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Abstract. Code-modulated visual evoked potentials (c-VEPs) can pro-
vide reliable, high-speed communication for non-invasive brain-computer
interfaces (BCIs). Most studies use shifted versions of binary m-sequences
to encode the commands, i.e., flashing black and white targets according
to the shifted code. Despite excellent performances, high-contrast stimuli
cause eyestrain for some users. In this work, we studied the possibility of
using m-sequences with non-binary bases, encoded with different shades
of gray, as a more pleasant alternative. A c-VEP-based online BCI at a
120 Hz refresh rate was tested with 3 subjects using base 2 (63-bit), base
3 (80-bit), base 5 (124-bit), and base 11 (120-bit) m-sequences. Raster la-
tencies correction and an online artifact rejection approach were applied.
Results showed that all subjects were able to achieve perfect accuracy
using all bases (base 2: 100%, 2.1 s/trial, 114.3 bpm; base 3: 100%, 2.6
s/trial, 90.0 bpm; base 5: 100%, 3.1 s/trial, 77.4 bpm; base 11: 100%,
8.0 s/trial, 30 bpm). Furthermore, p-ary m-sequences were perceived as
15.28% (base 3), 45.88% (base 5), and 51.39% (base 11) less obtrusive in
relative percentage than the binary sequence. These preliminary results
suggest that non-binary sequences may be more comfortable for users
without degrading system accuracy.
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1 Introduction

The ability of brain–computer interfaces (BCIs) to provide a direct pathway be-
tween user’s brain activity and external devices makes them suitable systems
to replace or even restore central nervous system outputs [1]. In this context,
BCIs have been traditionally perceived as powerful potential alternative and
augmentative communication (AAC) technologies to improve the quality of life
of motor-disabled patients [1]. These non-invasive BCIs monitor the electroen-
cephalographic (EEG) signals of the user to decode their intentions in real-time
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and translate them into commands that control applications or external devices
[1].

Control signals such as P300 evoked potentials or steady-state visual evoked
potentials (SSVEP) have been extensively used in the literature to implement
BCI spellers, reaching suitable accuracies and information transfer rates (ITR),
e.g., approx. > 90.0% at 10–25 bpm (P300) [2,3] or 40–50 bpm (SSVEP) [4,5]
for healthy users. Recently, code-modulated VEPs (c-VEP) have been proposed
as a novel control signal that can outperform both P300 and SSVEP-based
approaches in terms of performance and calibration times [6]; e.g., 91.0% at 92.8
bpm [4], 94% at 92.7 bpm [5].

In a classical circular-shifting c-VEP paradigm, a template is calibrated us-
ing the EEG response of the user when paying attention to a visual stimuli that
flickers following a pseudo-random noise code. Then, different commands are en-
coded with shifted versions of this code, allowing identification of the command
the user is looking at by correlating the EEG response with these shifted tem-
plates [6]. To favor the classification, the pseudo-random code should present
low auto-correlation values for non-zero circular shifts, so that other commands
can use delayed versions of the code without incrementing the risk of misclassi-
fications. Usually, binary maximal length sequences (i.e., m-sequences) are used
due to their excellent auto-correlation properties; i.e., encoding commands using
black (0) or white (1) flashings [6].

Despite the excellent performances achieved using binary m-sequences to
encode commands, it has been reported that its high-contrast stimuli cause eye-
strain for some users, especially for low refresh rates [6]. Thus, a necessary step
toward plug-and-play implementations of c-VEP-based BCIs in real environ-
ments should be aimed at reducing the discomfort of the flickering as long as
possible. On the one hand, there is a consensus that the higher the presentation
rate (i.e., the sampling rate of the code), the less fatiguing the stimulation is for
the user [6]. Although most c-VEP-based studies flicker at 60 Hz, presentation
rates of 120 Hz are recommended, which provide shorter calibration and selec-
tion times while maintaining suitable selection accuracy [6]. Noteworthy, higher
presentation rates than 120 Hz are discouraged, since c-VEP templates become
less orthogonal to each other [7]. On the other hand, some studies opted to cus-
tomize the pseudo-random noise code. Several authors proposed hand-crafted
codes that confine spectral density to high-frequency bands, which have been
found to be more pleasant to the user than binary m-sequences (e.g., chaotic
codes [8], 6-target optimum [9], superposition optimized pulses [10]). Recently,
Gembler et al. [5] proposed the use of quintary m-sequences (i.e., m-sequences
with 5 different values) encoded as different shades of gray, reaching similar per-
formances (binary vs. quintary: 99.4%, 98.5% at 60 Hz, 97.6%, 97.5% at 120
Hz, 97.9%, 97.6% at 240 Hz) than binary m-sequences while being significantly
less annoying for users, especially for 60 Hz refresh rates. However, they did not
study the influence of different non-binary bases (i.e., varying the number of
different sequence values) in the user’s comfort, as they only tested their system
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with a quintary m-sequence. For a comprehensive review on the topic, refer to
Mart́ınez-Cagigal et al. [6].

The objective of this pilot study is to analyze the influence of p-ary m-
sequences on the accuracy and users comfort while using a c-VEP-based speller.
The following p-ary m-sequences will be studied: base 2 (i.e., binary, 63-bit),
base 3 (80-bit), base 5 (124-bit) and base 11 (120-bit). A 16-target speller at 120
Hz presentation rate will be used to maximize users comfort.

2 Subjects

Three healthy users (HU, mean age: 27.3 ± 1.7 years) were included in this pilot
study. EEG signals were recorded using sixteen active electrodes, placed on F3,
Fz, F4, C3, Cz, C4, CPz, P3, Pz, P4, PO7, POz, PO8, Oz, I1 and I2; using Fpz
as a ground and the earlobe as reference. A g.USBamp amplifier (g.Tec, Guger
Technologies, Austria) with a sampling rate of 256 Hz was attached to a PC
Intel Core i7-7700 @3.6GHz, 32GB RAM. MEDUSA® (www.medusabci.com), a
general-purpose system to develop BCI paradigms and experiments in Python,
was used to record the data via lab-streaming layer (LSL) protocol, display
the paradigm and process the stimuli in real-time [11,12]. Of note, the c-VEP
speller was displayed in a LED FullHD @144 Hz monitor and built in an Unity
application that communicates with MEDUSA® via TCP/IP sockets to ensure
exact synchronization between paradigm onsets and EEG registering. An exter-
nal phototransistor was also used to measure refresh delays between top and
bottom monitor lines.

3 Methods

3.1 P-ary m-sequences

M-sequences are pseudo-random codes generated by linear feedback shift reg-
isters (LFSR) that are almost spectrally flat and thus, nearly orthogonal to
circularly shifted versions of themselves [6]. However, by definition, m-sequence
lengths are restricted by the order r of the LSFR (i.e., the number of taps) and
the sequence base p (i.e., number of different values or levels), so the length of
the sequence will be L = pr−1 bits [6]. An interesting property is that combina-
tions (except all zeros) of event subsequences of length equal or less than r are
also nearly perfectly counterbalanced inside the code [13]. It is also important to
highlight that m-sequences can only be obtained if the LFRS taps are coefficients
of an primitive polynomial of degree r in the Galois Field with p elements, i.e.
GF(pr) [13]. For instance, a binary 63-bit m-sequence may be generated using a
LFSR of length r = 6 and polynomial x6 + x5 + 1 (encoded with taps 110000),
i.e. hereafter GF(26)<x6+x5+1>.

The generation of p-ary m-sequences is not trivial, though. Galois Fields can-
not have an arbitrary number of elements, but only those fields in which p is a
prime number satisfy the operations of multiplication, addition, subtraction and

www.medusabci.com
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Table 1. M-sequences used in this study.

Base Order Length
(bits)

Polynomial Seed Duration
(s/cycle)∗

GF(26) 2 6 63 x6 + x5 + 1 1,1,1,0,1,0 0.525
GF(34) 3 4 80 x4 + 2x3 + 1 2,1,0,1 0.667
GF(53) 5 3 124 3x3 + 2x2 + 1 2,1,0 1.033
GF(112) 11 2 120 3x2 + x+ 1 9,0 1.0
∗ Calculated using a monitor refresh rate of 120 Hz.

division and are eligible to generate m-sequences [13]. Thus, a m-sequence with
base p and length L can be only generated if a primitive polynomial with degree
r over GF(pr) exists. Although primitive polynomials over GF(2r), GF(3r) or
GF(5r) can be easily found in the literature [14], polynomials of higher bases are
usually found using numerical linear algebra algorithms [15]. Table 1 shows the
chosen m-sequences and their generation details, while figure 1 depicts their color
encoding, temporal series and normalized autocorrelation function. Of note, the
seed only determines the initial subsequence of the m-sequence. Since all pos-
sible subsequences are included inside the code, different seeds do not generate
different m-sequences, but shifted versions of the same code. As shown in fig-
ure 1, m-sequences for p > 2 usually present occasional phase values in which
they are highly anti-/correlated. Undeniably, these points must be avoided when
assigning different delays to each command to prevent misclassifications [5].

3.2 Signal processing

EEG signals was pre-processed in real-time using a notch filter at 50 Hz to
remove power line interference; as well as a filter bank over 1–60 Hz, 12–60
Hz and 30–60 Hz [6]. All these band-pass filters were 7th-order infinite impulse
response (IIR) Butterworth filters. Then, a canonical correlation analysis (CCA)
was used to compute the c-VEP templates for each command using a circular
shifting approach. CCA finds spatial filters so that the correlation between linear
projections of two signals A and B is maximized [6].

In training, A ∈ Rk·Ns,Nc are the multi-channel EEG epochs when looking
at the command without lag for k cycles, while BNs,Nc are the same epochs
averaged over the cycles, where Ns is the number of samples per cycle and Nc

indicates the number of channels. From the returned spatial filters Wa ∈ RNc,Nc

and Wb ∈ RNc,Nc , only the ones that maximize the correlations between the
projections Awa and Bwb are used; i.e., first columns of Wa and Wb, re-
spectively. The averaged response is then projected to compute the main c-
VEP template x0 = Bwb, where x0 ∈ RNs,1. Templates for the rest of com-
mands (i.e., x1,x2, . . . ,x16) are calculated by circularly shifting x0 according
to their assigned lags [6]. Note that this procedure is repeated for each fil-
ter of the filter bank, ending up with three different sets of templates, where

X(i) = (x
(i)
1 ,x

(i)
2 , . . . ,x

(i)
16 ), i = 1, . . . , 3 [6].
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Fig. 1. P -ary sequences used in this study, from top to bottom: 63-bit GF(26), 80-bit
GF(34), 124-bit GF(53), and 120-bit GF(112). For each one, color encoding, temporal
code sequence and normalized autocorrelation (i.e., Rxx) functions are shown for a
single cycle at a presentation rate of 120 Hz.

In online mode, multi-channel EEG epochs of a stimulation for kt cycles
are averaged and projected with wb to obtain a spatially-filtered epoch, i.e. x̂ ∈
RNs,1. Then, the Pearson’s correlation coefficient between x̂ and each of the tem-

plates x
(i)
1 is averaged over filter banks, identifying the selected command as the

one that reaches the maximal correlation value, i.e. y = argmaxj [
∑

i ρ(x̂,x
(i)
j )],

where j = 1, . . . , 16. For further details, refer to Mart́ınez-Cagigal et al. [6].
Following the approach of Nagel et al. [16], we also corrected the ‘raster

latencies’. Due to vertical blanking, pixel lines are refreshed from top to bottom,
resulting in latency variations among different commands depending on their
position on the screen. We used an external phototransistor to measure the delay
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Fig. 2. A. Training matrix, which displayed the original m-sequence. B. Online matrix,
where each of the 16 commands is modulated by a different shifted-version of the
original m-sequence. In these examples, GF(34) was used and thus, three different
tones encoded the m-sequence values.

between the first top line and the last bottom line, estimating a total delay of

7.92 ms (approx. 95% of the refresh rate) [16]. Thus, training templates x
(i)
j are

delayed according to the display latency of the commands they belong to.
Finally, an online artifact detection algorithm was applied to correct noisy

epochs. In training, the standard deviation ofA for each channel across training k
cycles is computed, i.e. σA ∈ R1,Nc . In online mode, the same metric is computed
for the test epochs x̂. Cycle-wise, a channel is interpolated with the averaged
EEG of the nearest 3 channels if σx̂ > 3 · σA for that cycle. This method takes
care of powerful non-stationary artifacts that can ruin the prediction, such as
blinking or electrode-pops.

3.3 Evaluation protocol

Each user carried out a single session in which training and test trials of each
of the m-sequences were recorded. For each m-sequence, training was performed
with 20 trials and online mode was composed of 32 trials. Each trial was com-
posed of 10 stimulation cycles. In training, users were asked to pay attention to
a single command, which displayed the selected m-sequence without any lag. In
online mode, users were asked to sequentially select each of the 16 commands
in lexicographic order twice. Training and online c-VEP matrices are shown in
figure 2. After the online mode, users fulfilled a questionnaire to reflect their
subjective experience regarding visual discomfort of each m-sequence.

4 Results and discussion

Table 2 details the grand-averaged accuracies and ITRs across users for each
of the evaluated m-sequences in function of the number of online cycles. In
figure 3(A), a visual comparison of these results using 10 cycles per trial is
depicted. Results of the qualitative questionnaire on visual eyestrain are also
shown in figure 3(B).
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Table 2. Grand-average online results across users.

GF(26) GF(34) GF(53) GF(112) Mean
kt Acc. ITR Acc. ITR Acc. ITR Acc. ITR Acc. ITR

1 63.5% 202.3 80.2% 233.2 84.4% 163.0 84.4% 175.7 78.1% 193.6
2 91.7% 189.5 96.9% 155.5 96.9% 107.4 96.9% 107.7 95.6% 140.0
3 97.9% 148.3 99.0% 114.2 100.0% 77.4 99.0% 77.8 99.0% 104.4
4 100.0% 114.3 100.0% 90.0 100.0% 58.1 97.9% 56.8 99.5% 79.8
5 100.0% 91.4 100.0% 72.0 100.0% 46.5 99.0% 46.7 99.7% 64.1
6 100.0% 76.2 100.0% 60.0 100.0% 38.7 99.0% 38.9 99.7% 53.5
7 100.0% 65.3 100.0% 51.4 100.0% 33.2 99.0% 33.4 99.7% 45.8
8 100.0% 57.1 100.0% 45.0 100.0% 29.0 100.0% 30.0 100.0% 40.3
9 100.0% 50.8 100.0% 40.0 100.0% 25.8 99.0% 25.9 99.7% 35.6
10 100.0% 45.7 100.0% 36.0 100.0% 23.2 100.0% 24.0 100.0% 32.2

kt: Number of test cycles, Acc.: accuracy (%), ITR: information transfer rate (bpm).

Fig. 3. A. Grand-averaged accuracies and ITR for each m-sequence (10 cycles/trial).
B. Subjective eyestrain in relative percentage to the produced by the binary code, i.e.
GF(26).

In terms of performance, 100% correct selections was achieved for all m-
sequences using 10 cycles/trial. Differences arose when using a reduced number
of cycles to reduce the time to perform a command selection, which also depends
on the length of the m-sequence (see table 1). As shown, a 100% accuracy was
achieved by GF(26) in 4 cycles (114.3 bpm, 2.1 s/trial), GF(34) in 4 cycles (90
bpm, 2.6 s/trial), GF(53) in 3 cycles (77.4 bpm, 3.1 s/trial), and GF(112) in 8
cycles (30 bpm, 8.0 s/trial). Interestingly, GF(26) showed a steeper slope in terms
of performance for a low number of cycles compared to the p-ary m-sequences
(see figure 3(A)), obtaining only 63.5% accuracy for 1 cycle/trial, while the rest
exceeded 80%. Considering the trade-off between accuracy and speed, GF(26),
GF(34) and GF(53) are all suitable to achieve very good performance in given
amount of time. Although the use of GF(112) is perfectly viable, user HU2 had
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a selection error (31 correct out of 32), which caused the performance to drop
to 99% from 5 cycles onward. However, as the length is similar to GF(53) and
therefore ITR is almost equivalent, the preliminary results of this manuscript
suggest using GF(53) instead in terms of performance.

Given that all p-ary sequences achieved suitable performance, the next step
is to consider their influence on users comfort. As expected, the higher the base,
the lower the user’s perceived eyestrain. Thus, GF(112) was considered the least
annoying m-sequence, followed by GF(53), GF(34) and finally GF(26); being
perceived as 15.28%, 45.88%, and 51.39% less obtrusive in relative percentage
than GF(26), respectively. Interestingly, some users did not perceive significantly
different discomfort between certain m-sequences. For instance, HU1 considered
GF(26) and GF(34), and GF(53) and GF(112) similar in terms of visual fatigue;
and HU3 did not perceive a reduction in eyestrain from GF(53) to GF(112).
Although the hypothesis that a higher base produces less visual eyestrain due to a
reduction in overall perceived contrast seems to hold, further analyses with more
subjects are required to give insight into the perceived annoyance in function of
m-sequence base. Considering the balance between performance and annoyance,
the use of GF(34) or GF(53) is recommended, although it depends on the user’s
sensitivity to strong visual contrasts.

These preliminary results are in accordance with the previous study by Gem-
bler et al. [5], in which they compared the performance and user friendliness of
two GF(26) and GF(53) m-sequences. Although both achieved similar results at
120 Hz monitor rate (binary: 97.6%, quintary: 97.5%), GF(53) was perceived as
significantly less annoying that GF(26). Based on these results, we consider the
use of p-ary m-sequences in state-of-the-art c-VEP-based BCIs to be promising
for reducing visual fatigue.

Despite these positive results, further analysis on the topic should be encour-
aged as future lines of research. Firstly, increasing the sample size is essential to
give more power to the comparison and allow statistical analyses between the
results of different p-ary m-sequences. In this study, a total of 16 commands were
used in online mode. The number of possible commands is a key aspect of circu-
lar shifting approaches, as they must fit into the m-sequence without falling into
local cross-correlation maxima. For instance, including 36 commands (all letters
and numbers) may not be feasible for m-sequences such as GF(26), GF(72) or
GF(34). Analyzing the viability of different p-ary m-sequences in terms of the
possible number of commands is an interesting future research line. Another
study could also focus on studying the role of the number of training trials in
achieving suitable online performance, or even use adaptive approaches [6]. In
both this study and Gembler et al. [5], m-sequence levels were encoded with
different shades of gray. Interestingly, different colors have been shown to affect
EEG responses in both c-VEP and SSVEP-based systems [6]. Hence, another
line of research would be to study the role of different color encoding for p-
ary m-sequences. Furthermore, the extra dimensions provided by these p-ary
m-sequences would not only allow the exploitation of color variations, but also
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other aspects such as stimuli sizes, apparent motions, or changing images; that
have not yet been studied.

5 Conclusion

In this study, we analyzed the application of non-binary m-sequences as a more
pleasant alternative than binary codes for c-VEP-based BCIs. M-sequences with
different bases on GF(26), GF(34), GF(53) and GF(112) encoded with different
shades of gray were studied. The results showed that the higher the base, the
lower the visual fatigue perceived by the user. Although all of them were able to
achieve 100% accuracy online, it was observed that the selection speed decreased
slightly with increasing base due to the length of the m-sequences: 63-bit GF(26),
2.1 s/trial, 114.3 bpm; 80-bit GF(34), 2.6 s/trial, 90.0 bpm; 124-bit GF(53),
3.1 s/trial, 77.4 bpm; 120-bit GF(112), 8.0 s/trial, 30 bpm. Given the trade-
off between performance and eyestrain, we conclude that the use of GF(34) or
GF(53) is adequate to provide a reliable, comfortable, high-speed c-VEP-based
BCI system. However, further studies are encouraged to increase statistical power
and to analyze other aspects such as number of commands, color encoding and
training duration.
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7. Başaklar, T., Tuncel, Y., Ider, Y.Z.: Effects of high stimulus presentation rate on
EEG template characteristics and performance of c-VEP based BCIs. Biomedical
Physics and Engineering Express 5(3) (2019). DOI 10.1088/2057-1976/ab0cee

8. Shirzhiyan, Z., Keihani, A., Farahi, M., Shamsi, E., GolMohammadi, M., Mahnam,
A., Haidari, M.R., Jafari, A.H.: Introducing chaotic codes for the modulation of
code modulated visual evoked potentials (c-VEP) in normal adults for visual fa-
tigue reduction. PLoS ONE 14(3), 1–29 (2019). DOI 10.1371/journal.pone.0213197

9. Behboodi, M., Mahnam, A., Marateb, H., Rabbani, H.: Optimization of Visual
Stimulus Sequence in a Brain-Computer Interface Based on Code Modulated Vi-
sual Evoked Potentials. IEEE Transactions on Neural Systems and Rehabilitation
Engineering 2(c) (2020). DOI 10.1109/TNSRE.2020.3044947

10. Yasinzai, M.N., Ider, Y.Z.: New approach for designing cVEP BCI stimuli based
on superposition of edge responses. Biomedical Physics and Engineering Express
6(4) (2020). DOI 10.1088/2057-1976/ab98e7

11. Santamaŕıa-Vázquez, E., Mart́ınez-Cagigal, V., Hornero, R.: MEDUSA: una nueva
herramienta para el desarrollo de sistemas Brain-Computer Interface basada en
Python. Cognitive Area Networks 5(1), 87–92 (2018)

12. MEDUSA: MEDUSA: a Python-based BCI framework (2022). URL www.
medusabci.com
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