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Abstract. Predicting users’ adherence to digital interventions focused on active 

and health aging could prevent early dropouts. This is the context of the IFMBE 

scientific challenge held as part of the 2022 IUPESM World Congress on Medi-

cal Physics and Biomedical Engineering. The task is designed as a binary classi-

fication problem in which data from different sources of 6 consecutive weeks are 

used to predict high or low adherence in the next 1.5 weeks. We propose deep 

learning (residual deep neural networks, DNN) and adaptive boosting (Ada-

Boost) approaches to solve this issue. Two datasets were used in the challenge 

though only one was available for training the models. The geometric mean (GE) 

between sensitivity and specificity in the second unseen dataset was established 

as the reference score for the challenge. A Residual DNN model reached the 

highest GE (0.7500) among the ten available attempts. Our analysis suggests that 

the differences between the training GE and the final score may be due to over-

fitting caused by noise in the training dataset and to a different data distribution 

comparing to the unseen test dataset. Additionally, explainable artificial intelli-

gence (XAI) techniques let us point to the days since the last app usage and the 

number of different days of app usage as key features to predict adherence. XAI 

let us also uncover the important role of hidden patterns within brain games fea-

tures. All in all, our results suggest that predicting adherence using the available 

dataset can be accurately conducted. 

Keywords: active aging, digital adherence, digitalization, residual deep learn-

ing, adaboost, explainable artificial intelligence. 

1 Introduction 

Sustained low natality and increased life expectancy are rising population aging in de-

veloped countries. According to World Population Prospects 2019 [1], by 2050, 1 in 6 
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people in the world will be over the age of 65, up from 1 in 11 in 2019, a situation that 

will pose great challenges in the years to come. The old-age dependency ratio (OADR) 

is defined as the number of old-age dependent persons (≥65 years old) per 100 persons 

of working age (aged 20 to 64 years). This metric approximates the implied socioeco-

nomic impact associated with a growing proportion of the population at older ages [1]. 

OADR is expected to more than double in most regions of the world by 2050, peaking 

at countries such as Japan (expected OARD of 81 by 2050), Rep. Korea (expected 

OARD of 79 by 2050) or Spain (expected OARD of 78 by 2050) [1]. These data put in 

prospective the socioeconomic burden derived from population aging, especially con-

sidering future demographic challenges in certain regions.  
In this context, developing public health strategies to improve the health state of the 

elderly and reduce medical expenses must be a priority. The most extended approaches 

to fight age-related decline are based on active and healthy aging (AHA). The goal of 

AHA is helping people to stay in charge of their own lives for as long as possible, as 

well as actively contributing to the economy and society [2]. This multidimensional 

concept, which is based on promoting an active lifestyle from the physical and mental 

perspectives, has proven to reduce and delay age-related cognitive and physical decline 

[2]. Unfortunately, classical AHA interventions, based on personalized therapies con-

ducted by professionals, are unaffordable in the future demographic context. 

Digitalized AHA interventions have the potential to reduce the economic burden 

over healthcare systems, providing a cost-effective strategy to fight against age-related 

decline [3]. Nevertheless, this type of technological solutions requires high rates of ad-

herence and long-term use to be effective, but users frequently abandon the solution 

due to a wide range of reasons, such as accessibility barriers or high complexity. In fact, 

low adherence has been identified as the main limitation of digital AHA interventions 

to become a successful health strategy [4]. A promising method to address this problem 

is the identification of users at risk of lower adherence rates and usage patterns that 

indicate imminent dropout. Their detection can be very useful to apply tailored inter-

vention strategies aimed at recovering from disengagement. However, given the high 

volume of demographic and usage data produced by each user, advanced data analysis 

techniques could be a must to predict dropouts reliably. 
This study aimed at investigating novel methods to predict dropouts before they hap-

pen using advanced machine learning and deep learning models. Concretely, we used 

different flavors of AdaBoost ensemble, and a deep neural network based on residual 

connections. The work was part of the IFMBE Scientific Challenge 2022 held as part 

of the IUPESM World Congress on Medical Physics and Biomedical engineering 

(IUPESM WC2022). The challenge provided a dataset with demographic and usage 

data of a digital AHA intervention with the goal of improving both features and models 

to predict dropout. The challenge had 2 phases. This paper only presents the results of 

the second phase, where each team had 10 attempts (A1-A10) to reach the maximum 

accuracy in predicting user dropout. 
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2 Materials and Methods 

2.1 Dataset 

According to the Scientific Challenge IUPESM WC2022, the dataset gathers infor-

mation about the activity of users in a mobile application focused on AHA [5]. The 

dataset comprises the app activity of more than 300 users that performed an intervention 

for at least 6 months in the Moving AHA (MAHA) network in Madrid, Spain. Users 

were asked to use the app frequently (at least twice a week) according to their needs.  

Data includes questionnaires and app usage [5]. The former is composed by users 

answers to different surveys regarding quality of life and acceptance of the MAHA app, 

both in the baseline T1 (i.e., before using the app) and final evaluation T2 (i.e., after 6 

months of usage). As questionnaires, the following 5 datasets were included: (i)  

sociodemo, sociodemographic characteristics of participants and dates of entering and 

termination; (ii) self-perception questionnaire (SPQ), overall perception regarding 

quality of life, physical activity, social life and the impact of the MAHA app in their 

lives; (iii) unified theory of acceptance and use of technology (UT-AUT), motivation 

regarding app usage intention and behavior; (iv) EQ-5D-3L, users’ health state; and (v) 

UCLA, evaluation of users’ loneliness. On the other hand, data regarding app usage 

includes logs of the different applications included in the MAHA app during the inter-

vention: (i) brain games, (ii) physical activity exercises, (iii) finger tapping (coordina-

tion exercises), (iv) mindfulness app, and (v) digital phenotyping (timestamps about 

user’s usage patterns while navigating). 

2.2 Feature extraction  

The goal of the Scientific Challenge IUPESM WC2022 was to predict the adherence of 

the user during the forthcoming 3 scheduled data acquisitions (i.e., 1.5 weeks) given a 

window of 12 scheduled data acquisitions (i.e., 6 weeks of app usage). 

Concerning the feature extraction process, we considered two tricky aspects of the 

database that are worth to mention. First, although users were asked to use the MAHA 

app twice a week, many of them did not follow that instruction. Data is highly unstruc-

tured, resulting in large temporal windows without any data for most of the applica-

tions. This phenomenon encouraged us to develop features to consider the effective 

time users employed using the app inside the 6 weeks window. Second, a lot of the 

information provided in the dataset belongs to T2, i.e., post-evaluation features. We 

think that using these T2 data to train a model to predict the forthcoming adherence 

would not be a realistic approach as they include information that would not be availa-

ble in a practical implementation in the training data. Moreover, sociodemo includes a 

“status” variable that indeed indicates if the user abandoned the app before the experi-

mental period (i.e., dropout), if the experimental period was finished, or even if user is 

still using the technology.   

Next, we summarize the features extracted from questionnaires, apps, and custom-

ized metrics, also enumerated in Table 1 with self-explanatory labels. Features that be-

long to T2 are indicated in italic: 
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1. Sociodemo: gender, age, educational level, technology level, living environment 

(rural/urban), living status (alone/accompanied), level of physical/cognitive decline 

(“ucs”), type of device, number of days in program and “status”. 

2. SPQ: perception regarding quality of life (Q1), physical activity (Q3), social life 

(Q5); as well as how the MAHA app modified the previous items at T2 (Q2, Q4, 

Q6). 

3. UT-AUT: users’ motivation at T2 in terms of effort, performance, attitude, social 

influence, facilitating conditions, self-efficacy, anxiety, and behavioral intention re-

garding the MAHA app usage. 

4. EQ-5D-3L: users’ health state in terms of mobility, self-care, usual activities, 

pain/discomfort, and anxiety/depression for T1 and T2. 

5. UCLA: mean of the UCLA values that measure loneliness both in T1 (“ucla”) and 

T2 (“ucla_post”). 

6. Brain games: number of tries for each difficulty (easy, normal, medium, hard), 

number of successfully solved tasks for each difficulty, average difficulty, and 

number of different days in which users used this app. 

7. Physical activity: number of tries and solved tasks involving upper/lower extrem-

ities or gait, and number of different days in which users used the app. 

8. Finger tapping: number of tries, number of solved tasks, number of bilateral (both 

hands involved) tries; mean and standard deviation reaction time, and mean accu-

racy across tries; and number of different days in which users used this app. 

9. Mindfulness: number of tries, number of solved tasks, average duration of tries, 

and number of different days in which users used this app. 

10. Digital phenotyping: number of timestamps, number of different days that pro-

duced timestamps and number of days since last timestamp. 

11. Additional features: number of days since the last interaction with the app 

(“days_since_last”), number of different days in which the user tried any of the 

applications (“all_independent_days”) and number of days that passed since the 

start of the program (“days_since_start_program”). 

To extract the training observations, all possible time windows of 7.5 weeks long (6 

weeks for training, 1.5 weeks to obtain the adherence label) between each user date of 

entering and finalization were computed. Features were extracted for each window, and 

lastly duplicated observations were removed. As indicated in the rules of the Scientific 

Challenge WC2022, adherence was marked as low (0) if the number of effective acqui-

sitions was less than 2 during the 1.5-week period, and high (1) otherwise. A planned 

acquisition was effectively implemented by a participant if at least one of the variables 

scheduled for measurement was received. 

The number of features and observations varied between our different attempts. All 

of them used T1 features, while attempts A5-A7 added T2 features as well. Attempts 

A7-A10 incorporated features extracted from “digital phenotyping” and “additional 

features” sources. Details regarding the number of observations and most useful fea-

tures for prediction will be discussed in the next sections. 
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2.3 Models: Residual Deep Learning and AdaBoost 

Model 1. Residual Deep learning. Deep learning has been developed in the last years 

as the state-of-the-art technique for classification tasks in a wide variety of fields, like 

computer vision or natural language processing [6]. The deep neural network (DNN) 

that we implemented includes the mechanism of residual connections [7] that allows 

the information for traveling through the layers of the DNN. It also makes use of bot-

tleneck features as presented in the ResNeXt architecture [8] as a regularization mech-

anism in the residual connections to prevent overfitting. Other regularization elements 

of the Residual DNN are the use of dropout, global average pooling before the final 

projection head used for classification, and early stopping of the training when valida-

tion loss does not improve after several epochs. As shown in Fig. 1, the DNN is struc-

tured as follows: 

• Stem block. First layer of the network with a convolution with filter size of 3 and 

stride of 2 that reduces the dimensionality of the input features by the stride value 

and creates 50 filters with those condensed features. The convolution is followed by 

batch normalization, and elu activation function to introduce non-linearity and spa-

tial dropout for regularization. 

Table 1. Summary of extracted features. 

Source  Extracted features  
Sociodemo  gender, age, educational_level, technology_level, liv-

ing_environment, living_conditions, living_status, ucs, 
device, days_in_program, status  

SPQ  spq_q1, spq_q3, spq_q5, avg_spq_q2, avg_spq_q4, 
avg_spq_q6  

UT-AUT  effort, performance, attitude, social_influence, facili-
tating_cond, self_efficacy, anxiety, behavioral_inten-
tion  

EQ-5D-3L  eq_mobility, eq_selfcare, eq_usualactivities, eq_pain, 
eq_anxiety, eq_mobility_post, eq_selfcare_post, eq_usu-
alactivities_post, eq_pain_post, eq_anxiety_post  

UCLA  avg_ucla, avg_ucla_post  
Brain games  bg_ntries, bg_nsolved, bg_ntries_easy, bg_nsolved_easy, 

bg_ntries_normal, bg_nsolved_normal, bg_ntries_medium, 
bg_nsolved_medium, bg_ntries_hard, bg_nsolved_hard, 
bg_avg_difficulty, bg_days  

Physical activity  p_ntries, p_nsolved, p_nupper, p_nupper_solved, p_nlower, 
p_nlower_solved, p_ngait, p_ngait_solved, p_days  

Finger tapping  f_ntries, f_nsolved, f_nbilateral, f_avg_meanrt, 
f_avg_stdrt, f_avg_acc, f_days  

Mindfulness  mind_ntries, mind_nsolved, mind_avgduration, mind_days  
Digital phenotyping  accesses_pheno, days_phenotyping, days_since_last_pheno  
Additional features  all_independent_days, days_since_last, 

days_since_start_program  
* T2 features are displayed in italic.  
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• Body. It is composed of connections of residual blocks that includes 2 consecutive 

convolution operations each. The first one is the bottleneck and has filter size of 1 

with only 5 filters, reducing by 10 the number of filters of the previous layers. It is 

followed by batch normalization and elu activation. Then, these bottleneck features 

are expanded with a convolution of filter size of 3 and 50 filters. This convolution is 

followed by batch normalization and elu activation, but also by spatial dropout which 

makes inactive some filters in training. The values of these 50 filters are added to 

the values of the 50 filters before the bottleneck operation, completing the residual 

operation. These residual blocks are repeated 20 times. At the end of the body, a 

global average pooling is performed to keep one value from each filter. 

• Projection head. All the 50 features extracted in the body of the DNN are then con-

nected to a dense layer with double the features. The new dense layer is followed by 

batch normalization, elu activation and dropout to finally be classified by a softmax 

layer as ‘HIGH’ (1) or ‘LOW’ (0) adherence.  

In total, four models were trained with this method: one with 41 features (attempt 

A2), one with 73 features (A7), and two with 56 features (A8 and A10).  

 

 

Fig. 1. Structure of the Residual DNN approach (attempt A10), composed by three main parts: (1) stem, which takes the 

data from 6 weeks, reduces the dimensionality and increments the number of channels; (2) body, which applies 20 residual 

blocks and ends keeping one value for each filter; and (3) projection head, which projects the features in dense layers to 

return the prediction for the next 1.5 weeks as low (0) or high (1) adherence. 
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Model 2. AdaBoost. Adaptive boosting (AdaBoost) is a common yet successful choice 

when addressing classification problems that was originally developed by Freund and 

Schapire [9]. It is an ensemble-learning boosting method in which multiple base (or 

‘weak’) classifiers of the same type are combined so that each new learner complements 

the predictions conducted by the learners from previous iterations [10]. This is achieved 

by re-weighting the observations miss-classified in past runs, thus providing them with 

higher chances to be rightly classified in the current iteration. The final classification 

task is conducted based on the vote of all classifiers, these weighted votes contributing 

more as the errors of the corresponding classifiers are lower [10]. In this study, we used 

decision stumps as ‘weak’ classifiers as recommended to minimize overfitting [11]. It 

also provides us with the ability to conduct an automatic de facto feature selection as 

only one feature is used at each iteration, while easing the measurement of the contri-

bution of each feature to the final classification. One model was trained using this 

method and 13 features (attempt A9). 

Model 3. Gentle AdaBoost. Gentle AdaBoost is an AdaBoost improvement developed 

by Friedman et al. [12] to reduce the generalization error by introducing Newton step-

ping [11], [12]. Five models were trained using this method: one with 35 features (at-

tempt A1), two with 41 features (A3 and A4), and 2 with 61 features (A5 and A6). 

2.4 Statistical analysis, validation strategy, and explainable artificial 

intelligence  

In accordance with the rules of the challenge, the geometric mean (GE) of the sensitiv-

ity (Se) and specificity (Sp) was used as the reference to measure the performance of 

our models:  

 𝐺𝐸  =  √𝑆𝑒 ⋅ 𝑆𝑝,  (1) 

where Se accounts for the percentage of rightly classified high adherent observations 

and Sp accounts for the percentage of rightly classified low adherent observations. In 

order to estimate the possible GE to be reached in the unseen dataset, the available data 

was used along with different validation strategies. A bootstrap 0.632+ procedure was 

used to estimate the GE in the AdaBoost and Gentle AdaBoost models while varying 

the number of stumps in the ensemble [13]. As this method is computationally exhaus-

tive for the Residual DNN algorithm, a 5-fold cross-validation methodology was im-

plemented instead. Additionally, two explainable artificial intelligence (XAI) tech-

niques were used. Relative importance (𝐼2) was used to measure the contribution of 

each feature to the decisions of the AdaBoost and Gentle Adaboost models [14], as it 

is an easy choice when analyzing decision trees like stumps. Similarly, SHAP values 

(for SHapley Additive exPlanations) were used to mimic this analysis in the Residual 

DNN models [15]. 
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3 Results 

3.1 Ensemble learning hyperparameter optimization 

An optimization process was conducted along with the GE estimation in order to select 

the number of weak learners for the ensemble-learning methods. As mentioned above, 

a bootstrap 0.632+ method was used for this purpose. Accordingly, 100 bootstrap rep-

licates of the original database were formed by resampling with replacement, thus de-

riving in 100 new bootstrap-based training sets and their corresponding test sets. Fig. 2 

displays the averaged GE for these training and test groups for increased numbers of 

learners in each ensemble-learning method used. The GE composite estimation is also 

shown, which is weighted according to the original 0.632+ method by Efron and Tib-

shirani [13]. Comparing these curves, higher estimated GEs are obtained with Gentle 

 

Fig. 2. GE estimation and hyperparamenter optimization for all the ensemble-learning meth-

ods used in the study. A) Gentle AdaBoost with 35 features (attempt A1). B) Gentle Ada-

Boost with 41 features (A3 and A4). C) Gentle AdaBoost with 61 features (A5 and A6). D) 

AdaBoost with 13 features (A9). 
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AdaBoost for 41 and 61 features. However, AdaBoost (13 features) shows significantly 

less difference between the averaged training and test GEs, maybe being an early indi-

cator of less overfitting. 

3.2  Classification performance 

Table 2 displays the results achieved for each attempt of phase II in terms of GE. The 

machine-learning method, the number of features used for its training, the number of 

training observations (in accordance with these features), and the number of weak 

learners (if ensemble method) or residual blocks (if DNN) are also shown. As observed, 

the Residual DNN model from attempt A10 reached the highest performance. In gen-

eral, the Residual DNN method outperformed the ensemble-learning approach either 

Gentle or plain AdaBoost.   

One of the main differences between attempts resulted from the changes in the fea-

ture extraction process. The increase in performance from A1 to A4 was achieved after 

adding the features that include the number of independent days in which the applica-

tions were used, as well as the number of days since the last use of any application (e.g., 

“bg_days”, “p_days”, “f_days”, “mind_days”, “all_independent_days”, and 

“days_since_last”). Then, the drop in performance in A5, A6 and A7 was observed after 

including the information collected at the end of the program (T2 features). This infor-

mation was not used at the beginning of the phase II as it would not be useful to detect 

high or low adherence in a real scenario. The real purpose of the classification task, as 

defined in the challenge rules, is to predict the adherence of users when the experiment 

is ongoing, and this T2 information would be only available at the end of the process. 

Accordingly, in the last attempts we started from the 41 features present in attempts 

Table 2.  Test results for all phase II attempts. 

Attempt  Model  Features  # obs.  # learners/  
residual blocks*  

Test score 

(GE)  
A1  Gentle AdaBoost  35  4339  5000  0.5798  
A2  Residual DNN  41  11404  10  0.7142  
A3  Gentle AdaBoost  41  11404  2500  0.6910  
A4  Gentle AdaBoost  41  11404  5000  0.6910  
A5  Gentle AdaBoost  61  11404  2500  0.5805  
A6  Gentle AdaBoost  61  11404  5000  0.5344  
A7  Residual DNN  73  12611  30  0.6750  
A8  Residual DNN  56  12611  20  0.7493  
A9  AdaBoost  13+  12611  500  0.6847  
A10  Residual DNN  56  12611  20  0.7500  
* Num. learners (for AdaBoost attempts) or residual blocks (for Residual DNN attempts).  
+ The 13 features were selected from the 73 features set after observing the relative importance of each 

of them in a tentative AdaBoost model trained with 1000 learners. In order to try to reduce overfitting, 

only the 13 features that gathered the 95% of the relative importance were included in the model.  
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A2-A4 but separating the information of the different games in difficulties or types, 

aggregating the number of days that the user has been on the program, and adding the 

information from phenotyping. The minor difference between A8 and A10 is only due 

to a change in the stride of the stem convolution of the Residual DNN, which is 3 in 

A10 and 2 in A8. 

Regarding the ensemble-learning methods, the comparison between the results in 

Table 2 and the hyperparameter optimization process shown in Fig. 2, confirms that 

these models experiment a high degree of overfitting. Interestingly, AdaBoost with only 

13 features and 500 learners reached almost the same performance that Gentle Ada-

Boost with 41 features and 2500 to 5000. 

3.3 Explaining the machine learning models 

The most efficient ensemble-learning model in terms of number of features used, num-

ber of learners, and GE scored in the test set was AdaBoost (A9). Accordingly, we used 

it to estimate the importance of the features to predict user’s adherence by computing 

𝐼2 normalized to 100 [14]. In order to get a similar measure of the importance in the 

predictions of the features from the best Residual DNN model (A10), we used the 

SHAP approach, which makes use of the shapley values [15]. In this case, a kernel 

explainer method was used to obtain the order of features according to its contribution 

to the decision on users’ adherence [15]. Fig. 3 displays the relative importance of the 

features in the AdaBoost model and the SHAP value of the features of the Residual 

DNN. In the latter case, only the 15 features (out of 56) with the highest SHAP value 

are shown for simplicity. Although the initial feature set for the two models is not the 

same, up to 5 features are in both importance rankings. Moreover, the two models co-

incide in giving the maximum importance to the number of days since the last interac-

tion of the user with the app. In addition, the number of different days in which the app 

has been used (within the 6 considered weeks for each observation) ranked high in both 

models (third in AdaBoost and tenth in Residual DNN). This finding agrees with the 

increase in performance shown in models from attempts A2-A4, where these features 

were included, compared with A1. An interesting difference between the models is the 

importance given by Residual DNN to the information from brain games (8 features), 

which is not equal in AdaBoost (2 features).  

4 Discussion  

In this study, we have developed up to 10 machine-learning models from three different 

approaches (Residual DNN, AdaBoost, and Gentle AdaBoost) to classify the MAHA 

dataset observations into high or low adherence. High maximum GE was reached, thus 

showing not only high performance in the classification task but also a compromise 

between sensibility and specificity. The greatest increase in performance among the 

attempts was achieved after careful feature engineering from the original data, as well 

as using deep learning instead of the more traditional ensemble learning methods. 
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When developing the models, a first important general issue was the observed dif-

ference between the estimated GE in the available dataset and the score achieved in the 

unseen test set, the latter being remarkably lower. One possible explanation for this 

performance decrease is overfitting. Despite using bootstrap 0.632+ to estimate GE, 

both ensemble-learning approaches suffered from this problem to some extent. Gentle 

AdaBoost was originally developed as an improvement of plain AdaBoost with the 

significant drawback of being particularly sensible to overfitting in the presence of 

noisy datasets [11]. Accordingly, one would expect the training dataset to be affected 

by a substantial amount of noise. This idea would be also supported by the need of 

several regularization methods when developing the Residual DNN. We had to use the 

bottleneck convolutions in the residual operations [8], a stride of the same size as the 

kernel in the stem layer, a spatial dropout, a global average pooling operation, and the 

use of the early stopping technique. Another possible reason for the lower score 

achieved in the test dataset would be some differences in its characteristics (e.g., classes 

distribution) comparing to the training dataset. As plain AdaBoost is well-known for 

its generalization ability [10], the remarkable lower score in the test set could be not 

only due to overfitting but also to possible differences in the characteristics of both 

datasets. However, future analysis would be needed to assess both these differences and 

the presence of noise in the training data. Finally, we also had to cope with class imbal-

ance in the dataset derived from extracting observations from each independent day. 

Accordingly, we first discarded any observation where all features (apart from the days 

in the program) were repeated. This greatly reduced the size of the dataset, but we ended 

up with data of greater quality, as identified in our exploratory experiments. Moreover, 

 

Fig. 3. A) SHAP values of the 15 most relevant features for the DNN (attempt A10), sorted in descending 

order of importance. Blue and red colors indicate low and high feature value, respectively. SHAP value (in 

X axis) indicates whether the feature with low/high value is related to HIGH adherence if positive (i.e. 𝑥 >
0), and low adherence if negative (i.e. 𝑥 < 0). B) Normalized relative importance of the 13 most relevant 

features for the AdaBoost (attempt A9) in descending order. 
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when training the Residual DNN and AdaBoost models, we further balanced the classes 

weights in the loss function.  

The use of the XAI methods (SHAP and relative importance) let us infer interesting 

additional information regarding the features used and the way in which the models 

conduct their decisions. Accordingly, the initial intuition that a higher number of days 

since the last use of any app (“days_since_last”) is useful to predict low adherence is 

corroborated by the negative SHAP value and the corresponding red color in the Re-

sidual DNN, as well as the high relative importance reached in AdaBoost. Similarly, 

showing a higher number of days where the user opens the application (“all_independ-

ent_days”) implies that the models will tend to predict higher adherence. Additionally, 

less evident patterns in the features extracted can be also suggested. For example, a 

high number of brain games solved in hard and normal difficulties will make the model 

predict respectively low and high adherence, suggesting that having games that are not 

challenging enough for participants will result in lower adherence to the program. In-

terestingly, the longer the mindfulness app duration, the lower predicted adherence. 

This may suggest that a balance needs to be maintained between difficulty and user 

engagement. Of note, the fact that the Residual DNN model responsible for the best 

attempt includes up to 8 features from brain games highly ranked, and AdaBoost only 

2, could be suggesting the importance of this kind of information. It could be also indi-

cating that the convolutional layers of the DNN are obtaining hidden adherence-related 

patterns from these features. In contrast, AdaBoost would not be able to take advantage 

of this hidden information because of its use of features in a more individual way. This 

behavior of the Residual DNN would be highlighting one of the main advantages of 

deep-learning techniques, that is, obtaining useful information beyond the assumptions 

of human beings on data. As observed, the use of XAI methods increased the usefulness 

of the models by providing insights about the classification task beyond predicting the 

users’ adherence. In this case, by uncovering not evident yet useful information about 

the role of brain games. 

A final remark can be done regarding the decrease in performance observed when 

including the T2 features (attempts A5, A6, A7, and A9). This could be suggesting that 

this information is not important or even is missing in the test set. The idea would be 

also supported by the relative importance shown in Fig 3.B, where 2 of these features 

are ranked 5th and 6th on the training dataset. The unimportant nature of these features 

for predicting adherence in the test set would support our assumption that they should 

not be used, while highlighting the usefulness of our proposal in a realistic context.  

5 Conclusions 

Residual DNN outperformed Gentle and plain AdaBoost when predicting adherence to 

a digital intervention focused on active and health aging. High values in the geometric 

mean of sensitivity and specificity were reached, thus highlighting the concurrent use-

fulness of the data and the model. The differences in the scores of the available and 

unseen datasets may indicate high noise in the first one and a different data distribution 

in the second one. Moreover, T2 features showed no usefulness to generalize the 
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models in the unseen dataset. In contrast, XAI techniques showed that the number of 

days since the last use of the app and the number of different days in which the users 

open the app play key roles in the decisions taken by the models. Similarly, XAI tech-

niques uncovered the importance of the features obtained from the brain games. All in 

all, our results suggest that predicting adherence using the MAHA dataset can be accu-

rately conducted. 

Acknowledgments 

This research has been developed under the grants PID2020-115468RB-I00, RTC2019-

007350-1 and PDC2021-120775-I00 funded by 'Ministerio de Ciencia e Inno-

vación/Agencia Estatal de Investigación/10.13039/501100011033/' and European Re-

gional Development Fund (ERDF) A way of making Europe; under the R+D+i project 

'Análisis y correlación entre la epigenética y la actividad cerebral para evaluar el riesgo 

de migraña crónica y episódica en mujeres' ('Cooperation Programme Interreg V-A 

Spain-Portugal POCTEP 2014–2020’) funded by ‘European Commission' and ERDF; 

and by 'Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y 

Nanomedicina (CIBER-BBN)' through 'Instituto de Salud Carlos III' co-funded with 

ERDF funds. E. S.-V. and S.P-V. were in receipt of a PIF grant by the 'Consejería de 

Educación de la Junta de Castilla y León'. 

References 

[1] United Nations, “World Population Ageing 2019: highlights,” 2019. 

[2] Deary, I. J., et al. (2009). Age-associated cognitive decline. British medical bulletin, 92(1), 

135-152.  

[3] Parra, C., et al. (2014). Information technology for active ageing: A review of theory and 

practice.  

[4] Law, C. K., et al. (2020). Physical exercise attenuates cognitive decline and reduces behav-

ioural problems in people with mild cognitive impairment and dementia: a systematic re-

view. Journal of physiotherapy, 66(1), 9-18.  

[5] Fico, et al. (2022). The MAHA dataset: understanding and improving adherence to digital 

interventions for Active and Healthy Ageing. Presented at IUPESM World Congress on 

Medical Physics and Biomedical Engineering, Singapore. 

[6] Vaswani, A., et al., (2017). Attention is all you need. Advances in neural information pro-

cessing systems, 30. 

[7] He, K., et al., (2016). Deep residual learning for image recognition. Proceedings of the 

IEEE conference on computer vision and pattern recognition, 770-778. 

[8] Xie, S., et al., (2017). Aggregated residual transformations for deep neural networks. Pro-

ceedings of the IEEE conference on computer vision and pattern recognition, 1492-1500. 

[9] Freund, Y., and Schapire, R. E., (1997). A decision-theoretic generalization of on-line 

learning and an application to boosting. Journal of computer and system sciences, 55(1), 

119-139. 

[10] Witten, I. H., Frank, E., and Hall, M. A. (2011). Data mining: practical machine learning 

tools and techniques. Morgan Kaufmann. 



14 

[11] Wu, S., and Nagahashi, H., (2014). A new method for solving overfitting problem of gentle 

AdaBoost. Fifth International Conference on Graphic and Image Processing (ICGIP 

2013). 9069, SPIE. 

[12] Friedman, J., Hastie, T., and Tibshirani, R., (2000). Additive logistic regression: a statisti-

cal view of boosting. The annals of statistics 28(2), 337-407. 

[13] Efron, B., and Tibshirani, R. (1997). Improvements on cross-validation: the 632+ bootstrap 

method. Journal of the American Statistical Association, 92(438), 548-560. 

[14] Friedman, J., and Meulman, J., (2003). Multiple additive regression trees with application 

in epidemiology. Statistics in medicine, 22(9), 1365-1381. 

[15] Lundberg, S. M., and Lee, S. I., (2017). A unified approach to interpreting model predic-

tions. Advances in neural information processing systems, 30. 


