
  

  

Abstract— Characterization of sleep stages is essential in the 

diagnosis of sleep-related disorders but relies on manual scoring 

of overnight polysomnography (PSG) recordings, which is 

onerous and labor-intensive. Accordingly, we aimed to develop 

an accurate deep-learning model for sleep staging in children 

suffering from pediatric obstructive sleep apnea (OSA) using 

pulse oximetry signals. For this purpose, pulse rate (PR) and 

blood oxygen saturation (SpO2) from 429 childhood OSA 

patients were analyzed. A CNN-RNN architecture fed with PR 

and SpO2 signals was developed to automatically classify wake 

(W), non-Rapid Eye Movement (NREM), and REM sleep stages. 

This architecture was composed of: (i) a convolutional neural 

network (CNN), which learns stage-related features from raw 

PR and SpO2 data; and (ii) a recurrent neural network (RNN), 

which models the temporal distribution of the sleep stages. The 

proposed CNN-RNN model showed a high performance for the 

automated detection of W/NREM/REM sleep stages (86.0% 

accuracy and 0.743 Cohen’s kappa). Furthermore, the total sleep 

time estimated for each children using the CNN-RNN model 

showed high agreement with the manually derived from PSG 

(intra-class correlation coefficient = 0.747). These results were 

superior to previous works using CNN-based deep-learning 

models for automatic sleep staging in pediatric OSA patients 

from pulse oximetry signals. Therefore, the combination of CNN 

and RNN allows to obtain additional information from raw PR 

and SpO2 data related to sleep stages, thus being useful to 

automatically score sleep stages in pulse oximetry tests for 

children evaluated for suspected OSA. 

 
Clinical Relevance—This research establishes the usefulness 

of a CNN-RNN architecture to automatically score sleep stages 

in pulse oximetry tests for pediatric OSA diagnosis. 

I. INTRODUCTION 

Characterization of the sleep macro-structural changes 
(i.e., sleep stages) is essential in the diagnosis of sleep-related 
disorders [1]. Overnight polysomnography (PSG) is the gold 
standard approach, which involves the recording of a wide 
range of neurophysiological and cardiorespiratory signals [2]. 
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After the test and following the rules of the American 
Academy of Sleep Medicine (AASM), sleep technicians 
visually inspect the electroencephalogram (EEG), 
electrooculogram (EOG), and submental electromyogram 
(EMG) channels to assign each 30-s non-overlapping epoch to 
a sleep stage: wake (W), three levels of non-Rapid Eye 
Movement (non-REM) sleep (N1, N2, and N3), and REM 
sleep [2].  However, PSG is costly, complex, highly intrusive, 
and scarcely available, thus delaying the diagnosis of sleep 
disorders [3]. Furthermore, the process of manual sleep 
scoring takes up to hours per sleep study and suffers from a 
considerable inter-rater variability [4], which may alter the 
accuracy of the diagnosis.  

To overcome these limitations, multiple studies have 
proposed automated approaches for sleep scoring from a 
minimum number of signals [5]. A large proportion of these 
studies have focused on automated sleep staging in patients 
with obstructive sleep apnea (OSA), a highly prevalent sleep 
disorder that affects nearly 1 billion people around the globe 
[6]. OSA diagnosis is based on the apnea-hypopnea index 
(AHI: number of apneas and hypopneas per sleep hour), so the 
scoring of sleep stages and the calculation of the total sleep 
time (TST) are imperative in this context [2]. 

 Among others, EEG, EOG, electrocardiogram, 
actigraphy, airflow and pulse oximetry signals have been 
employed for automatic sleep staging in OSA cohorts [5]. In 
this respect, pulse oximetry signals have been frequently 
proposed for sleep scoring and diagnosing sleep disorders as 
they can be recorded at patient’s home with low-cost portable 
pulse oximeters [3], thus being an accessible and simplified 
alternative to PSG [7], [8]. Pulse oximeters record the 
photoplethysmography (PPG) signal, which is used to derive 
both blood oxygen saturation (SpO2) and pulse rate (PR) 
signals [9]. 

The dynamics of PPG and PPG-derived PR and SpO2 
changes during sleep stages [7], [8], [10]. This relationship, 
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together with the recent advances in deep-learning 
methodologies, has led to several studies applying deep-
learning algorithms to automatically score sleep stages in adult 
OSA subjects from pulse oximetry signals [7], [8], [11]. 
Conversely, only two conference papers developed by our own 
group have approached sleep staging in pediatric OSA patients 
[10], [12], which present distinguishing etiological, diagnostic, 
and treatment considerations, as well as less profound and 
recurrent desaturations (SpO2) and bradycardia/tachycardia 
(PR) patterns when compared to adult subjects [2], [13]. In 
these two preliminary studies, a convolutional neural network 
(CNN) was applied to detect sleep stages from raw PPG [12], 
and raw PR and SpO2 data [10], respectively. Despite their 
usefulness to learn stage-related features from pulse oximetry 
signals, CNNs do not consider the temporal distribution of 
sleep stages during sleep. Instead, recurrent neural networks 
(RNNs) learn the temporal dependency of the data [14], which 
has been shown to be useful in order to learn the temporal 
distribution of the sleep stages [5], [7]. 

Based on these considerations, we hypothesized that a 
deep-learning architecture based on the combination of a CNN 
and a RNN (CNN-RNN) could extract additional information 
from the PR and SpO2 signals able to improve the automated 
detection of sleep stages in childhood OSA patients. 
Consequently, our main objective is to design and assess a 
CNN-RNN deep-learning architecture to identify W, NREM, 
and REM stages from PR and SpO2 recordings in children with 
suspected OSA. 

II. MATERIALS AND METHODS 

A. Subjects and signals 

The baseline dataset from the semi-public Childhood 
Adenotonsillectomy Trial (CHAT) database was used in this 
study [15], [16]. The clinical trial identifier of the CHAT 
database is NCT00560859 and its full research protocol can 
be found in the supplementary material of Marcus et al. [15]. 
The CHAT-baseline dataset is composed of PSG recordings 
from 453 children aged 5 to 10 years old suffering from OSA, 
who were randomized to a strategy of watchful waiting or 
early adenotonsillectomy treatment [16]. Each sleep study 
contains annotations of sleep stages and apnea/hypopnea 
events, which were done using the AASM 2007 rules [17]. 

This dataset provided valid PR and SpO2 signals from 429 
pediatric subjects. The data, originally recorded during PSG 
using sampling rates (fs) from 1 to 512 Hz, were resampled to 
a common fs of 1 Hz [8], [10]. Then, a subject-based 
standardization was performed to normalize PR and SpO2 
baseline levels among different children. PR and SpO2 signals 
were finally divided into consecutive 30-second epochs, 
being each epoch classified as W, NREM, or REM with the 
annotations provided by sleep technicians [10].   

The data were split into three sets: training (257 first 
children, 60%), used to train the CNN-RNN model; validation 
set (85 following children, 20%), employed to monitor the 
convergence of the CNN-RNN; and test set (last 87 children, 
20%), used for performance assessment. Table I shows 
clinical and demographic data from the population under 
study.  

B. CNN-RNN architecture 

Figure 1 shows the main components of the CNN-RNN 
architecture employed in this study. Adapted from the CNN-
RNN proposed by Korkalainen et al. (2019) to detect sleep 
stages in adults from PPG data [7], the proposed CNN-RNN 
receives as input  a sequence of 100 consecutive epochs of 30-
s of the PR and SpO2 signals (100x30x2 samples). First, each 
epoch is processed separately through a time distributed layer 
that contains a CNN. The CNN is composed of 5 convolutional 
blocks (conv block), which are intended to automatically learn 
the features of each epoch of the PR and SpO2 signals (30x2 
samples) related with W/NREM/REM stages. Each conv 
block consists of: (i) a convolutional layer, which extracts the 
feature maps from PR and SpO2 data using 32 filters of size 
5x2; (ii) a batch normalization layer that normalizes the feature 
maps; (iii) a Rectified Linear Unit (ReLU) activation function 
that introduces nonlinearity to the normalized feature maps; 
and (iv) a dropout operation that minimizes overfitting by 
randomly removing node connections with a probability of 0.1 
[14]. After the last conv block, the 3D feature maps are 
reshaped into 1D data using a flattening operation.   

The time distributed CNN is then processed using a RNN 
to learn the temporal distribution of the sleep stages in the 
sequence. First, a dropout layer with a rate of 0.3 is used to 
minimize overfitting [7], [14]. Next, a bidirectional Gate 
Recurrent Unit (GRU) layer is applied to model the temporal 
dependence of the input sequence, deciding the information to 
be retained and the information to be forgotten from the 
network [14]. GRU was chosen instead of Long Short-Term 
Memory (LSTM) as it provided similar results with a lower 
computational cost [14]. This layer contains 64 units with a 
dropout probability of 0.3 in the forward step and 0.5 in the 
recurrent step [7].  Finally, a time distributed layer containing 
a softmax activation function is employed to obtain the 
probability of belonging to W (��

� ), NREM (�����
� ), and 

REM (����
� ) stages for the epoch � of the input sequence.  

TABLE I.  CLINICAL AND DEMOGRAPHIC  DATA OF THE CHILDREN 
IN THE STUDY 

 All Training set 
Validation 

set 
Test set 

Subjects (n) 429 257 85 87 
Age (years) 6 [5, 8] 6 [5, 8] 6 [5, 7] 6 [5, 7] 
Males (n) 208 (48.5%) 127 (49.4%) 35 (41.2%) 46 (52.9%) 
BMI 

(kg/m2) 

17.2 
[15.4, 22.0] 

17.1 
[15.6, 21.7] 

18.5 
[15.2, 23.4] 

16.5 
[15.2, 22.3] 

AHI (e/h) 
4.7  
[2.7, 8.7] 

4.6  
[2.6, 8.8] 

4.6  
[2.5, 8.5] 

5.1  
[3.2, 9.4] 

Wake (n) 
133891 
(25.4%) 

79814 
(25.1%) 

27685 
(27.0%) 

26392 
(25.0%) 

NREM (n) 
319038 
(60.6%) 

193547 
(60.9%) 

61419 
(59.9%) 

64072 
(60.6%) 

REM (n) 
73405 
(14.0%) 

44724 
(14.1%) 

13464 
(13.1%) 

15217 
(14.4%) 

TRT (min) 
608 
[557, 658] 

617 
[563, 661] 

590 
[539, 652] 

607 
[562, 640] 

TST (min) 
466 
[429, 494] 

472 
[440, 497] 

447 
[420, 482] 

461 
[423, 500] 

Data are presented as median [interquartile range], n or %. BMI: Body 
Mass Index; AHI: Apnea-Hypopnea Index; e/h: events per hour; REM: 
Rapid Eye Movement; NREM: Non-REM; TRT: Total Recording Time; 
TST: Total Sleep Time  

 



  

The CNN-RNN architecture was implemented using 
TensorFlow library and trained with the following 
configuration [14]: He-normal method to initialize network 
weights; categorical cross-entropy as the loss function; batch 
size of 128 with a random data shuffling strategy; the Adam 
method with an initial learning rate of 0.0001 to optimize 
network weights; early stopping after 30 training steps of non-
improvement; in the validation loss; and 500 as the maximum 
number of training steps.  

C.  Statistical analysis 

The overall performance of the CNN-RNN for automatic 
sleep staging was assessed by means of confusion matrices (3-
class), which were used to compute the 3-class accuracy (Acc), 
Cohen’s kappa index (kappa), macro F1-score (MF1), and per-
class F1-score (F1). Additionally, the TST was computed for 
each patient based on the sleep stages scored by the CNN-
RNN model (TSTCNN-RNN) and compared with the TST from 
standard PSG (TSTPSG). Bland-Altman plots and the intra-
class correlation coefficient (ICC) were used to assess the 
estimated TST agreement. 

III. RESULTS 

A.  CNN-RNN model performance 

Figure 2 shows the confusion matrix of the CNN-RNN 
model obtained in the test set for automatic sleep staging 

(W/NREM/REM). Interestingly, the CNN-RNN model fed 
with sequences of 100 epochs of PR and SpO2 signals rightly 
classified 86.1% of the 30-s epochs (91240/106029), with a 
kappa of 0.743, a MF1 of 0.820, and F1-scores of 0.847, 0.901, 
and 0.711 for W, NREM, and REM sleep stages, respectively.   

B. Estimation of the TST 

Figure 3 shows the Bland-Altman plot comparing the TST 
calculated from automatic CNN-RNN scoring (TSTCNN-RNN) 
with the TST derived from PSG (TSTPSG) in the test set. ICC 
is also shown. TSTCNN-RNN slightly overestimated TSTPSG, as 
reported by their mean difference (16.1 min) and confidence 
interval (from -52.6 to 84.8 min). Additionally, TSTCNN-RNN 
showed an ICC of 0.747 with TSTPSG.  

IV. DISCUSSION 

In this work, we propose a CNN-RNN architecture to 
enhance the automatic scoring of wake, NREM, and REM 
sleep stages from pulse oximetry signals (PR and SpO2) in 
childhood OSA patients. To our knowledge, the application of 
a deep-learning model based on the combination of a CNN and 

 

Figure 3. Bland-Altman plot comparing TSTCNN-RNN with TSTPSG in the test 
set. 

 
Figure 2.  Confusion matrix of  the CNN-RNN architecture in the test set. 
This matrix compares the sleep stages manually scored from PSG with the 
corresponding automatic assignation using the CNN-RNN model. 

 
Figure 1. Overview of the proposed deep-learning architecture based on 
the combination of a CNN and a RNN (CNN-RNN). Each convolutional 
block (conv block) includes a convolutional layer,  batch normalization, a 
ReLU activation function, and dropout. 



  

a RNN is novel in the framework of automated sleep staging 
in pediatric subjects.  

The proposed CNN-RNN architecture reached a high 
performance, with 86.1% Acc and 0.743 kappa for 
W/NREM/REM sleep classification. Particularly, the kappa 
value obtained by the CNN-RNN model (in the range 0.61-
0.80) indicates that there is a substantial agreement between 
our automatic deep-learning model and manual scoring from 
PSG [18]. Hence, our proposal could provide sleep stage 
annotations in at-home pulse oximetry tests for the screening 
of childhood OSA [3]. The TST derived from the CNN-RNN 
architecture also showed a high concordance with the TST 
from PSG (TSTPSG), with an ICC of 0.747, a mean difference 
of 16.1 min, and a confidence interval of -52.6 to 84.8 min. 
The slight overestimation of TSTPSG can be explained by the 
slight trend of the CNN-RNN to classify W epochs (15%) as 
NREM (see figure 2), being NREM the majority class in the 
data. Conversely, the obtained ICC value (in the range 0.50-
0.75) indicates a moderate agreement [18], highlighting the 
usefulness of our proposal to derive the TST in oximetry tests 
[3], [7], [8]. 

Two preliminary studies performed by our research group 
have shown the usefulness of CNN-based deep-learning 
methodologies for pediatric sleep staging, reporting a superior 
performance than previous feature-based approaches [10], 
[12]. In Vaquerizo et al. [12], we reported 78.3% Acc and 0.57 
kappa for the detection of W/NREM/REM from raw PPG data, 
and an ICC of 0.59 for the estimation of the TST.  In Vaquerizo 
et al. [10], 83.1% Acc and 0.68 kappa were obtained for 
W/NREM/REM classification from raw PR and SpO2 data, 
whereas an ICC of 0.677 was obtained for the calculation of 
the TST. In this work, which has used the same database as in 
the two previous studies [10], [12], a higher performance was 
obtained with a CNN-RNN fed with PR and SpO2 data: 86.1% 
Acc, 0.743 kappa, and 0.747 ICC. Thus, the information about 
the temporal distribution of the data provided by the RNN 
allows to improve the detection of sleep stages.  

It is important to denote some limitations of our study. 
First, although the sample size is considerably large (429 
subjects), the database only contains children suffering from 
OSA (AHI≥ 1 e/h). Thus, additional pediatric datasets that 
include, among others, healthy control subjects would be 
desirable. Another limitation is the computational load of the 
RNN, which may hinder its implementation in portable 
devices. In this respect, novel deep-learning methods with a 
lower computational cost than RNNs (e.g., transformers), as 
well as novel strategies addressing imbalance between sleep 
stages, should be assessed in future studies. Finally, another 
interesting future goal could be to design and assess an 
automatic deep-learning model that simultaneously score 
sleep stages and apnea/hypopnea events, thus providing a 
complete diagnosis of childhood OSA from pulse oximetry 
signals.  

V. CONCLUSION 

In summary, a deep-learning architecture based on the 
combination of a CNN and a RNN has shown usefulness to 
automatically score wake, NREM, and REM sleep stages 
from raw PR and SpO2 data in childhood OSA patients, with 

a higher performance than the reported by previous studies. 
In addition, we showed that the CNN-RNN model can 
provide a reliable estimation of the TST in pulse oximetry 
tests. Thus, we conclude that CNN-RNN architectures can be 
used to extract additional information on the temporal 
distribution of sleep stages from pulse oximetry recordings in 
children being evaluated for suspected OSA.   
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