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A B S T R A C T   

Automatic deep-learning models used for sleep scoring in children with obstructive sleep apnea (OSA) are 
perceived as black boxes, limiting their implementation in clinical settings. Accordingly, we aimed to develop an 
accurate and interpretable deep-learning model for sleep staging in children using single-channel electroen-
cephalogram (EEG) recordings. We used EEG signals from the Childhood Adenotonsillectomy Trial (CHAT) 
dataset (n = 1637) and a clinical sleep database (n = 980). Three distinct deep-learning architectures were 
explored to automatically classify sleep stages from a single-channel EEG data. Gradient-weighted Class Acti-
vation Mapping (Grad-CAM), an explainable artificial intelligence (XAI) algorithm, was then applied to provide 
an interpretation of the singular EEG patterns contributing to each predicted sleep stage. Among the tested ar-
chitectures, a standard convolutional neural network (CNN) demonstrated the highest performance for auto-
mated sleep stage detection in the CHAT test set (accuracy = 86.9% and five-class kappa = 0.827). Furthermore, 
the CNN-based estimation of total sleep time exhibited strong agreement in the clinical dataset (intra-class 
correlation coefficient = 0.772). Our XAI approach using Grad-CAM effectively highlighted the EEG features 
associated with each sleep stage, emphasizing their influence on the CNN’s decision-making process in both 
datasets. Grad-CAM heatmaps also allowed to identify and analyze epochs within a recording with a highly 
likelihood to be misclassified, revealing mixed features from different sleep stages within these epochs. Finally, 
Grad-CAM heatmaps unveiled novel features contributing to sleep scoring using a single EEG channel. Conse-
quently, integrating an explainable CNN-based deep-learning model in the clinical environment could enable 
automatic sleep staging in pediatric sleep apnea tests.   

1. Introduction 

Characterization of the sleep-macrostructure (i.e., sleep stages) is 
essential in the evaluation and diagnosis of numerous sleep disorders 
[1]. Overnight polysomnography (PSG) consists of the gold standard 
approach and is commonly coupled with analytical guidelines as stip-
ulated by the American Academy of Sleep Medicine (AASM) [2]. PSG 
involves the recording of a large number neurophysiological and 
cardiorespiratory signals, including electroencephalogram (EEG), elec-
trooculogram (EOG), and electromyogram (EMG) channels. 

Subsequently, after the completion of overnight recordings, technicians 
have to visually examine EEG, EOG, and submental EMG signals using 
strict criteria, i.e.., AASM rules, to classify each 30-s non-overlapping 
epoch of nearly 480–600 min of sleep recordings into one out of the 
five different stages: wake (W), three levels of non-Rapid Eye Movement 
(non-REM) sleep (N1, N2, and N3), and REM sleep [2]. The process of 
manual sleep staging is laborious and tedious and requires up to 2 h to 
complete [3]. Furthermore, a considerable inter-rater variability has 
been reported in manual sleep scoring [3]. Thus, automated sleep 
scoring from a minimum number of channels would be preferable to 
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enhance consistency, improve children’s comfort, simplify the proced-
ure, and reduce associated costs. 

Multiple studies have proposed automated approaches for sleep 
staging [4–16]. Since a large proportion of the sleep studies currently 
conducted in sleep laboratories around the world aim at establishing the 
diagnosis of obstructive sleep apnea (OSA), a condition that affects 
nearly 1 billion people across all age groups [17], many studies aimed at 
automatic sleep scoring have focused on OSA patient cohorts [4–6,8–14, 
16]. OSA diagnosis is established based on the apnea-hypopnea index 
(AHI), which is computed as the number of apneas and hypopneas per 
hour of sleep. Therefore, the identification of sleep stages and the 
determination of the total sleep time (TST) are essential in this context. 
Unfortunately, inter-rater agreement on sleep stages is lower in OSA 
patients than in healthy subjects [18], which further highlights the need 
for the objectivity provided by automated sleep scoring models for OSA 
patients. Accordingly, most automated approaches have primarily tar-
geted adults for development and validation [4,5,9–14], with only few 
studies focusing on children being evaluated for suspected OSA [6,8,16]. 
This discrepancy is not surprising, given that pediatric OSA presents 
distinguishing etiological, diagnostic, and treatment considerations 
when compared to adult subjects. Children present a reduced upper 
airway collapsibility [19], which results in less frequent respiratory 
events, and accordingly imposes more restrictive scoring rules for ap-
neas and hypopneas, as well as in lower cut-off values of the AHI for 
diagnosis and severity grading than in adults [19,20]. Sleep architecture 
and electroencephalographic activity also present substantial develop-
mental differences [2], even during different stages of childhood. 
Consequently, specific scoring rules for sleep stages are applied in the 
pediatric population. Due to these differences, there is a much higher 
level of uncertainty and variability across centers and sleep scorers when 
pediatric OSA is suspected since this diagnosis is exceedingly more 
challenging than in the adult population. This emphasizes the necessity 
for developing specific automatic sleep scoring models tailored to pe-
diatric OSA patients. 

In the last few years, deep-learning approaches have emerged as an 
overarching novel methodological approach with ability to improve 
automatic sleep scoring [3]. Particularly, convolutional neural networks 
(CNNs) and recurrent neural networks (RNNs) have demonstrated their 
effectiveness to automatically detect sleep stages from EEG recordings 
[3]. However, sleep professionals perceive these deep-learning methods 
as ‘black boxes’ [21], which limits their acceptance and application in 
clinical settings. A recent report from the European Union (EU) has 
emphasized the need to enhance the robustness, transparency, and 
explainability of artificial intelligence (AI)-based systems to ensure their 
responsible and informed deployment in society [22]. In this respect, 
explainable AI (XAI) techniques have recently gained increasing atten-
tion due to their capability to explain AI-based models (including 
deep-learning ones) a posteriori [21]. This is particularly relevant in 
sleep staging, given the substantial discrepancy observed among human 
experts [3]. By applying XAI analysis, it is possible not only to explain 
EEG patterns associated with each sleep stage but also to identify novel 
sleep stage-related patterns that could potentially improve the consis-
tency of sleep scoring. One of these XAI techniques is Gradient-weighted 
Class Activation Mapping (Grad-CAM), which utilizes gradient infor-
mation flowing into convolutional layers to identify the regions in the 
input data that have the highest importance in the predictions of a 
CNN-based network [23]. 

In the sleep context, there are some very recent studies proposing 
XAI approaches to explain the decisions made by deep-learning models 
[7,11,24–27]. On the one hand, Barnes et al. [27], Troncoso-García et al. 
[25], and Rossi et al. [24], used XAI to identify physiological features 
related to apnea/hypopnea events in adult OSA subjects. Conversely, 
Kuo et al. [26], Phan et al. [11] and Dutt et al. [7] applied XAI tech-
niques to provide an interpretation of the time-frequency EEG patterns 
considered by their corresponding deep-learning models for predicting 
sleep stages in adult subjects. In contrast to these studies, which have 

focused on the application of XAI techniques in adult subjects, we pro-
pose a XAI-based methodology for sleep staging in children with clinical 
suspicion of OSA. As aforementioned, sleep scoring is more challenging 
in children than in the adult population. 

Based on the aforementioned factors, the novelties of this study rely 
on the application of a XAI methodology based on Grad-CAM to obtain 
an interpretable deep-learning model aimed at accurately classify sleep 
stages in pediatric OSA patients while examining a single EEG channel, 
namely the C4-M1 derivation. Fig. 1 shows the general outline of the 
proposed methodology. We applied three deep-learning architectures 
and compared them in their performance to automatically score sleep 
stages in pediatric OSA patients. Subsequently, Grad-CAM was imple-
mented such as to explain the EEG features associated with each pre-
dicted sleep stage within the pediatric cohort. We hypothesized that the 
combination of deep-learning and XAI algorithms can yield high- 
performance and interpretable models that are clinically applicable for 
the automated detection of sleep stages in children. Major contributions 
of the current study consist of: (i) the combination of deep-learning and 
XAI analysis for automated sleep stage detection in children with sus-
pected OSA; (ii) the use of Grad-CAM to explain the EEG features related 
to each sleep stage predicted by the deep-learning models; (iii) the 
application of Grad-CAM to identify and analyze epochs that have a high 
probability of being misclassified; (iv) the use of Grad-CAM to propose 
novel hallmarks for sleep stage detection in single-channel EEG over-
night recordings. 

Fig. 1. Flowchart of the proposed methodology.  
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2. Materials and methods 

The following subsections describe the databases and methods used 
in this study. 

2.1. Subjects and signals under study 

Two datasets were used in this work. The first one was the Childhood 
Adenotonsillectomy Trial (CHAT), which is a semi-public dataset con-
sisting of 1639 sleep studies conducted on pediatric subjects aged 5–10 
years old who were evaluated due to clinical suspicion of OSA [28]. 
Within this dataset, there were 1637 valid EEG recordings available. The 
subjects in the CHAT database were originally divided into three sub-
groups [28,29]: baseline (453 subjects), follow-up (406 subjects), and 
non-randomized (778 subjects). Each sleep study in the dataset included 
annotations of sleep stages and apnea/hypopnea events, which were 
initially determined by the participating centers according to the AASM 
rules [30]. These annotations were subsequently re-evaluated, scored 
and confirmed by a centralized scoring facility [28]. The data from the 
three subgroups were randomly divided into three sets: training (50%), 
used for training the deep-learning models, validation set (25%), used 
for adjusting regularization and monitor the convergence of the models, 
and test set (25%), used for performance assessment and interpretation 
of the deep-learning models. To avoid any bias resulting from including 
EEG recordings from the same pediatric subject in multiple sets, the 
same division of subjects into training/validation/test sets as performed 
in the baseline subgroup was also applied to the follow-up subgroup. In 
this study, we used the C4-M1 EEG derivation, which is one of the EEG 
channels recommended by the AASM for sleep staging [2]. The original 
data were acquired at sampling rates (fs) ranging from 200 to 500 Hz. To 
standardize the frequency and reduce computational costs, the data 
were resampled to a common sampling rate of 125 Hz. Table 1 presents 
the clinical and demographic information of the population under study. 

The second dataset utilized in this study consisted of a proprietary 
database comprising 980 valid EEG recordings obtained from pediatric 
symptomatic subjects referred for PSG at the University of Chicago 
(UofC). Unlike the CHAT dataset, the UofC dataset did not include an 
annotated hypnogram with sleep stages in the raw signal dataset (see 
Supplemental Table 2). Consequently, this dataset was only used to 
assess the ability of the deep-learning models to estimate the TST in an 
external dataset and to evaluate the agreement between the Grad-CAM 
explanations obtained from UofC and CHAT datasets. Similar to the 
CHAT database, the C4-M1 EEG channel from each subject was used in 
the UofC dataset. The original data in the UofC dataset were acquired at 
fs of either 200 Hz or 500 Hz. Prior to applying the proposed method-
ology, these data were also resampled to a standardized frequency of 
125 Hz. 

2.2. Deep-learning architectures 

This study evaluated the capability of three distinct deep-learning 
architectures to determine the probability of each 30-s EEG epoch 
belonging to each sleep stage (W/N1/N2/N3/REM). The main compo-
nents of each architecture are described next.  

• Standard CNN. CNN is the most widely-used deep-learning algorithm 
for time series processing [31]. The CNN architecture utilized in this 
study was adapted from the network proposed by Sors et al. [10], 
which aimed to classify sleep stages in adult OSA patients. The 
proposed CNN architecture receives as input the EEG 30-s epoch to 
be classified, concatenated along with two preceding and one pos-
terior epochs, resulting in a 120-s input segment. This input segment 
is processed through 12 convolutional blocks, each one composed of 
the following layers: a 1-D convolution, batch normalization (BN), 
activation, and dropout [10]. In the present study, the architecture 
proposed by Sors et al. [10] was improved by adding batch 
normalization and dropout layers to minimize overfitting. The 
dropout layer within each block used a probability of 0.1, which was 
empirically determined as the optimal probability that maximized 
the accuracy in the validation set.  

• CNN-Inception. The configuration of CNN-Inception is based on the 
EEG-Inception network originally developed by Santamaría-Vázquez 
et al. [32] for the detection of event-related potentials [32]. It is a 
CNN architecture that incorporates inception modules, enabling 
parallel processing of the input data (i.e., the 120-s input EEG 
segment, as in the standard CNN) using convolutional layers with 
different filter size to learn features at different time scales/resolu-
tions [33]. First, two inception modules are used to process the input. 
Each module consists of three branches with a convolutional block 
(1-D convolution, BN, and activation) to learn features at 3 distinct 
temporal scales: 500 ms, 250 ms, and 125 ms. The outputs from these 
branches are concatenated and subsequently average-pooled. Then, 
two convolutional blocks with average-pooling are used to continue 
extracting important features before reaching the final output. In this 
study, some minor modifications were made to the network: (i) 
depth-wise 2D convolutions were removed since the input is 1D 
(single-channel EEG); (ii) the number of convolutional filters and the 
average-pooling factor are multiplied by 2 due to the longer input 
size in seconds in our study (120-s vs. 1-s); (iii) the dropout layer was 
removed as a dropout rate of 0.0 (i.e., no dropout) yielded the highest 
validation accuracy.  

• CNN-RNN. The configuration of CNN-RNN is based on the deep 
neural network developed by Korkalainen et al. [9] for sleep stage 
detection using EEG signals [9]. CNN-RNN processes a sequence of 
100 EEG epochs of 30-s by combining a CNN with an RNN. Each 30-s 
epoch is first processed individually through a time distributed layer 
containing a CNN. The CNN consists of six convolutional blocks (1D 
convolution, BN, and activation), two max-pooling layers and a 
global average (GAP) layer, which extract the EEG features from 
each epoch associated with sleep stages. The time distributed CNN is 
subsequently fed into an RNN composed of a bidirectional Gate 
Recurrent Unit (GRU), which learns the temporal distribution of 
sleep stages. The choice of GRU over LSTM was made due to similar 
performance with a lower computational load. In comparison to 
Korkalainen et al. [9], the gaussian dropout layer and dropout at the 
input of the GRU layer were removed (probabilities set as 0.0), while 
the recurrent dropout in GRU layer was set as 0.75, as these values 
resulted in the highest performance on the validation set. 

The three architectures were trained on a NVIDIA GeForce RTX 2080 
GPU, using the following configuration [34]: He-normal method for 
weights and biases initialization; Adam algorithm with an initial 
learning rate of 0.001 for weights and biases optimization; categorical 
cross entropy as the objective function to minimize; batch sizes of 128 

Table 1 
Clinical and polysomnographic data of the children in the CHAT database.   

CHAT (training) CHAT (validation) CHAT (test) 

Subjects (n) 818 409 410 
Age (years) 7 [6; 8] 7 [6; 8] 7 [6; 8] 
Males (n) 387 (47.3%) 203 (49.6%) 168 (45.4%) 
BMI (kg/m2) 17.3 [15.3; 21.7] 17.3 [15.7, 21.4] 17.3 [15.5, 21.1] 
AHI (e/h) 2.6 [1.1; 6.5] 2.5 [1.2; 5.8] 2.3 [1.1; 5.2] 
Wake (n) 235705 (24.1%) 114918 (23.7%) 114675 (23.5%) 
N1 (n) 60559 (6.2%) 28723 (5.9%) 30087 (6.2%) 
N2 (n) 314261 (32.1%) 156344 (32.3%) 158005 (32.4%) 
N3 (n) 231314 (23.6%) 116363 (24.0%) 116887 (23.9%) 
REM (n) 136541 (14.0%) 68468 (14.1%) 68785 (14.1%) 
TRT (min) 587 [545, 648] 584 [548, 637] 586 [545, 646] 
TST (min) 463 [423, 493] 461 [427, 489] 463 [427, 494] 

Data presented as median [interquartile range] or n (%). 
BMI = body mass index, AHI = apnea-hypopnea index; CHAT = Childhood 
Adenotonsillectomy Trial, e/h = events per hour, REM: rapid eye movement, 
TRT: total recording time, TST: total sleep time. 
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(CNN and CNN-Inception) and 16 (CNN-RNN) using 50 reading queues 
from different patients to efficiently feed training data into the GPU 
memory in random order [10]; reduction of the learning rate by a factor 
of 2 after 5 epochs of non-improvement in the validation loss; early 
stopping after 20 epochs of non-improvement, restoring the model to the 
best weights determined by the validation set. 

2.3. Explainable artificial intelligence: Grad-CAM 

Class Activation Mapping (CAM) was initially proposed by Zhou 
et al. [23] as a XAI technique capable of identifying discriminative re-
gions that significantly influence the predicted output of CNNs used for 
image classification. However, CAM is limited to the last convolutional 
layer of CNNs, where GAP feature maps are followed by a final softmax 
layer [23]. Grad-CAM is an enhanced version of CAM that uses the 
gradient information flowing into a specified convolutional layer to 
understand the importance of each input element in the decision-making 
process of the network. This makes Grad-CAM applicable to any 
CNN-based architecture [23]. To generate the class-discriminative 
localization map (heatmap), Grad-CAM calculates the gradients of the 
output of the target class yc with respect to the 2-D feature maps Ak

i,j of 

the chosen convolutional layer, i.e., ∂yc

∂Ak
i,
. These gradients are then aver-

aged to get the weights αc
k, which capture the importance of each feature 

map k for the target class c: 

αc
k =

1
Z
∑

i

∂yc

∂Ak
i,

(1)  

where Z is the number of feature maps (filters) in the layer. Subse-
quently, the Grad-CAM heatmap is derived by performing a weighted 
combination of the feature maps, which is then followed by a Rectified 
Linear Unit (ReLU) activation: 

Lc
Grad− CAM =ReLU

(
∑

k
αc

k•Ak

)

(2) 

As a result, a heatmap of the same dimensions as the feature maps of 
the corresponding convolutional layer is generated. This heatmap is 
then normalized and resized to facilitate a comprehensive joint visual-
ization with the raw EEG signal [23]. In this study, we computed the 
average of the normalized and resized Grad-CAM heatmaps obtained for 
each layer, as we believe this approach enhances the identification of 
EEG patterns associated with different sleep stages. 

2.4. Statistical analysis 

The overall performance of the deep-learning architectures for 
automatic sleep staging was assessed by means of confusion matrices (5- 
class). These matrices were used to compute the 5-class accuracy (Acc), 
Cohen’s kappa index (kappa), macro F1-score (MF1), and per-class F1- 

score (F1). Additionally, the TST was calculated for each patient based 
on automatic sleep scoring and compared with the TST obtained from 
PSG data in both the CHAT test set and the external UofC set. To assess 
the agreement of estimated TST, Bland-Altman plots and the intra-class 
correlation coefficient (ICC) were used. 

3. Results 

3.1. Deep-learning models performance 

Fig. 2 shows the confusion matrices of the three deep-learning 
models (CNN, CNN-Inception, and CNN-RNN), while Table 2 shows 
the performance metrics of these models in the CHAT test set. Among the 
models, the CNN architecture demonstrated the highest overall perfor-
mance, achieving an Acc of 86.9%, a kappa of 0.827, and a MF1 of 
82.7%. This model outperformed CNN-RNN (Acc = 86.0%, kappa =
0.815, and MF1 = 81.4%) and CNN-Inception (Acc = 84.3%, kappa =
0.791, and MF1 = 76.6%) models. Given that class imbalance among 
sleep stages could potentially impact the outcomes of our approach, we 
have conducted additional analyses to address this issue. In section 1 of 
the supplementary material, we provide a comparison of the perfor-
mance of the proposed CNN architecture with two CNNs trained using a 
batch-balance configuration: (i) CNN with batch-balance in the training 
set (CNNBBT); (ii) CNN with batch-balance in the training and validation 
sets (CNNBBTV). This comparison shows that implementing a balance 
strategy does not lead to an improvement in model performance. 

Table 3 shows the diagnostic performance of the CNN model in the 
test set by OSA severity, gender, and CHAT subgroups. Regarding gender 
and OSA severity, a similar performance was observed across different 
subgroups. Conversely, performance metrics were slightly higher in 
follow-up than in nonrandomized and baseline subjects in the CHAT test 
set. 

Supplementary Fig. 2 shows the Bland-Altman plot of the TST 
derived from automated CNN-based scoring against those obtained 
during PSG in the UofC set, together with the obtained in the CHAT test 
set (see section 2.2 of the Supplementary Material). The TST derived 
from the CNN model exhibited a high performance in the UofC set, albeit 
with a lower intra-class correlation coefficient (ICC) and a higher 95% 
confidence interval compared to the CHAT test set (0.856 vs. 0.772 and 
122.19 min vs. 191.14 min). 

3.2. Grad-CAM heatmaps interpretation of the CNN model 

Figs. 3 and 4 show some representative examples of Grad-CAM 
heatmaps obtained for EEG epochs in the test set rightly predicted as 
W, N1, N2, and REM sleep stages. For each heatmap, a zoom in a rele-
vant region of the heatmap is included at the right, together with the 
short-time Fourier transform (STFT), which better shows the time- 
frequency characteristics of the EEG patterns that the CNN is focusing 
on to make the prediction. The STFT is only shown for the 0–30 Hz 

Fig. 2. Confusion matrices of the CNN, CNN-Inception and CNN-RNN models in the CHAT test set.  
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region to better visualize the time-frequency EEG patterns. The darker 
the color of the heatmap, the more important that region is in the final 
decision taken by the CNN. Notice that the heatmaps are highlighting 
well-known EEG features included in the scoring rules of the AASM 
related to each stage [2]: alpha rhythm and eye blinks (W); 
low-amplitude mixed frequency (LAMF) activity and vertex waves (N1); 
K-complexes and sleep spindles (N2); slow waves (N3); rapid eye 
movements and sawtooth waves (REM). Similarly, Grad-CAM heatmaps 
are also highlighting in the UofC set the same well-known EEG features 
related to each stage (see section 2.3 of the Supplementary Material), 
although this dataset does not contain the hypnogram to properly 
confirm the prediction. 

Fig. 5 shows some interesting EEG patterns highlighted by Grad-CAM 
as important for the detection of W, N1, N2, and REM sleep. These EEG 
features, despite being important to sleep researchers, are not currently 
incorporated into the scoring rules of the AASM for identifying the 
various sleep stages. This suggests the potential use of these features to 
improve the reliability and reduce variability in sleep scoring. Regarding 
the epochs misclassified by the CNN, Figs. 6 and 7 present representative 
examples of Grad-CAM explanations corresponding to the most common 
errors observed in the confusion matrices. It is important to note that 
these misclassified epochs contain EEG features that correspond to both 
the predicted and the scored sleep stage from PSG. Furthermore, some of 
these epochs are located near sleep transitions, which introduces am-
biguity among sleep technicians when scoring such epochs [35]. 

For the sake of completeness of the analysis, section 3 of the sup-
plementary material also includes a visualization of the raw feature 
maps extracted by each layer of the CNN for the EEG segments in Fig. 3 
(b) and (f). Although the raw feature maps may allow to discern which 
information is extracted in each layer of the CNN, its interpretation is far 
more difficult compared to the provided by Grad-CAM heatmaps. 
Despite showing the EEG patterns preserved in the convolutional layers 
(see Supplemental Figs. 4–11), the visualization of raw feature maps 
does not highlight the relative importance of this information in the 
predicted sleep stage, while Grad-CAM provides a class-discriminative 
localization of the EEG important features. Another key advantage of 
the proposed XAI analysis based on Grad-CAM is that it results in a single 
heatmap per segment, while the use of raw feature maps would require 

visualizing the feature maps extracted in each convolutional layer. 

4. Discussion 

This study aimed to develop an accurate deep-learning model based 
on CNN for sleep staging in pediatric OSA patients from one single EEG 
channel. We also provided an interpretation of the stage-related EEG 
features identified by the CNN model using a XAI approach based on 
Grad-CAM. Our XAI-based approach not only provided explanations for 
the EEG features considered by the CNN to predict each 30-s sleep stage 
but also enabled us to analyze uncertain epochs and propose novel 
patterns for sleep scoring based on single-channel EEG data. To our 
knowledge, this is the first explainable deep-learning approach applied 
to sleep scoring in pediatric OSA patients. 

4.1. Pediatric sleep staging performance 

The three proposed deep-learning architectures reached high per-
formances to automatically classify sleep stages in pediatric OSA pa-
tients using a single EEG channel (C4-M1). Their 5-class Acc, kappa, and 
MF1 values ranged from 84.3% to 86.9%, 0.791 to 0.827, and 76.6%– 
82.7%, respectively. According to Lee et al. [36], inter-rater agreement 
in manual sleep scoring in adult patients, measured by kappa, is around 
0.76 (95% CI 0.71–0.81), which highlights the usefulness of our ap-
proaches for automated pediatric sleep staging. Interestingly, the CNN 
model demonstrated the highest performance with an Acc of 86.9%, a 
kappa of 0.827, and a MF1 of 82.7%. In this respect, the higher per-
formance of CNN vs. CNN-Inception suggests that a stack of convolu-
tional layers with a larger filter size is more effective in extracting 
feature maps compared to the inception modules, which agrees with the 
findings of Supratak et al. [37]. Conversely, the slightly higher perfor-
mance of CNN vs. CNN-RNN indicates that the contextual information 
required to assign each 30-s segment to a sleep stage can be captured 
adequately by considering just two preceding epochs and one posterior 
epoch, and that long-term interactions in the EEG do not significantly 
contribute to sleep staging. 

Analyzing the per-class performance (see Table 2), the highest F1- 
scores were obtained in W stage, while the lowest ones were those 

Table 2 
Diagnostic performance of CNN, CNN-Inception, and CNN-RNN models to automatically classify sleep stages.   

Overall Metrics Per-class F1-score (F1)  

Acc (%) kappa MF1(%) W N1 N2 N3 REM 

CNN 86.9 0.827 82.7 94.1 58.5 85.9 88.4 86.6 
CNN-Inception 84.3 0.791 76.6 91.4 37.8 83.9 87.9 82.0 
CNN-RNN 86.0 0.815 81.4 93.3 54.1 84.2 87.9 87.5 

Acc = Accuracy, CNN = Convolutional neural network, MF1 = macro F1-score, N1: level 1 of non-rapid eye movement (NREM) sleep, N2: level 2 of NREM sleep, N3: 
level 3 of NREM sleep, REM: rapid eye movement. 

Table 3 
Diagnostic performance of the CNN model in the test set by sex, OSA severity, and CHAT subgroups.   

Overall Metrics Per-class F1-score (F1) 

Acc (%) kappa MF1(%) W N1 N2 N3 REM 

Sex Males 86.7 0.825 82.4 94.2 58.1 85.2 88.5 86.1 
Females 87.2 0.830 82.9 94.0 58.8 86.4 88.4 87.0 

OSA severity No OSA 86.8 0.826 82.1 94.2 56.4 86.0 88.2 85.6 
Mild OSA 87.1 0.829 83.0 94.1 59.1 86.0 88.1 87.5 
Moderate OSA 87.1 0.832 82.8 95.3 58.4 85.3 88.8 86.1 
Severe OSA 86.2 0.818 82.4 92.2 59.3 85.6 89.9 84.8 

CHAT subgroup Baseline 85.9 0.814 81.6 92.4 57.9 84.4 87.8 85.6 
Follow-up 88.6 0.850 84.4 95.6 60.4 87.9 90.0 88.1 
Non-randomized 86.6 0.824 82.4 94.4 57.8 85.6 88.0 86.4 

Acc = Accuracy, CHAT = Childhood Adenotonsillectomy Trial, CNN = Convolutional neural network, EEG = Electroencephalogram, Grad-CAM = Gradient-weighted 
class activation mapping, MF1 = macro F1-score, N1: level 1 of non-rapid eye movement (NREM) sleep, N2: level 2 of NREM sleep, N3: level 3 of NREM sleep, 
OSA=Obstructive Sleep Apnea, REM: rapid eye movement. 
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corresponding to the N1 stage. This finding is consistent with state-of- 
the-art approaches in automatic sleep staging using single-channel 
EEG for both adult and pediatric OSA subjects [9–14,16]. Our results 
also align with the American Academy of Sleep Medicine (AASM) 
Inter-scorer Reliability Program for sleep stage scoring, which reported 
average agreement scores of 84.1% (Wake), 63.0% (N1), 85.2% (N2), 
67.4% (N3), and 90.5% (REM) [35]. According to Rosenberg et al. [35], 
most of the disagreements occurred during transitions between sleep 

stages, which helps to explain the higher disagreement in N1 scoring 
and, consequently, the results obtained from automatic sleep staging 
approaches, as the N1 stage typically has a lower bout length (number of 
consecutive 30-s epochs scored as N1) compared to the other stages 
[35]. 

Regarding the epochs misclassified by the deep-learning models, 
Korkalainen et al. [9] and Phan et al. [16] also suggested that a signif-
icant portion of these epochs corresponds to sleep stage transitions. 

Fig. 3. Grad-CAM visualizations for some representative examples in the CHAT test set rightly predicted as: (a) W; (b) W; (c) N1; (d) N1; (e) N2; (f) N2.  
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Particularly, Phan et al. [16] found that more than 60% of automatic 
pediatric sleep scoring errors occur within four epochs of a stage tran-
sition. To support this observation, Fig. 8 (a) displays the histogram 
illustrating the distance between epochs misclassified by the CNN model 
and the nearest predicted transitioning epoch, where transitioning 
epochs are defined as those in which the predicted sleep stage changes. 
Our analysis reveals that 29.2% of misclassified epochs are transitioning 
epochs, whereas 55.1% of the errors occur within one epoch of a sleep 
stage transition. Conversely, Fig. 8 (b) plots the distribution of the 
output probabilities of the CNN for misclassified epochs and all epochs. 
Here, the predicted probability distribution of misclassified epochs 
shows a notably different pattern, as derived from the interquartile 
range. Specifically, while 75% of the epochs are predicted with an 
output probability higher than 80%, nearly 75% of the misclassified 
epochs have a lower probability prediction, indicating a natural uncer-
tainty threshold. Consequently, to further enhance the automatic results 
of pediatric sleep staging and improve the diagnostic process of pediatric 
OSA, sleep technicians should pay particular attention to epochs in close 
temporal proximity to sleep stage transitions and identify epochs with a 
low probability for the predicted stage using our proposed approach. 

Regarding human subject’s subgroup analysis, we found that the 
performance of our automatic approaches was not affected by either sex 
or OSA severity (see Table 3). This aligns with the findings of Bersch 
et al. [38], who reported that sex information does not improve sleep 
staging performance in adults, suggesting that the deep-learning models 

can effectively learn stage-related EEG patterns regardless of sex. 
Conversely, Korkalainen et al. [9] observed a decline in the performance 
of EEG-based automatic sleep staging with increasing OSA severity in 
adults, while Somaskandhan et al. [8] reported comparable performance 
between OSA symptomatic and control patients in a preadolescent age 
population (10–13 years). These findings confirm that pediatric OSA 
may not induce as pronounced changes in sleep macrostructure as seen 
in adults [39]. Regarding the external validation of our proposed 
approach, we obtained a high agreement (ICC = 0.772) between the 
estimated TST and actual TST from PSG in the UofC set, even though the 
hypnogram was not immediately annotated in the recordings. This un-
derscores the potential usefulness of our approach to derive the sleep 
stages and overall TST in self-administrated PSG studies from 
single-channel EEG recordings, leading to an automatic diagnosis of 
pediatric OSA. Nonetheless, generalizability could be potentially 
improved in future studies by incorporating a broader range of pediatric 
sleep datasets encompassing different sleep disorders, as well as 
expanded datasets obtained from children across a wider age range. 

4.2. Explaining the decisions taken by the CNN 

There are some very recent studies proposing XAI approaches to 
identify those EEG patterns considered by deep-learning models to 
predict each sleep stage in adult subjects [7,11,24–27]. To the best of 
our knowledge, this is the first study explaining the decisions taken by 

Fig. 4. Grad-CAM visualizations for some representative examples in the CHAT test set rightly predicted as (a) N3; (b) N3; (c) REM; (d) REM.  
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an automatic deep-learning model for either pediatric sleep staging or 
pediatric sleep staging in OSA subjects. In this study, the proposed XAI 
approach based on Grad-CAM was not only used to identify those EEG 
patterns used by the CNN to predict each sleep stage, but also to identify 
and analyze epochs with a high likelihood to be misclassified, as well as 
to propose novel hallmarks for sleep stage detection in single-channel 
EEG overnight recordings. This automatic and explainable sleep 
scoring tool could be of great usefulness in the clinical practice for 
different reasons: (i) it would enable sleep technologists to visualize an 
interpret each predicted sleep stage, aligning with the recommendations 
of the EU regarding AI-based systems [22]; (ii) it could aid in the 
comprehensive annotation of 30-s epochs in independent sleep datasets, 
thereby improving the training of sleep scorers, minimizing inter-scorer 
variability, and enhancing the sleep scoring process by highlighting 
stage-related EEG patterns; (iii) it can be easily deployed on remote 
processing servers or portable monitoring devices using TensorFlow Lite 
[40], providing the sleep stage predictions per subject within seconds 
and the Grad-CAM heatmaps within minutes. 

Grad-CAM has emerged as a widely used XAI algorithm in biomed-
ical signals and images to provide visual explanations that highlight 
discriminative features relevant to CNN-based model predictions 
[41–43]. In the EEG signal processing field, Grad-CAM has been used not 
only to explain automatic sleep scoring models [7,26], but also to 
identify important EEG features associated with various healthcare ap-
plications such as cardiac arrest [44], schizophrenia [45], Alzheimer 
[46], emotion recognition [47,48], or brain computer interfaces [49, 

50]. In contrast to these studies, which visualized Grad-CAM heatmaps 
at a specific layer of the network [7,26,44–50], we averaged Grad-CAM 
normalized and resized heatmaps obtained from all the layers. During 
the study design, we evaluated the impact of obtaining Grad-CAM 
heatmaps at the output of each convolutional layer. Our observations 
indicated that heatmaps from the initial layers predominantly focused 
on short-duration patterns, while those from the intermediate and final 
layers highlighted longer-duration EEG features. Consequently, we 
decided to generate averaged heatmaps across all layers. Looking at 
Figs. 3–7, it becomes evident that Grad-CAM heatmaps effectively 
outline EEG waveforms with different time-frequency characteristics. 
These include short-duration and low-frequency patterns (e.g., K-com-
plexes or eye blinks), short-duration and high-frequency patterns (e.g., 
spindles or EMG bursts), long-duration and low-frequency patterns (e.g., 
slow or sawtooth waves), and long-duration and high-frequency pat-
terns (e.g., beta waves or alpha rhythm). Consequently, our approach 
holds potential for detecting and analyzing EEG features related to 
cognitive development in children, such as sleep spindles, arousals, or 
cyclic alternating patterns [51–53]. Phan et al. [11], Kuo et al. [26], and 
Dutt et al. [7] have recently proposed the only three interpretable 
deep-learning sequence models for sleep staging, namely SleepTrans-
former, SNet, and SleepXAI, respectively. By leveraging attention scores 
at both the epoch and sequence level, Phan et al. [11] demonstrated that 
the transformer effectively highlights sleep-relevant EEG features in 
adult OSA patients. Conversely, Kuo et al. [26] and Dutt et al. [7] 
showed that Grad-CAM heatmaps derived from the last convolutional 

Fig. 5. Heatmaps for some interesting EEG patterns highlighted by Grad-CAM related to: (a) W; (b) N1; (c) N2; (d) REM.  
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layer of SNet and SleepXAI, respectively, effectively identify the EEG 
patterns contributing to each predicted sleep stage in healthy subjects 
[7,26] and insomnia patients [26]. In light of these findings, future 
studies should explore comparisons between different XAI methods for 
pediatric sleep scoring. 

Apart from those included in the standard sleep scoring rules, we 
have also identified some new EEG features extracted by the CNN that 
contribute to determine the sleep stage (see Fig. 5). These newly dis-
cerned EEG-related features for classifying sleep stages from a single 
EEG channel are summarized in Table 4. Interestingly, the AASM criteria 
only considers beta waves (13–30 Hz) for scoring arousals but not as an 
indicator of W or W-> N1 transitions [2], despite their prevalence in the 
wake state during conscious thought and logical thinking [54]. 
Furthermore, we have observed that spindles following sharp EEG de-
flections (probably a vertex wave) serve as strong indicators of N2 
scoring. While vertex waves can also occur in N1 stage [2], spindles are 
commonly embedded in slow oscillations, such as K-complexes, which 
may also occur in slow wave sleep [55]. Therefore, these specific EEG 
patterns emerges prove highly valuable for sleep scoring. Lastly, 
short-duration high-frequency EEG bursts associated with scalp muscles 
can be used as strong indicators of REM sleep stage. This finding holds 
particular significance in situations where EMG derivations, which the 
AASM considers essential for defining REM sleep stage [2], are un-
available. Hence, XAI methods like Grad-CAM could contribute to 
improving sleep scoring rules and establishing new guideline criteria for 

scoring sleep stages based on single-channel EEG recordings. 
The proposed explainability approach also enables the interpretation 

of epochs misclassified by the CNN. As previously mentioned, Grad-CAM 
heatmaps reveal that these epochs (see Figs. 6 and 7) contain EEG pat-
terns related to different stages, as well as transitions between sleep 
stages. For example, these heatmaps illustrate instances where slow 
waves and K-complexes can be confounded, or where spindles are pre-
sent in epochs not predicted as N2/N3 preceding/following N2 stage. In 
this context, our XAI approach can aid sleep technicians in reviewing 
manual scoring and assist in evaluating doubtful epochs, such as those 
occurring during sleep transitioning or epochs with a low probability of 
the predicted stage (see Fig. 8). Consequently, our approach contributes 
to improving the sleep scoring process. The presence of mixed patterns 
from several stages within a single 30-s epoch was also highlighted by 
Korkalainen et al. [56], who suggested to use epochs of shorter duration 
for sleep scoring in adult OSA patients, particularly for assessing sleep 
fragmentation. To this end, XAI methods can help define the optimal 
duration of sleep epochs or treat the whole recording as a continuum 
rather than dividing it into epochs [57,58]. 

4.3. Comparison with previous studies 

There are multiple studies applying deep-learning algorithms for 
automatic sleep staging [15], including some that have used datasets 
from OSA patients [4–6,8–14,16]. Table 5 summarizes the comparison 

Fig. 6. Grad-CAM explanations corresponding to the following common errors in the CHAT test set made by the CNN: (a) N1 epoch predicted as W; (b) N2 epoch 
predicted as N1; (c) N1 epoch predicted as N2; (d) N1 epoch predicted as REM. 
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Fig. 7. Grad-CAM explanations corresponding to the following common errors in the CHAT test set made by the CNN: (a) N3 epoch predicted as N2; (b) N2 epoch 
predicted as N3; (c) REM epoch predicted as N2; (d) N2 epoch predicted as REM. 

Fig. 8. Histograms of: (a) the distance of misclassified epochs to the closest transitioning epoch; (b) the output probability of the CNN for misclassified epochs and 
all epochs. 
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between our proposed approach and previous studies focused on the 
automatic detection of sleep stages using single-channel EEG tracings in 
both adult and pediatric OSA patients [6,9–13,16]. The first studies 
focused on sleep staging in adult OSA patients [9–13], reaching 5-class 
accuracies ranging from 82.9% to 87.7% and 5-class kappa values 
ranging from 0.77 to 0.828. Sors et al. [10] and Phan et al. [11] also 
provided insights into the interpretability of their deep-learning models. 
In contrast to these studies, our study provides the first explainable 
deep-learning model for sleep staging in pediatric OSA patients. Chil-
dren exhibit distinct cardiorespiratory and neurophysiological activity 
during sleep, resulting in different patterns and sleep scoring criteria 
compared to adults [2]. 

Recently, Wang et al. [6] and Phan et al. [16] applied deep-learning 
algorithms for automatic pediatric OSA sleep staging from EEG [6,16]. It 
is noteworthy that Phan et al. [16] used the same CHAT database as our 
study. Using individual sequence models (CNN-RNN) previously pre-
trained on an adult dataset [16], they reached a similar performance 
than our CNN-based approach in the follow-up (Acc: 88.3%–88.7% vs. 
88.6%; kappa: 0.843–0.849 vs. 0.850) and non-randomized groups (Acc: 
86.7%–87.0% vs. 86.6%; kappa: 0.822–0.828 vs. 0.824). Conversely, 
their performance slightly improved (by less than 1% Acc) when using 
an average ensemble of the 6 individual models, as well as when using 

an additional EOG channel. Moreover, they did not propose any new 
EEG sleep stage-related features. 

In the present study, we contribute a new standard CNN model that 
achieves comparable performance to an ensemble of sequential deep- 
learning models while also being evaluated for estimating the TST in 
an external dataset. As a result, our proposal is easier to interpret, 
integrate, and test in portable monitoring devices with limited compu-
tational requirements. We also contribute here with an XAI analysis 
methodology offers insights into the EEG patterns considered by the 
CNN for predicting each sleep stage using Grad-CAM, including the 
interpretation of doubtful epochs. In addition, we propose novel EEG- 
related features for sleep scoring, thereby enhancing its clinical 
applicability. 

4.4. Limitations and future work 

It is important to acknowledge some limitations of our study. First, it 
is important to note that the interpretability and visualization approach 
based on Grad-CAM is not the only way to perform XAI analysis. While 
we have demonstrated the effectiveness of Grad-CAM heatmaps in 
identifying EEG patterns that contributing to stage predictions, future 
studies may explore alternative XAI and visualization techniques. 
Particularly, efforts to develop automated tools capable of deriving 
novel stage-related EEG patterns should be encouraged. Successive ex-
periments should also validate the applicability of our explainable deep- 
learning model for widespread use in populations of all ages (both adults 
and children), as it is anticipated that the adult population would be 
more amenable to analysis compared to children, especially in cases 
involving OSA. In this respect, it would also be very interesting to 
integrate the proposed solution in a comprehensive software suite for 
EEG signal acquisition and processing such as Medusa ©, a novel open- 
source Python-based ecosystem developed by members of our research 
group that supports real-time processing and visualization [59]. 
Regarding external validation, the UofC dataset lacks annotation files 
with sleep stages. Therefore, obtaining additional annotated pediatric 
sleep datasets would be desirable to enhance the generalizability of our 
findings. Furthermore, ambulatory EEG recordings acquired with 
portable devices at home would further contribute to the broader 
applicability of our methodology. Another interesting future goal would 
be to assess the proposed methodology combining deep-learning and 

Table 4 
Proposal of novel EEG-related patterns to distinguish sleep stages.  

EEG pattern Sleep 
stage 

Interpretation 

Beta waves W It can occur in children with eyes opened 
who are in conscious thought and logical 
thinking (e.g., scanning the environment) 

Beta waves replaced by 
LAMF activity 

N1 It can occur in the following situations: (i) 
children are falling asleep (transition W->
N1); (ii) arousal associated to an apnea/ 
hypopnea (transition N2/N3/REM-> N1) 

Sharp EEG deflection 
followed by a spindle 

N2 It is a strong indicator to score N2 stage 
instead of N1 stage (N1 contains vertex 
waves) or N3 (N3 contains spindles) 

Short-duration high 
frequency burst 

REM It can be due to transient activity from the 
scalp muscles and are a stronger indicator of 
REM stage in absence of EMG derivations 

EEG = electroencephalogram, EMG = electromyogram, LAMF = low-amplitude 
mixed-frequency, REM: rapid eye movement. 

Table 5 
Diagnostic performance of state-of-the-art approaches in automatic sleep staging in both adult and pediatric OSA subjects from single-channel EEG.    

Methodology Sleep staging metrics 

Study Subjects Deep learning XAI Acc (%) kappa MF1 (%) 

Sors et al. [10] 5793 adults (SHHS) CNN Class-wise EEG patterns with synthetic 
inputs 

86.8 0.810 78.5 

Seo et al. [12] 5791 adults (SHHS) CNN-RNN (IITNet) – 86.7 0.81 79.8 
Korkalainen 

et al. [9] 
891 adults CNN-RNN – 82.9 0.77 – 

Leino et al. [13] 135 adults CNN-RNN – 79.7 0.73 – 
Phan et al. [11] 5791 adults (SHHS) Transformer 

(SleepTransformer) 
EEG heatmaps and epoch influence with 
self-attention weights 

87.7 0.828 80.1 

Wang et al. [6] 344 children CNN – 87.7 0.782 80.1 
Phan et al. [16] 1626 children 

(CHAT) 
Follow-up Sequence models (CNN- 

RNN) 
– 88.3–88.6 0.843–0.849 81.5–85.2 

Non- 
randomized 

Sequence models (CNN- 
RNN) 

86.7–87.0 0.822–0.828 80.0–83.6 

Follow-up Average ensemble of 6 
sequence models 

89.2 0.857 85.3 

Non- 
randomized 

Average ensemble of 6 
sequence models 

87.7 0.837 83.8 

This study 1637 children 
(CHAT) 

Baseline CNN EEG heatmaps using GradCam: stage- 
related EEG features and error analysis 

85.9 0.814 81.6 
Follow-up CNN 88.6 0.850 84.4 
Non- 
randomized 

CNN 86.6 0.824 82.4 

Acc = Accuracy, CHAT = Childhood Adenotonsillectomy Trial, CNN = Convolutional neural network, EEG = Electroencephalogram, Grad-CAM = Gradient-weighted 
class activation mapping, MF1 = macro F1-score, RNN=Recurrent neural network, SHHS= Sleep heart health study, XAI = Explainable artificial intelligence. 
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XAI to detect apnea/hypopnea events and subsequently identify novel 
EEG patterns related to apneas and hypopneas. Similarly, the proposed 
methodology could be extended to cardiorespiratory signals, which have 
been frequently proposed as a simplified alternative to PSG for the 
diagnosis of both adult [60,61] and pediatric [62,63] OSA. 

5. Conclusion 

In summary, we obtained an accurate CNN-based deep-learning 
model for automatic sleep staging in children while using a single 
channel EEG. Our model outperformed CNN-Inception and CNN-RNN 
architectures when evaluated on a database of 1637 EEG recordings. 
Furthermore, a XAI approach based on Grad-CAM allowed us to identify 
those EEG features associated with each predicted sleep stage. In 
particular, the specific hallmarks identified for sleep stage detection in 
the C4 EEG channel include beta waves (W), beta waves followed by 
LAMF activity (N1), vertex wave followed by a spindle (N2), and short- 
duration high frequency bursts (REM). Furthermore, Grad-CAM heat-
maps enabled the identification and further analysis of epochs with a 
high likelihood to be misclassified, thereby facilitating the proposal of 
new criteria for sleep scoring that would reduce inter-rater variability 
and ambiguity. Additionally, we demonstrated that the CNN model can 
be used to estimate the TST in external unannotated sleep datasets, 
while also reliably identifying sleep stage-related EEG features. Our 
results show that the integrated collection of overnight single-channel 
EEG recordings and their automated processing by our explainable 
deep-learning model will yield a highly accurate, interpretable, and 
widely implementable tool for the automated detection of sleep stages in 
children with clinical suspicion of OSA. Future research is needed to 
further validate the applicability of our proposed solution for wide-
spread use in populations of all ages, as well as incorporate the proposed 
solution in Medusa ©, a full-scale software application for EEG signal 
acquisition and processing. This will ultimately favor a timely and 
objective diagnosis of OSA. 
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[63] A. Martín-Montero, P. Armañac-Julián, E. Gil, L. Kheirandish-Gozal, D. Álvarez, 
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