [11–13]. Recent
studies suggested that exonic SNPs do not seem to explain disease
in the majority of migraineurs, which stresses the importance of
studying the role of functionally relevant non-coding SNPs [14, 15].
Migraine is a common multifactorial neurological disease with a
strong genetic component, which affects about 15% of the popu-
lation [16, 17]. This type of primary headache disorder includes
several symptoms, such as unilateral throbbing, photophobia,

nausea and/or vomiting [18]. Studies show an increased familial
risk for common migraine, with heritability estimated between 30
and 60% that most likely results from the contribution of SNPs at
several loci, each with a small effect [19–21]. Some rare autosomal
dominant forms of migraine are caused by exonic variants in
genes related to neurotransmission (e.g. CACNA1A, ATP1A2, and
SCN1A) [22, 23], still the molecular mechanisms underpinning
this disease are poorly understood. Thus, we developed a step-by-
step bioinformatics protocol to select common non-coding SNPs
within putative regulatory regions of genes likely associated with
complex neurological diseases.

Methods
We designed a practical workflow to prioritise functionally rele-
vant non-coding SNPs as potential susceptibility loci in complex
neurological disorders. The overview of the protocol is shown in
Figure 1. Details of the protocol are described below.

Phase I: prioritisation through scoring methods
To evaluate and prioritise the selected non-coding SNPs accord-
ing to their functional potential, we used Variant Effect Predic-
tion (VEP) tool [24] (Ensembl, https://www.ensembl.org/Tools/VEP;
release 104; MANE transcripts) and SNPnexus v4—Integrative
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Weighted (IW) Scoring model [25, 26] (Barts Cancer Institute,
https://snp-nexus.org/IW-Scoring/). We performed an integrative
assessment of the available scoring methods to evaluate non-
coding variants [27]. A higher score in Combined Annotation
Dependent Depletion (CADD), Deleterious Annotation of genetic
variants using Neural Networks (DANN) (from VEP), Genome Wide
Annotation of VAriants (GWAVA), Functional Analysis Through
Hidden Markov Models (FATHMM) and FunSeq2 (from SNPnexus-
IW) indicates a higher probability for the SNP to be functionally
relevant (or deleterious). First, we selected SNPs that reached at
least three scoring annotation methods indicating deleterious-
ness [referred as integration score (counts)], with cut-off values
set at ≥ 10 for CADD_PHRED [range 0–100], ≥ 0.7 for FunSeq2
[range 0–6], DANN [range 0–1] and FATHMM-MKL (non-coding
score; [range 0–1]), and ≥ 0.4 for GWAVA (Region, TSS, Unmatched;
[range 0–1]), as recommended in software guidelines and previous
publications [28, 29]. In addition, to detect and rank the SNPs with
the highest potential, we normalised CADD_PHRED and FunSeq2
scores to 0–1 range to have all algorithms contributing equally for
the integration score (sum).

Next, we used SpliceAI Pred (VEP tool) to predict if the non-
coding SNPs disrupted mRNA splicing. A SpliceAI Pred score
(DS_AG—acceptor gain, DS_AL—acceptor loss, DS_DG—donor
gain, and DS_DL—donor loss; DS—delta score) ≥ 0.5 indicated
aberrant splicing.

In this process, features such as genomic localisation, SNP
allele frequencies (gnomAD and 1000 Genomes), GC content and
evolutionary conservation (GERP++, PhastCons100way and Phy-
loP100way) were annotated with the VEP tool. Also, the Ensembl
Regulatory Build data (VEP tool) were used for the feature anno-
tation step to assess regulatory elements such as promoters,
proximal or distal enhancers and CTCF binding sites, where SNPs
under analysis may be located. The VEP tool includes a search
for PubMed identifiers of SNPs previously associated with a phe-
notype or disease, which allowed us to explore the literature
and avert non-coding SNPs already experimentally confirmed to
regulate gene expression.

Phase II: annotation of regulatory genomic data
To assess the characteristics of the region where selected SNPs
are located, we analysed relevant epigenomic and regulatory data
from FANTOM (v5, https://fantom.gsc.riken.jp/5/) [8, 30], ENCODE
(v127.2, https://www.encodeproject.org/) [6] and Roadmap Epige-
nomics Mapping Consortium (http://www.roadmapepigenomics.
org/) [7, 31]. These databases allowed the visualisation of epige-
nomic data and concomitant selection of genomic regions and
tissues for an integrative analysis (UCSC Genome Browser [32, 33]
and WashU Epigenome Browser v46.2 [34]). Brief guidelines for
the use of these databases and visualisation tools can be found
in Supplementary Table 1.

The chromatin status (DNase-seq or ATAC-seq data), active
chromatin histone marks (H3K4me1, H3K4me3, H3K27ac and
H3K27me3 ChIP-seq data) and DNase I hypersensitive sites (DHSs)
were assessed from ENCODE and Roadmap Epigenomics. When-
ever available, these annotations were taken from experiments
in human brain tissues or neuronal cell lines. In addition, the
distance of the SNP to the nearest TSS, as well as GC content and
the presence of CpG islands (clusters of CpG dinucleotides in GC-
rich regions) were assessed in the VEP tool and FANTOM database.

After identifying possible regulatory SNPs that overlap with
enhancers, promoters or 3′ untranslated regions (UTRs), we
searched for potential target genes by looking for expression
quantitative trait loci (eQTL) evidence (P ≤ 0.05) in human brain
tissue from the GTEx database (https://gtexportal.org/home/)

[35, 36]. SNPs were sorted according to eQTL data since its
presence increases the chance for a regulatory SNP to perturb
gene expression.

Phase III: prediction of TFs and miRNAs binding
sites
Prediction of TFs binding to promoter and enhancer
elements
To predict the potential of selected SNPs to alter the binding of
key regulatory molecules, we started by retrieving the respective
flanking sequences (1000 bp, up and downstream) in FASTA for-
mat from Ensembl (v107, https://www.ensembl.org/index.html)
[37]. Next, three prediction algorithms were used to identify and
predict putative TFs whose binding sites might be altered by SNPs
in promoter and enhancer elements. PERFECTOS-APE (v3.0.3,
https://opera.autosome.org/perfectosape/scan) [38] required the
submission of the dbSNP IDs and allowed to analyse position
weight matrix (PWM) data from different public databases (e.g.
HOCOMOCO, JASPAR, and SwissRegulon) by estimating the impact
of SNPs within the TF binding motif occurrences. MEME SUITE
motif (V5.4.1)—comparison tool Tomtom (https://meme-suite.
org/meme/tools/tomtom) [39] and PROMO (v3, http://alggen.
lsi.upc.es/cgi-bin/promo_v3/promo/promoinit.cgi?dirDB=TF_8.3)
[40] required the submission of nucleotide sequences (∼30 bp)
for comparison with PWM data from public motif databases like
JASPAR and a commercial database (TRANSFAC v8.3), respectively.

When compiling a list of potential TFs from the different
software, TF ChIP-Seq data from ENCODE were used as a selection
strategy, since it shows the ability of these putative TFs to bind
specific DNA sequences or chromatin configurations in human
brain tissues or neuronal cell lines (if available). Whenever TF
ChIP-seq data from ENCODE was lacking, we selected TFs that
appeared in at least two of the three prediction tools to filter the
most relevant. In addition, as a sorting approach, TFs expression
data (nTPM, transcripts per million) were assessed from Protein
Atlas database (v15, https://www.proteinatlas.org/) [41] to analyse
tissue specificity.

Prediction of miRNAs binding to 3′UTR and enhancer
elements
The primary prediction of miRNAs binding was carried out in
miRDB (http://www.mirdb.org/, custom prediction) [42, 43] using
a converted mRNA target sequence around 200 bp (∼100 bp up
and downstream the SNP). The overlap of miRNAs seed sequence
with each SNP was analysed. The miRDB guidelines suggest
selecting miRNA with a target prediction score [range 50–100]
above 60, but we kept all predictions to avoid being too stringent.
Therefore, to confirm the miRDB predictions, we performed
analysis in two other software: STarMir (https://sfold.wadsworth.
org/cgi-bin/starmir.pl) [44] and RNAhybrid (v2.2, https://bibiserv.
cebitec.uni-bielefeld.de/rnahybrid) [45]. For both software, we
submitted the mRNA nucleotide sequence and miRNA name or
mature sequence from miRBase (v22.1, https://www.mirbase.org/)
[46]. STarMir logistic probability (logitProb) was used to measure
miRNA prediction confidence. A probability above 0.5 and 0.75
indicates a good and an excellent confidence of miRNA binding.
Then, to evaluate the binding potential of predicted miRNAs, the
minimal free energy’s (MFE, from RNAhybrid) threshold value
was set up at −10 kcal/mol to ensure minimum thermodynamic
stability. In addition to the MFE value, we analysed the binding
pattern at the seed sequence of the miRNA (2–8 nucleotides from
the 5′ end of the miRNA; Seed_Type from STarMir). If there was
no gap in the alignment within the Watson and Crick matching,
the binding of the miRNA on its target mRNA was considered
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ideal [47, 48]. Since gene regulation is tissue-specific, miRNAs
expression (log2RPM, reads per million) in the brain was used as a
sorting criterion (microRNA Tissue Expression Database—miTED,
https://dianalab.e-ce.uth.gr/mited/#/expressions) [49].

Results
We applied our protocol to migraine and described the obtained
results to show how this step-by-step workflow may be followed
while interpreting the potential functional relevance of non-
coding SNPs in other neurological diseases.

Prioritisation of SNPs according to their potential
regulatory role
Previously, we identified a set of 76 tagSNPs that were analysed
through candidate gene association studies under the hypothesis
that SNPs from neurotransmission and vesicle machinery-related
genes are involved in migraine susceptibility, including: synapsin
I and II (SYN1, SYN2), synaptosome-associated protein 25 (SNAP25),
vesicle-associated membrane protein 2 (VAMP2), syntaxin 1A (STX1A),
syntaxin binding protein 1 and 5 (STXBP1, STXBP5), unc-13 homolog
B (UNC13B), gamma-aminobutyric acid type A receptor subunit alpha3
(GABRA3) and gamma-aminobutyric acid type A receptor subunit theta
(GABRQ) [11–13]. A total of 22 non-coding tagSNPs were suggested
to be relevant for migraine risk or protection, and therefore
selected for our analysis [11–13]. From this set of non-coding
SNPs, nine were previously associated with other neurological
diseases such as epilepsy, Asperger’s syndrome, autism spectrum
disorder (ASD) and attention-deficit hyperactivity disorder
(ADHD) (Table 1; Supplementary Table 2). The annotation process
has shown that 8 out of the 22 non-coding SNPs were within
regulatory regions, based on the Ensembl Regulatory Build
dataset (Table 1; Supplementary Table 2). However, considering
the scoring prioritising scheme, only six SNPs met our criteria of a
minimum of three deleterious scores (integration score (counts),
Table 2): VAMP2_rs1150, SNAP25_rs362990, SYN1_rs723556,
SYN1_rs5906437, STX1A_rs6951030 and SNAP25_rs2327264.
Noteworthy, we did not select SNAP25_rs362990 for further
analysis since it has already been experimentally validated and
no additional studies are needed to confirm its functional impact.
No splicing defects were predicted by SpliceAI Pred for any of the
22 non-coding SNPs (Table 2).

Thus, from this group of six non-coding SNPs, we restricted
to the non-reported ones with the highest potential to exert
regulatory activity according to the integration score (sum)
values (Table 2): VAMP2_rs1150 is within a CTCF-binding site
(ENSR00000548703) in the 3′UTR; STX1A_rs6951030 is near the
promoter region (ENSR00000213499) in intron 1; and SNAP25_
rs2327264 locates in an enhancer (ENSR00000645066) and
CTCF-binding site (ENSR00000645067) in intron 1 (Ensembl
Regulatory Build, Table 1; Supplementary Table 2). In accor-
dance, the ENCODE candidate cis-regulatory elements (cCREs)
registry reports that VAMP2_rs1150 locates within a 3′UTR
element (E1845038, Figure 2A), whereas STX1A_rs6951030 and
SNAP25_rs2327264 flank a proximal enhancer element (E2563221,
Figure 2B) near the promoter and a distal enhancer element
(E2097223, Figure 2C), respectively.

Regulatory marks overlapping the selected SNPs
To confirm the regulatory potential of our selected SNPs, we
analysed functional genomic data from ENCODE and Roadmap
Epigenomics within their flanking regions. ENCODE and Roadmap
Epigenomics data were shown to be in accordance with the
Ensembl regulatory registry mentioned before. DNA accessibility

data (i.e. DNase-seq data/DHSs cluster peaks) showed an open
chromatin region for the binding of regulatory elements in
STX1A_rs6951030 (Figure 2B), whereas VAMP2_rs1150 (Figure 2A)
and SNAP25_rs2327264 (Figure 2C) were solely in the proxim-
ity of DHSs clusters. The overlapping of our selected SNPs
with H3K27ac and H3K4me1 peaks suggested that they are
in transcriptionally active elements (promoter or enhancer),
particularly STX1A_rs6951030 (Figure 2B). STX1A_rs6951030 also
presented an H3K4me3 broad peak indicating a promoter-like
element (Figure 2B). In addition, DNase-seq and histone ChIP-
seq data from human brain tissues or neuronal cell lines
in ENCODE and Roadmap Epigenomics databases presented
similar patterns (Supplementary Figures 1 and 2) as described
above. STX1A_rs6951030 was shown to have the most promoter-
like marks (Supplementary Figures 1B and 2B; flanking active
TSS chromatin state), whereas VAMP2_rs1150 (Supplementary
Figures 1A and 2A; transcription at 5′ and 3′ chromatin state)
and SNAP25_rs2327264 (Supplementary Figures 1C and 2C;
weak transcription/weak repressed Polycomb chromatin state)
presented slight signals of enhancer elements through DNase-
seq and H3K4me1/H3K27ac peaks. Still, SNAP25_rs2327264
presented less evidence of high regulatory activity compared with
VAMP2_rs1150.

Prediction of TFs able to bind to enhancer SNPs
Considering that the selected SNPs were embedded in regulatory
elements, it was important to identify DNA-binding motifs in
these regions by matching PWM data from TFs with prediction
software and assessing the presence of strong nearby TF ChIP-seq
peaks with ENCODE (Figure 1). Unfortunately, TF ChIP-seq infor-
mation was insufficient to allow a prioritisation of the predictions
due to the lack of experimental data of these particular TFs, espe-
cially in neuronal cell lines. Some TFs were not in the collection
since these assays are typically performed on known putative TF
or in major regulators such as CCCTC-binding factor (CTCF) and
RNA polymerase II subunit A (POLR2A), and on cell lines such as
HepG2, K562 and HEK293. Nevertheless, Zinc Finger protein 263
(ZNF263), predicted from PERFECTOS-APE to be downregulated
by STX1A_rs6951030 (Supplementary Table 3A, HOMER database),
presented TF ChIP-seq peaks in the SNP region on K562, HEK293
and HepG2 cell lines (Figure 3).

Also, based on predictions from PERFECTOS-APE and MEME
SUITE—Tomtom (with different PWM databases), Zinc Finger
protein 423 (ZNF423) and HIC ZBTB transcriptional repressor
1 (HIC1; also known as ZNF901) were the two most likely
TFs to be affected (through upregulation) by STX1A_rs6951036
(Supplementary Table 3D). However, when analysing TFs tissue
expression in Protein Atlas database, ZNF423 (midbrain, 30.4
nTPM) and ZNF263 from ChIP-seq data (cerebral cortex, 22.5
nTPM) have shown the highest potential to perturb gene
expression in brain.

Fewer TFs were predicted to be affected by SNAP25_rs2327264,
but One Cut Homeobox 2 (ONECUT2) was suggested to be down-
regulated by this SNP, simultaneously by PERFECTOS-APE and
MEME SUITE—Tomtom (Supplementary Table 3D, HOCOMOCO
database). In the Protein Atlas database, ONECUT2 expression
is enhanced in the brain–basal ganglia (9.1 nTPM), intestine-
duodenum (10.1 nTPM) and gallbladder (10.1 nTPM).

Prediction of miRNAs able to bind 3′UTR and
enhancer SNPs
To further investigate how these regulatory SNPs may affect gene
expression, we predicted miRNAs binding to the SNP regions
(Figure 1). Considering the target scores of the resulting four
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Figure 2. UCSC Genome Browser view displaying ENCODE summarised chromatin-related features of (A) VAMP2_rs1150, (B) STX1A_rs6951030 and
(C) SNAP25_rs2327264. The following regulatory tracks are shown (up to bottom): genomic localisation and gene structure (from GENECODE V41),
ENCODE data of cCREs, DNase I hypersensitivity peak clusters (grayscale indicates signal strength) and active histone (H3K4me1, H3K4me3 and
HEK27ac) marks. cCREs are labelled as follows: red—promoter, orange—proximal enhancer, yellow—distal enhancer, pink—DNase-H3K4me3
(promoter-like signatures that are not within 200 bp from a TSS) and blue—CTCF-only. A light blue vertical line denotes the SNP position. USCS
Genome Browser: http://genome.ucsc.edu.

miRNAs (Supplementary Table 4A; highlighted in green), the most
confident predictions were hsa-miR-4528 for SNAP25_rs2327264
(miRDB—75 target score; STarMir—0.62 logitProb; Supplementary
Table 4B and C) and hsa-miR-5010-3p for VAMP2_rs1150 (miRDB—
55 target score; STarMir—0.91 logitProb; Supplementary Table 4B
and C). No miRNAs were predicted to overlap their seed sequence
to the region encompassing STX1A_rs6951030.

All miRNAs showed a MFE below −10 kcal/mol, indicating a
minimal thermodynamic stability (Figure 4; Supplementary Table
4D). However, has-miR-5010-3p predicted to bind VAMP2_rs1150
stands out with a MFE of −29.8 kcal/mol (Figure 4D; Supplemen-
tary Table 4D), which indicates a stronger stability of the inter-
action. Also, the hsa-miR-5010-3p (VAMP2_rs1150) and hsa-miR-
4528 (SNAP25_rs2327264) miRNAs presented a complete align-
ment from nucleotides 2–8 at the 5′ end of the seed sequence
(Figure 4A and D; Supplementary Table 4C, Seed_Type: 8mer),
contrarily to the other miRNAs predicted for SNAP25_rs2327264
(Figure 4B and C). The predictions described above together with

the tissue expression data mostly supported the hsa-miR-5010-3p
binding to the VAMP2 3′UTR in brain tissues (Figure 4E).

Curiously, in the miRDB prediction from VAMP2_rs1150, there
was a highly concomitant motif of about 25–30 bp before the
SNP for several miRNAs with high target scores (miRDB—92, 91,
73, 73 and 65 target scores; Supplementary Table 4A), suggesting
the existence of a deeply important motif for gene expression
regulation.

Search for eQTLs related to the selected SNPs
Next, to identify the potential target genes affected by these
regulatory SNPs, we examined associations between these SNPs
and gene expression data (eQTLs) in human brain tissues by
using the GTEx database (Figure 1). Only VAMP2_rs1150 was sig-
nificantly associated with its expression in human brain tissues
(Table 3). On the other hand, STX1A_rs6951030 was significantly
associated with transducin beta-like 2 (TBL2) expression in the
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Figure 3. UCSC genome browser view of STX1A_rs6951030 locus displays the ENCODE TF ChIP-seq peaks of ZNF263 from K562, HEK293 and HepG2 cell
lines (fold change over control and IDR thresholded peaks; track height: 64 pixels). PWM from PERFECTOS-APE (HOMER database) is represented under
the UCSC genome browser view. A light blue vertical line denotes the SNP position. USCS Genome Browser: http://genome.ucsc.edu.

Table 3. eQTL information of STX1A_rs6951030 and VAMP2_rs1150 (brain tissue; P < 0.05) from GTEx portal

Gencode ID Gene Variant ID dbSNP ID P-value NES Tissue

ENSG00000220205.8 VAMP2 chr17_8159265_A_G_b38 rs1150 1.4e-13 0.42 Brain—putamen (basal ganglia)
4.0e-13 0.32 Brain—caudate (basal ganglia)
4.5e-12 0.35 Brain—cerebellum
5.4e-9 0.22 Brain—hippocampus
4.0e-8 0.34 Brain—substantia nigra
5.7e-8 0.26 Brain—cerebellar hemisphere
3.1e-7 0.28 Brain—hypothalamus
0.0000027 0.14 Brain—cortex
0.0000088 0.14 Brain—frontal cortex (BA9)
0.000026 0.41 Brain—spinal cord (cervical c-1)

ENSG00000106638.15 TBL2 chr7_73718911_T_G_b38 rs6951030 0.000099 0.31 Brain—cerebellar hemisphere

NES stands for normalised effect size

cerebellar hemisphere (Table 3). GTEx data also showed an asso-
ciation of STX1A_rs6951030 with its expression; however it was
a small effect, only observed in artery-tibial tissue (P = 0.00011;
NES = −0.13). No eQTL data suggested SNAP25_rs2327264 and
STX1A_rs6951030 targeting their own genes in brain.

Discussion
We are progressively starting to understand the major role of
functional non-coding SNPs in modulating disease’s susceptibility
and phenotype. Simultaneously, the need to establish a prioriti-
sation strategy to study these SNPs urges since intergenic and
intronic regions are extensive and intrinsically less conserved.

Currently, there are no consensual, focused and easy-friendly
bioinformatics protocols to prioritise non-coding SNPs. Instead,
only guidelines and recommendations regarding the different
software and the clinical interpretation of non-coding SNPs were
published. Here, we proposed a practical workflow to assist the
analysis of the functional potential of non-coding SNPs in multi-
factorial neurological diseases, from the annotation of regulatory
elements to the prediction of TFs and miRNAs, by combining
publicly available bioinformatics tools and databases.

We considered migraine as a disease model, and started
by analysing non-coding SNPs in candidate genes related to
the synaptic vesicle machinery. SNPs were previously assessed
by us in candidate gene association studies [11–13], but our
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Figure 4. RNAhybrid algorithm showing MFE scores (hybridisation energy), and the alignment between mature miRNAs (seed sequence) and the
mRNA sequence (predicted by miRDB). (A-C) SNAP25_rs2327264 interaction with has-miR-4528, -890 and -12126, respectively. (D) VAMP2_rs1150
interaction with has-miR-5010-3p. Also, miRNA expression levels from the best candidates were obtained from miTED database. (E) hsa-miR-4528 and
hsa-miR-5010-3p expression data (Log2RPM, from miTED) are graphically represented in purple and light green, respectively. Several tissues were
selected to compare with brain expression levels, namely lung, adrenal gland, liver, colon, skin, blood, stomach, adipose and heart.

workflow can be used to study candidate non-coding SNPs
identified by other methods. If experimental studies have already
shown that SNPs affect gene expression, Phase III of our workflow
can ultimately be used to predict the binding of TFs or miRNAs to
complement in vitro functional validation.

Interestingly, from the selected set of 22 relevant SNPs in
migraine, some were also previously associated with
neuropsychiatric disorders such as ADHD and epilepsy but
the knowledge of the functional effect of these SNPs on gene
expression is lacking for most of them. Two SNPs in SNAP25 were
described to affect TF binding sites [50, 51]: rs363039 (A-allele) that
may introduce a DNA binding site for the glucocorticoid receptor,
remove a tumor protein p53 half site and a binding site for Zinc
Finger protein 589 (also known as SZF1) [51]; and rs363050 that
encompasses a regulatory element that decreases SNAP25 protein
expression in ASD [52]. Likewise, SNAP25_rs362990 (A-allele) was
shown to significantly decrease SNAP25 expression in ADHD [53].

We evaluated the functional potential of candidate non-coding
SNPs by an integrative analysis of some well-described scoring
methods and prioritised these SNPs based on the number of
algorithms with deleterious predictions and score values. Still,
these methods have two limitations that must be taken into
account: (1) the nucleotide conservation is assessed, but the
relevance of this feature in non-coding SNPs is controversial since

intergenic and intronic regions are intrinsically less conserved
[10, 54]; and (2) the absence of a specific tissue analysis can be
misleading since regulatory effects are strongly tissue-specific [4,
55]. It is noteworthy that SNAP25_rs362990, the second SNP in our
scoring prioritisation strategy (with four scoring methods pointing
to deleteriousness and an integration score sum of 2.73), has
previously been associated with SNAP25 expression regulation
in ADHD [53], which reinforces the effectiveness of the herein
presented scoring prioritisation strategy (Table 2) to select novel
potential susceptibility SNPs in complex diseases.

Next, our prioritisation strategy followed a straightforward
analysis of public epigenetic data in brain tissue and/or neuronal
cell lines to assess the chromatin status and accessibility in the
SNP region and ultimately determine their regulatory signature
(as promoters, enhancers or 3′UTRs). In addition to the typical
epigenetic marks (DNase-Seq and histone ChIP-seq data) here
analysed, other features can be further evaluated to support the
presence of enhancers in the SNP region. ChIP-seq data from
the histone acetyltransferase EP300 have a strong association
with active enhancers because of its ability to acetylate H3K27
[56, 57]. Also, ChIP-seq peaks from chromatin factors such as the
insulator factor CTCF and the cohesin complex (also called SMC3-
RAD21) can imply enhancer–promoter functional interaction
[57, 58].
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The next step in our workflow was to predict if these SNPs
could regulate gene expression in an allele-specific manner
through different binding affinity to TFs or miRNAs. For that,
we recurred to different algorithms, sequencing-based data (TF
ChIP-Seq) and tissue expression information. Still, one should
bear in mind that these predictions do not necessarily reflect
a ‘biological state’. In vivo and in vitro, the RNA might form an
alternative secondary structure different from the ones predicted
by interacting with long non-coding RNAs or RNA-binding
proteins [59]. Also, the degenerate nature of TFs binding motifs
along with motif-independent effects can confound the scenario
and invalidate predictions [60]. Moreover, a subset of miRNAs
was recently reported to unconventionally activate enhancers
targets’ transcription, alter chromatin status and increase E1A
binding protein p300 (EP300), argonaute RISC catalytic component
2 (AGO2) and RNA Polymerase II at the enhancer region [61, 62].
Thus, in vitro studies are necessary to prove their presence in
regulatory elements, as well as the allele-specific binding to the
TFs and/or miRNAs, which may increase or decrease the gene
expression of their targets.

Another important factor to consider is the evidence for
eQTLs, which connects SNPs to gene regulatory mechanisms
and increases the chance for a candidate non-coding SNP to
perturb gene expression. eQTL data are particularly critical for
trans-acting regulatory elements, where the target gene is not
the closest gene to the non-coding SNP under study. In this case,
new biological mechanisms may underlie a complex disorder.
However, for many SNPs we did not detect effects on gene
expression (i.e. eQTLs) even if located in putatively regulatory
regions, due to the lack of data from cell types or conditions
that are most relevant for the disease context (since these large-
scale studies are performed across human tissues obtained
opportunistically or post-mortem) [63].

In conclusion, our workflow was designed to assist in the priori-
tisation of non-coding SNPs with a high regulatory potential. From
our list of candidate genes and non-coding SNPs, our step-by-
step analysis suggested that besides SNAP25_rs362990 (previously
experimentally validated), VAMP2_rs1150, STX1A_rs6951030 and
SNAP25_rs2327264 have the highest potential to exert a regulatory
function in the context of migraine. VAMP2_rs1150 (3′ UTR) is a
predicted target of hsa-mir-5010-3p that likely disrupts its gene
expression. STX1A_rs6951030 (proximal enhancer) may affect the
binding affinity of TFs from the zinc-finger protein family and
disrupt TBL2 gene expression (a new gene, potentially interesting
to be studied in migraine). SNAP25_rs2327264 (distal enhancer) is
a possible target for ONECUT2 binding. Together, these findings
provide insight into the impact of non-coding SNPs and gene
regulation of SNARE (soluble N-ethylmaleimide-sensitive factor
activating protein receptor) complex proteins (involved in neuro-
transmitter release).

Key Points

• This protocol is useful to prioritise potential susceptibil-
ity genes and variants in complex disorders.

• Non-coding SNPs in SNARE complex genes potentially
impact gene regulation mechanisms in migraine.

• VAMP2_rs1150 may be particularly relevant in migraine
since it was predicted to affect hsa-mir-5010-3p binding
to the 3′UTR and dysregulate its own expression.

Acknowledgments
The Genotype-Tissue Expression (GTEx) Project was supported by
the Common Fund of the Office of the Director of the National
Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA, NIMH,
and NINDS. The data used for the analyses described in this
manuscript were obtained from the GTEx Portal on 04/10/2022.

Supplementary data
Supplementary data are available online at https://academic.oup.
com/bfg.

Funding
This work was supported by Fundo Europeu de Desenvolvimento
Regional (FEDER) funds through the COMPETE 2020—Operational
Programme for Competititveness and Internationalisation (POCI),
Portugal, 2020; by Programa de Cooperação Transfronteiriça Inter-
reg VA España-Portugal (POCTEP 2014–2020) under the project
‘Análisis y correlación entre la epigenética y la actividad cerebral
para evaluar el riesgo de migraña crónica y episódica en mujeres’
(0702_MIGRAINEE_2_E) and by Portuguese funds through Fun-
dação para a Ciência e a Tecnologia (FCT)/Ministério da Ciência,
Tecnologia e Ensino Superior in the framework of the project
POCI-01-0145-FEDER-029486 (PTDC/MEC-NEU/29486/2017). This
research was also funded by Sociedade Portuguesa de Cefaleias
(SPC). S.M. (CEECIND/00684/2017), N.P. and M.S. (Decreto Lei
n◦57/2016 de 29 de Agosto - Norma Transitória) are funded by
FCT. M.Q. was the recipient of a fellowship (SFRH/BD/96253/2013)
funded by FCT.

Conflict of interest
The authors declare no conflict of interest.

Authors’ contributions
M.A.-F. and N.P conceived the study and were in charge of overall
administration and planning of the project; D.F. and M.Q. collected
the data with support from M.A.-F. and C.L.; D.F. developed and
performed the protocol with input from all authors; D.F. analysed
and interpreted the data with support from all authors; M.S.,
S.M., M.Q., A.M.L., M.A.-F. and C.L. verified and discussed the
methodology and results; D.F. wrote the original draft; all authors
critically revised and edited the manuscript; S.M., M.S., C.L., M.A.-
F. and N.P. supervised the work; M.A.-F. and N.P. contributed with
resources and funding. All authors have read and agreed to the
published version of the manuscript.

Data availability
All data generated or analysed during this study are included in
this published article and its supplementary data. Also, public
websites used in this study are described in the methods section.

References
1. Zhang F, Lupski JR. Non-coding genetic variants in human dis-

ease. Hum Mol Genet 2015;24:R102–10.
2. Rojano E, Seoane P, Ranea JAG, et al. Regulatory variants: from

detection to predicting impact. Brief Bioinform 2019;20:1639–54.

D
ow

nloaded from
 https://academ

ic.oup.com
/bfg/advance-article/doi/10.1093/bfgp/elad020/7186543 by U

niversity of Porto user on 20 June 2023

https://academic.oup.com/bfgp/article-lookup/doi/10.1093/bfgp/elad020#supplementary-data
https://academic.oup.com/bfg
https://academic.oup.com/bfg


Felício et al. | 11

3. Rao S, Yao Y, Bauer DE. Editing GWAS: experimental approaches
to dissect and exploit disease-associated genetic variation.
Genome Med 2021;13:1–20.

4. Ellingford JM, Ahn JW, Bagnall RD, et al. Recommendations for
clinical interpretation of variants found in non-coding regions
of the genome. Genome Med 2022;14:1–19.

5. Maurano MT, Humbert R, Rynes E, et al. Systematic localization
of common disease-associated variation in regulatory DNA. Sci-
ence 2012;337:1190–5.

6. Abascal F, Acosta R, Addleman NJ, et al. Expanded encyclopae-
dias of DNA elements in the human and mouse genomes. Nature
2020;583:699–710.

7. Bernstein BE, Stamatoyannopoulos JA, Costello JF, et al. The
NIH roadmap Epigenomics mapping consortium. Nat Biotechnol
2010;28:1045–8.

8. Lizio M, Abugessaisa I, Noguchi S, et al. Update of the FANTOM
web resource: expansion to provide additional transcriptome
atlases. Nucleic Acids Res 2019;47:D752–8.

9. Bocher O, Génin E. Rare variant association testing in the non-
coding genome. Hum Genet 2020;139:1345–62.

10. Ritchie GRS, Dunham I, Zeggini E, et al. Functional annotation of
noncoding sequence variants. Nat Methods 2014;11:294–6.

11. Lemos C, Pereira-Monteiro J, Mendonça D, et al. Evidence of syn-
taxin 1A involvement in migraine susceptibility: a Portuguese
study. Arch Neurol 2010;67:422–7.

12. Quintas M, Neto JL, Pereira-Monteiro J, et al. Interaction between
γ -aminobutyric acid a receptor genes: new evidence in migraine
susceptibility. PLoS One 2013;8:e74087.

13. Quintas M, Neto JL, Sequeiros J, et al. Going deep into synaptic
vesicle machinery genes and migraine susceptibility—a case-
control association study. Headache 2020;60:2152–65.

14. Gormley P, Anttila V, Winsvold BS, et al. Meta-analysis of 375,000
individuals identifies 38 susceptibility loci for migraine. Nat
Genet 2016;48:856–66.

15. Techlo TR, Rasmussen AH, Møller PL, et al. Familial analysis
reveals rare risk variants for migraine in regulatory regions.
Neurogenetics 2020;21:149–57.

16. Lipton RB, Stewart WF, Diamond S, et al. Prevalence and bur-
den of migraine in the United States: data from the American
migraine study II. Headache 2001;41:646–57.

17. Lipton RB, Bigal ME, Diamond M, et al. Migraine prevalence,
disease burden, and the need for preventive therapy. Neurology
2007;68:343–9.

18. Olesen J. Headache classification Committee of the Interna-
tional Headache Society (IHS) the international classification of
headache disorders3rd edition. Cephalalgia 2018;38:1–211.

19. Mulder EJ, Van Baal C, Gaist D, et al. Genetic and environmental
influences on migraine: a twin study across six countries. Twin
Res 2003;6:422–31.

20. Hansen RD, Christensen AF, Olesen J. Family studies to find rare
high risk variants in migraine. J Headache Pain 2017;18:32.

21. Polderman TJC, Benyamin B, De Leeuw CA, et al. Meta-analysis
of the heritability of human traits based on fifty years of twin
studies. Nat Genet 2015;47:702–9.

22. Sutherland HG, Albury CL, Griffiths LR. Advances in genetics of
migraine. J Headache Pain 2019;20:72.

23. Bron C, Sutherland HG, Griffiths LR. Exploring the hereditary
nature of migraine. Neuropsychiatr Dis Treat 2021;17:1183–94.

24. McLaren W, Gil L, Hunt SE, et al. The Ensembl variant effect
predictor. Genome Biol 2016;17:1–14.

25. Oscanoa J, Sivapalan L, Gadaleta E, et al. SNPnexus: a web server
for functional annotation of human genome sequence variation
(2020 update). Nucleic Acids Res 2020;48:W185–92.

26. Wang J, Ullah AZD, Chelala C. IW-scoring: an integrative
weighted scoring framework for annotating and prioritizing
genetic variations in the noncoding genome. Nucleic Acids Res
2018;46:E47.

27. Li MJ, Pan Z, Liu Z, et al. Predicting regulatory variants with
composite statistic. Bioinformatics 2016;32:2729–36.

28. Zhang J, Wu D, Dai Y, et al. Functional relevance for central
cornea thickness-associated genetic variants by using integra-
tive analyses. BioData Mining 2018;11:19.

29. Rogers MF, Shihab HA, Gaunt TR, et al. CScape: a tool for predict-
ing oncogenic single-point mutations in the cancer genome. Sci
Rep 2017;7:11597.

30. Lizio M, Harshbarger J, Shimoji H, et al. Gateways to the FAN-
TOM5 promoter level mammalian expression atlas. Genome Biol
2015;16:1–14.

31. Consortium RE, Kundaje A, Meuleman W, et al. Integrative analy-
sis of 111 reference human epigenomes. Nature 2015;518:317–30.

32. Lee BT, Barber GP, Benet-Pagès A, et al. The UCSC Genome
Browser database: 2022 update. Nucleic Acids Res 2022;50:D1115–
D1122.

33. Rosenbloom KR, Sloan CA, Malladi VS, et al. ENCODE Data in the
UCSC Genome Browser: year 5 update. Nucleic Acids Res 2012;41:
D56–D63.

34. Daofeng Li, Purushotham D, Harrison JK, et al. WashU Epigenome
Browser update 2022. Nucleic Acids Res 2022;50: W774–W781.

35. GTEx Consortium. The genotype-tissue expression (GTEx)
project. Nat Genet 2013;45:580–5.

36. GTEx Consortium. The GTEx consortium atlas of genetic
regulatory effects across human tissues. Science 2020;369:
1318–30.

37. Cunningham F, Allen JE, Allen J, et al. Ensembl 2022. Nucleic Acids
Res 2022;50:D988–95.

38. Kulakovskiy IV, Vorontsov IE, Yevshin IS, et al. HOCOMOCO:
towards a complete collection of transcription factor binding
models for human and mouse via large-scale ChIP-Seq analysis.
Nucleic Acids Res 2018;46:D252–9.

39. Bailey TL, Boden M, Buske FA, et al. MEME suite: tools
for motif discovery and searching. Nucleic Acids Res 2009;37:
202–8.

40. Messeguer X, Escudero R, Farré D, et al. PROMO: detection of
known transcription regulatory elements using species-tailored
searches. Bioinformatics 2002;18:333–4.

41. Thul PJ, Lindskog C. The human protein atlas: a spatial map of
the human proteome. Protein Sci 2018;27:233–44.

42. Liu W, Wang X. Prediction of functional microRNA targets by
integrative modeling of microRNA binding and target expression
data. Genome Biol 2019;20:1–10.

43. Chen Y, Wang X. MiRDB: an online database for prediction
of functional microRNA targets. Nucleic Acids Res 2020;48:
D127–31.

44. Kanoria S, Rennie W, Liu C, et al. STarMir tools for predic-
tion of microRNA binding sites. Methods Mol Biol 2016;1490:
73–83.

45. Krüger J, Rehmsmeier M. RNAhybrid: MicroRNA target predic-
tion easy, fast and flexible. Nucleic Acids Res 2006;34:451–4.

46. Kozomara A, Griffiths-Jones S. MiRBase: integrating microRNA
annotation and deep-sequencing data. Nucleic Acids Res 2011;39:
152–7.

47. Riffo-Campos ÁL, Riquelme I, Brebi-Mieville P. Tools for
sequence-based miRNA target prediction: what to choose? Int
J Mol Sci 2016;17:1–18.

48. Peterson SM, Thompson JA, Ufkin ML, et al. Common features of
microRNA target prediction tools. Front Genet 2014;5:1–10.

D
ow

nloaded from
 https://academ

ic.oup.com
/bfg/advance-article/doi/10.1093/bfgp/elad020/7186543 by U

niversity of Porto user on 20 June 2023



12 | Briefings in Functional Genomics, 2023

49. Kavakiotis I, Alexiou A, Tastsoglou S, et al. DIANA-miTED:
a microRNA tissue expression database. Nucleic Acids Res
2022;50:D1055–61.

50. Gosso MF, De Geus EJC, Polderman TJC, et al. Common variants
underlying cognitive ability: further evidence for association
between the SNAP-25 gene and cognition using a family-based
study in two independent Dutch cohorts. Genes Brain Behav
2008;7:355–64.

51. Söderqvist S, McNab F, Peyrard-Janvid M, et al. The SNAP25
gene is linked to working memory capacity and maturation of
the posterior cingulate cortex during childhood. Biol Psychiatry
2010;68:1120–5.

52. Braida D, Guerini FR, Ponzoni L, et al. Association between SNAP-
25 gene polymorphisms and cognition in autism: functional
consequences and potential therapeutic strategies. Transl Psychi-
atry 2015;5:e500–11.

53. Hawi Z, Matthews N, Wagner J, et al. DNA variation in the
SNAP25 gene confers risk to ADHD and is associated with
reduced expression in prefrontal cortex. PLoS One 2013;8:
1–8.

54. Kircher M, Witten DM, Jain P, et al. A general framework for
estimating the relative pathogenicity of human genetic variants.
Nat Genet 2014;46:310–5.

55. Boyle AP, Hong EL, Hariharan M, et al. Annotation of functional
variation in personal genomes using RegulomeDB. Genome Res
2012;22:1790–7.

56. Visel A, Blow MJ, Li Z, et al. ChIP-seq accurately predicts tissue-
specific activity of enhancers. Nature 2009;457:854–8.

57. Whalen S, Truty RM, Pollard KS. Enhancer-promoter interactions
are encoded by complex genomic signatures on looping chro-
matin. Nat Genet 2016;48:488–96.

58. Oti M, Falck J, Huynen MA, et al. CTCF-mediated chromatin
loops enclose inducible gene regulatory domains. BMC Genomics
2016;17:1–16.

59. Riolo G, Cantara S, Marzocchi C, et al. miRNA targets: from pre-
diction tools to experimental validation. Methods Protoc 2021;4:
1–20.

60. Deplancke B, Alpern D, Gardeux V. The genetics of transcription
factor DNA binding variation. Cell 2016;166:538–54.

61. Xiao M, Li J, Li W, et al. MicroRNAs activate gene transcription
epigenetically as an enhancer trigger. RNA Biol 2017;14:1326–34.

62. Odame E, Chen Y, Zheng S, et al. Enhancer RNAs: transcriptional
regulators and workmates of NamiRNAs in myogenesis. Cell Mol
Biol Lett 2021;26:1–20.

63. Umans BD, Battle A, Gilad Y. Where are the disease-associated
eQTLs? Trends Genet 2021;37:109–24.

D
ow

nloaded from
 https://academ

ic.oup.com
/bfg/advance-article/doi/10.1093/bfgp/elad020/7186543 by U

niversity of Porto user on 20 June 2023


	 Integrating functional scoring and regulatory data to predict the effect of non-coding SNPs in a complex neurological disease
	 Introduction
	 Methods
	 Results
	 Discussion
	 Key Points
	 Acknowledgments
	 Supplementary data
	 Funding
	 Conflict of interest
	 Authors' contributions
	 Data availability


