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Sleep apnea is a sleep disorder with a very high prevalence and many health 
consequences. As such it is a major health burden (Benjafield et al., 2019). 
Sleep apnea has been systematically explored only a little more than 40 years 
now (Guilleminault & Dement, 1978). Major impacts of sleep apnea are 
sleepiness and associated risks for accidents (Bonsignore et al., 2021). Major 
health impacts are cardiovascular risk and pathophysiological traits, even if 
this is currently much debated when focusing on the apnea-hypopnea index 
as the measure for sleep apnea severity (Arnaud et al., 2020). Sleep apnea is 
a disorder which is a chronic condition and can be treated successfully.

The disorders of sleep-disordered breathing have largely supported the 
growth of sleep medicine in general from a small specialty field to a major 
spectrum of disorders in the arena of medical specialties. This activity 
helped to convert the niche field of sleep research into sleep medicine, a 
clinical discipline with its own departments, its own center certification, 
physician certification, dedicated conferences, journals, and research activ-
ities. The recognition and importance have grown so much that the new 
International Classification of Disorders by WHO in its 11th version, being 
launched in 2022, has added a new section on sleep and wake disorders 
with its own range of codes. This worldwide recognition will enable the 
growth of medical education on sleep physiology, sleep pathology, and spe-
cific sleep disorders.

The diagnostic field for sleep disorders, and for sleep apnea specifically, 
is strongly linked to the development of new and recent methods, which 
allow long-term recording and analysis of physiological functions during 
sleep. Sleep and sleep apnea are not just identified by taking a single blood 
sample or by a single measurement by a physician at a visit, but sleep 
recording requires the continuous recording of biosignals. This is compa-
rable to monitoring of vital functions during anesthesia or intensive care. 
Because of this methodological challenge, biomedical engineering as well 
as new sensor and analysis technologies are closely linked to the develop-
ment of sleep apnea diagnosis. New technologies helped to a large extent 
develop new diagnostic and treatment modalities for sleep-disordered 
breathing. Sleep apnea diagnostic research is now linked to the develop-
ment of new wearables, nearables, and smartphone apps, and profits much 
from the ubiquitous development of photoplethysmography recording 
everywhere.
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Artificial intelligence is playing a very important role in analyzing sleep 
recordings and, particularly, in automatizing several of the stages of sleep 
apnea diagnosis. Since the generalization of computerized analysis in the 
1990s, automated processing of cardiorespiratory and neuromuscular signals 
from polysomnographic studies provided a number of indices able to assist 
sleep experts in the characterization of the disease (Shokoueinejad et  al., 
2017). Parameterization of the influence of apneic events on biological sys-
tem dynamics has relied on widely known techniques from the engineering 
field, such as spectral and nonlinear analysis. Currently, there is a demand for 
novel alternative metrics able to overcome the limitations of the standard 
apnea-hypopnea index concerning its low association with patient symptoms 
and outcomes (Malhotra et al., 2021). In this regard, signal processing and 
pattern recognition are going to play a key role. In addition, machine learning 
has also shown its usefulness in the last decades (Uddin et al., 2018) and, like 
many other areas in our society, sleep apnea diagnosis is rapidly entering the 
deep learning era (Mostafa et al., 2019) and big data. These new analytical 
techniques, along with the advances in health device development, are the 
main hope for reaching a reliable diagnostic paradigm shift. One that finally 
could cope with the disease prevalence, personalized interventions, and run-
away spending.

Beyond the widespread application of machine learning methods to auto-
mate polysomnography scoring and to provide sleep experts with tools for 
automated diagnosis, artificial intelligence has also the potential to signifi-
cantly improve the management of sleep apnea treatment. Recent advances in 
the framework of big data together with remote monitoring capability of 
novel treatment devices are able to promote conventional sleep medicine 
towards a real personalized medicine. Identification of refined clinical pheno-
types of patients will allow the development of precision interventions, 
enabling the quick identification of the treatment option that best fits the par-
ticular characteristics of a patient (Watson & Fernández., 2021). Similarly, 
machine learning is able to accurately model patient’s adherence from usage 
data (pressure setting, residual respiratory events, mask leaks) derived from 
portable treatment devices, improving the efficacy of available therapies 
(Goldstein et al., 2020). Thus, artificial intelligence is going to significantly 
change the management of sleep apnea treatment in the short term.

This volume gives a basis of current knowledge on sleep research, sleep 
medicine, and sleep apnea, with a strong focus on new challenges and new 
research directions in the diagnosis of sleep apnea and its treatment. The 
volume contains three sections: the first one is on physiology and pathophysi-
ology, the second one is on diagnostic advances, and the third one is on treat-
ment advances. Each chapter author was asked to not only describe the state 
of the art but also develop visions for future research as seen from their spe-
cial angle and viewpoint.
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As editors, we think that the volume can serve as an introduction to the 
field of sleep-disordered breathing, can serve as a basis for educating in sleep- 
disordered breathing, and can immediately stimulate and trigger new research 
in physiology, clinical trials, and biomedical engineering for sensors and 
analysis methodologies.

Berlin, Berlin, Germany Thomas Penzel
Valladolid, Spain Roberto Hornero 
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15Deep-Learning Model Based 
on Convolutional Neural Networks 
to Classify Apnea–Hypopnea 
Events from the Oximetry Signal

Fernando Vaquerizo-Villar, Daniel Álvarez, 
Gonzalo C. Gutiérrez-Tobal, C. A. Arroyo- 
Domingo, F. del Campo, and Roberto Hornero

Abstract

Automated analysis of the blood oxygen satu-
ration (SpO2) signal from nocturnal oximetry 
has shown usefulness to simplify the diagno-
sis of obstructive sleep apnea (OSA), includ-
ing the detection of respiratory events. 
However, the few preceding studies using 
SpO2 recordings have focused on the auto-
mated detection of respiratory events versus 
normal respiration, without making any dis-
tinction between apneas and hypopneas. In 
this sense, the characteristics of oxygen desat-
urations differ between obstructive apnea and 
hypopnea episodes. In this chapter, we use the 
SpO2 signal along with a convolutional neural 
network (CNN)-based deep-learning architec-
ture for the automatic identification of apnea 

and hypopnea events. A total of 398 SpO2 sig-
nals from adult OSA patients were used for 
this purpose. A CNN architecture was trained 
using 30-s epochs from the SpO2 signal for the 
automatic classification of three classes: nor-
mal respiration, apnea, and hypopnea. Then, 
the apnea index (AI), the hypopnea index 
(HI), and the apnea–hypopnea index (AHI) 
were obtained by aggregating the outputs of 
the CNN for each subject (AICNN, HICNN, and 
AHICNN). This model showed a promising 
diagnostic performance in an independent test 
set, with 80.3% 3-class accuracy and 0.539 
3-class Cohen’s kappa for the classification of 
respiratory events. Furthermore, AICNN, HICNN, 
and AHICNN showed a high agreement with the 
values obtained from the standard PSG: 
0.8023, 0.6774, and 0.8466 intra-class corre-
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lation coefficients (ICCs), respectively. This 
suggests that CNN can be used to analyze 
SpO2 recordings for the automated diagnosis 
of OSA in at-home oximetry tests.

Keywords

Apnea · Apnea index (AI) · Apnea–hypopnea 
index (AHI) · Blood oxygen saturation 
(SpO2) · Convolutional neural networks 
(CNN) · Deep learning · Hypopnea · 
Hypopnea index (HI) · Obstructive sleep 
apnea (OSA) · Oximetry

15.1  Introduction

Obstructive sleep apnea (OSA) has become a 
major issue in recent years (Senaratna et  al., 
2017). OSA is marked by recurrent episodes of 
apneas (complete absences of airflow) and 
hypopneas (considerable reductions of airflow), 
which leads to fragmented and restless sleep 
(Berry et al., 2012). Despite its high prevalence 
in the adult population (9–38%), OSA is an 
underdiagnosed condition (Benjafield et  al., 
2020; Senaratna et al., 2017). This contributes to 
an increased risk of cardiovascular, metabolic, 
and psychiatric alterations, such as hypertension, 
cerebrovascular diseases, diabetes, and depres-
sion (Eastwood et al., 2010; Park et al., 2011).

Despite serving as the gold standard for OSA 
diagnosis, overnight polysomnography (PSG) 
presents important limitations. PSG is a costly 
test, highly intrusive for the patients, and techni-
cally complex and lacks availability (del Campo 
et al., 2018; Redline, 2017). In addition, apneas 
and hypopneas must be manually annotated by 
trained specialists, which is labor intensive and 
may lead to errors and inconsistencies in the 
diagnosis (Shokoueinejad et al., 2017). In order 
to overcome these PSG limitations, multiple 
investigations have focused on the use of simpli-
fied approaches aimed at the automated detection 
of OSA from a reduced subset of cardiorespira-
tory signals. Among these approaches, the auto-
mated analysis of the single-channel blood 
oxygen saturation (SpO2) signal from nocturnal 

oximetry has been frequently proposed due to its 
easy acquisition and interpretation (del Campo 
et al., 2018). SpO2 signal provides a continuous 
measure of the oxygen content in the hemoglobin 
(McClatchey, 2002), which allows to detect oxy-
gen desaturations induced by OSA-related respi-
ratory events, i.e., apneas and hypopneas (Berry 
et al., 2012).

Different studies have examined the SpO2 sig-
nal as a simplified alternative to PSG in the 
 automated detection of respiratory events and in 
the automated diagnosis of OSA (del Campo 
et al., 2018). A majority of these studies have fol-
lowed conventional feature-engineering method-
ologies, which are based on feature extraction 
and selection stages (del Campo et  al., 2018). 
Nonetheless, these methodologies require a sub-
stantial human- based knowledge to identify, a 
priori, a set of relevant features to extract from 
the signal under study (Goodfellow et al., 2016), 
which limits its ability to obtain all the ad-hoc 
information from the SpO2 recordings related to 
respiratory events. This limitation can be over-
come by deep- learning methods, which can 
directly analyze raw data and automatically make 
decisions based on non- human- driven knowl-
edge (Faust et al., 2018; Goodfellow et al., 2016).

In the last few years, deep-learning algorithms 
have outperformed conventional approaches in 
many fields (Goodfellow et  al., 2016), such as 
image recognition, autonomous driving, natural 
language processing, and time series analysis 
(Faust et al., 2018; Goodfellow et al., 2016). In 
the OSA context, recent studies have demon-
strated the usefulness of deep-learning approaches 
to analyze cardiorespiratory signals in the auto-
mated detection of apneic events (Mostafa et al., 
2019). Particularly, Mostafa et al. (2020a, b) and 
Vaquerizo-Villar et  al. (2019) applied a deep- 
learning architecture based on convolutional neu-
ral networks (CNNs) to the oximetry signal to 
detect respiratory events in adult and pediatric 
OSA patients, respectively. However, these stud-
ies have only addressed the automated detection 
of respiratory events versus normal respiration, 
without making any distinction between apneas 
and hypopneas (Mostafa, Baptista, et al., 2020a; 
Mostafa, Mendonca, et  al., 2020b; Vaquerizo- 

F. Vaquerizo-Villar et al.
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Villar et  al., 2019). Conversely, Kulkas et  al. 
(2017) stated that the severity of oxygen desatu-
rations differs between obstructive apnea and 
hypopnea events.

In the present chapter, a CNN architecture is 
proposed to automatically identify apnea and 
hypopnea events. Despite being originally 
designed for image analysis (Goodfellow et al., 
2016), CNNs have become one of the most rele-
vant deep-learning methods for time series clas-
sification (Ismail Fawaz et  al., 2019) in many 
fields, including biomedical signal processing 
(Ebrahimi et al., 2020; Faust et al., 2019; Murat 
et al., 2020; Roy et al., 2019). Accordingly, we 
hypothesized that a deep-learning architecture 
based on CNNs could help to automatically learn 
the most relevant information from the oximetry 
signal in the detection and classification of apnea 
and hypopnea events. Consequently, the main 
objective of this chapter is to design and evaluate 
a deep-learning model based on CNNs to auto-
matically classify respiratory events from the 
SpO2 signal in OSA patients. In addition, the sec-
ondary goal of this research is to assess the use-
fulness of the CNN model to estimate the 
apnea–hypopnea index (AHI: the number of 
apneas and hypopneas per sleep hour), which is 
the clinical parameter used to establish OSA 
diagnosis.

15.2  Materials and Methods

15.2.1  Subjects and Signals

This chapter involved a database composed of 
398 adult patients diagnosed with OSA (AHI ≥5 
events per hour). All of them were referred to the 
sleep laboratory of the Hospital Universitario Río 
Hortega (Valladolid, Spain), where they under-
went overnight PSG.  The Ethics and Drugs 
Research Committee of the hospital approved the 
protocol (CEIm 47/16).

All subjects were diagnosed by medical spe-
cialists following the standards of the American 
Academy of Sleep Medicine (AASM) (Berry 
et  al., 2012). Accordingly, an episode of apnea 
was annotated when there was a drop in the 

amplitude of the oronasal thermal airflow signal 
higher than 90% during at least 10 seconds (Berry 
et  al., 2012). Similarly, a hypopnea was scored 
when there was a minimum of 30% reduction in 
the amplitude of the nasal pressure airflow signal, 
lasting at least 10 seconds and accompanied by 
an oxygen desaturation of at least 3% or/and an 
electroencephalographic arousal (Berry et  al., 
2012). Subsequently, the apnea index (AI: the 
number of apneas per hour), hypopnea index (HI: 
the number of hypopneas per hour), and AHI 
from each subject were computed as the total 
number of each type of event divided by the total 
sleep time.

SpO2 signals were acquired during PSG at a 
sampling rate of 16  Hz. In order to reduce the 
computational requirements, all the SpO2 record-
ings were downsampled to a sample rate of 1 Hz. 
SpO2 recordings from each subject were then 
divided into 30-second non-overlapping epochs, 
being each epoch labelled as normal respiration 
(N), apnea (A), or hypopnea (H) using the anno-
tations provided by the clinicians. The dataset 
was divided into three groups: training set (first 
199 subjects, 50%), employed to train the CNN 
architecture; validation set (the following 79 sub-
jects, 20%), used to monitor the convergence of 
the CNN; and test set (the last 120 subjects, 
30%), employed to evaluate the proposed CNN- 
based methodology. Table 15.1 summarizes poly-
somnographic and clinical data from the 
population under study. No statistically signifi-
cant differences (p-value < 0.05) were found in 
age, sex, body mass index (BMI), AI, HI, or AHI 
between the three groups.

15.2.2  Proposed CNN Architecture

Figure 15.1 shows the main components of the 
proposed CNN architecture. The input section of 
the CNN consists of the SpO2 samples for the 
30-s epoch (i.e., 30 samples) to be classified, con-
catenated with the four preceding and the five 
following epochs, thus having a 10-epoch length 
(300 samples) 1D input vector. The reason for 
using preceding and following epochs is twofold: 
(i) it enhances the identification of oxygen 

15 Deep-Learning Model Based on Convolutional Neural Networks to Classify Apnea–Hypopnea Events…
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Table 15.1 Clinical and polysomnographic data of the population under study

All Training Validation Test
Clinical characteristics in each data subset
Subjects (n) 398 199 79 120
Age (years) 56 [47–65] 56 [47–64] 56 [47–67] 55 [44–65]
Males (n) 278 (69.9%) 144 (72.4%) 59 (74.6%) 75 (62.5%)
BMI (kg/m2) 29.1 [26.1–33.1] 29.4 [26.0–33.5] 28.9 [26.8–31.7] 29.2 [25.6–34.0]
AI (e/h) 8.2 [1.8–24.8] 9.1 [1.6–25.3] 6.1 [2.1–24.1] 7.7 [2.0–24.8]
HI (e/h) 19.4 [10.4–32.5] 19.0 [10.1–29.7] 19.8 [10.9–32.9] 19.9 [10.6–36.5]
AHI (e/h) 35.0 [17.3–59.4] 33.2 [15.9–59.7] 35.6 [18.1–59.2] 36.2 [18.3–61.4]
Number and type of events in each data subset
Normal (n) 250,669 (72.5%) 127,292 (73.2%) 49,932 (72.5%) 73,445 (71.3%)
Apnea (n) 40,838 (11.8%) 20,174 (11.6%) 7972 (11.6%) 12,692 (12.3%)
Hypopnea (n) 54,165 (15.7%) 26,350 (15.2%) 10,989 (15.9%) 16,826 (16.4%)

Data are presented as median [interquartile range], n, or %
BMI: body mass index, AHI: apnea index, HI: hypopnea index, AHI: apnea–hypopnea index, e/h events per hour

Fig. 15.1 Overview of the proposed CNN architecture. 
Each convolutional block (conv block) includes a 1D con-
volution (1D Conv), BN, a RELU activation function, and 
pooling

 desaturations associated to respiratory events, 
since the onset of oxygen desaturations may 
occur more than 30 seconds after the start of the 
respiratory events (Kulkas et al., 2013); and (ii) it 
allows for a better modeling of the temporal dis-

tribution of respiratory events, which are typi-
cally grouped in clusters.

The proposed CNN architecture processes this 
input using six convolutional blocks (conv block), 
and each one composed of the following:

• 1D convolution (1D conv). This layer extracts 
feature maps using the 1D convolution opera-
tion (Goodfellow et al., 2016):

 x n w a n k bi
j

k

k

k
j

i k
j� � � � � �� ��

�
�

1

1
size

,  (15.1)

• where xj
i is the feature map generated by the 

jth convolutional filter (j = 1, …, 64) in the ith 
convolutional block (i = 1, …, 6); ksize = 5 is 
the filter (kernel) size; wj

k and bj
k are the filter 

weights and biases, respectively; and ai is the 
input of the ith convolutional block. The num-
ber of convolutional blocks, the number of fil-
ters, and the kernel size were chosen according 
to the optimum values obtained in Vaquerizo- 
Villar et al. (2021).

• Batch normalization (BN). BN is applied to 
normalize the feature maps obtained in the 1D 
convolution layer (Goodfellow et al., 2016).

• Rectified linear unit (ReLU). ReLU is the 
standard activation function in CNNs. It is 
applied to introduce nonlinearity to the nor-
malized feature maps, which provides univer-
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sal approximation to any function (Goodfellow 
et al., 2016):

 f x xi
j

i
j� � � � �max 0, ,  (15.2)

• Pooling. After the ReLU function, a max- 
pooling layer was applied to the activations 
with a pooling factor of 2 to reduce dimen-
sionality, while the most relevant features are 
kept (Goodfellow et al., 2016).

Following the last convolutional block, the 2D 
feature maps are converted into 1D feature vec-
tors using a flattening operation. Finally, a soft-
max activation function is used to obtain the 
output of the CNN architecture, i.e., the probabil-
ity of belonging to each class (N/A/H) for the 
input 30-s SpO2 epoch.

15.2.3  CNN Training Process

The CNN architecture was implemented using 
the Keras framework with TensorFlow backend. 
A workstation with a NVIDIA GeForce RTX 
2080 GPU running on a Windows 10 environ-
ment was used for this purpose. The training data 
were fed into the CNN using minibatches of size 
100 during 200 epochs. The weights of each layer 
of the network were initialized using He-normal 
initialization (He et al., 2014). Then, the adaptive 
moment estimation (Adam) algorithm was used 
with an initial learning rate of 0.0001 (Kingma & 
Ba, 2015), and a categorical cross entropy loss 
function was applied to update the weights and 
biases at each minibatch. As the whole training 
data does not fit on the memory of the worksta-
tion, training data were fed at each epoch in ran-
dom order from different patients to the network 
using 50 reading queues (Sors et al., 2018), which 
also improves the convergence of the Adam algo-
rithm (Goodfellow et al., 2016; Sors et al., 2018). 
The validation data was used during the training 
process to monitor the convergence of the CNN 
by means of the validation loss. In this respect, 
the learning rate was reduced by a factor of 2 
when the validation loss did not improve for ten 

consecutive epochs, and early stopping was 
applied to finish the learning process after 30 
epochs of non-improvement in the validation 
loss, restoring the network weights to those that 
minimized the validation loss (Goodfellow et al., 
2016).

15.2.4  Statistical Analysis

The Kruskal–Wallis test was used to assess statis-
tical differences (p-value < 0.05) between groups. 
The overall performance of the CNN architecture 
to automatically classify respiratory events was 
assessed by means of confusion matrices 
(3-class), which were used to compute the 
Cohen’s kappa index (kappa) and the 3-class 
accuracy. The performance for each individual 
class was measured by means of sensitivity (per-
centage of epochs belonging to the class rightly 
classified), specificity (percentage of epochs not 
belonging to the class rightly classified), positive 
predictive value (proportion of epochs assigned 
to the class that are true positives), negative pre-
dictive value (proportion of epochs not assigned 
to the class that are true negatives), and accuracy 
(proportion of epochs rightly classified). In addi-
tion, AI, HI, and AHI were obtained for each sub-
ject based on the CNN scoring (AICNN, HICNN, and 
AHICNN) and compared with those from the stan-
dard PSG (AIPSG, HIPSG, and AHIPSG) using 
Bland–Altman plots and the intra-class correla-
tion coefficient (ICC).

15.3  Results

15.3.1  CNN Model Performance

Figure 15.2 shows the confusion matrix of the 
CNN model in the test set for the 3-class classifi-
cation procedure (N/A/H). This model rightly 
classified 80.3% (82,628/102963) of the 30-s 
SpO2 epochs in the test set, with a 3-class kappa 
value of 0.539. Table 15.2 presents the diagnostic 
ability for each individual class. Notice that 
higher performance metrics were obtained for the 
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Fig. 15.2 Confusion matrix of the CNN architecture in 
the test set. This matrix compares the type of respiratory 
event from standard PSG with the corresponding assigna-
tion using the CNN model

Table 15.2 Diagnostic ability of the CNN model in the 
test set for the detection of normal respiration, apnea, and 
hypopnea events

Epoch type
Se 
(%)

Sp 
(%)

PPV 
(%)

NPV 
(%)

Acc 
(%)

Normal 
respiration

92.7 69.4 88.3 79.3 86.0

Apnea 47.2 96.9 68.4 92.9 90.8
Hypopnea 50.7 90.1 50.0 90.3 83.7

Se: sensitivity, Sp: specificity, PPV: positive predictive 
value, NPV: negative predictive value, Acc: accuracy

detection of normal respiration than for apnea 
and hypopnea events.

15.3.2  Estimation of Respiratory 
Indices

Figure 15.3 shows the Bland–Altman plots com-
paring AICNN, HICNN, and AHICNN with AIPSG, 
HIPSG, and AHIPSG in the test set, respectively. 
ICC is also shown. It can be seen that the respira-
tory indices predicted by the CNN (AICNN, HICNN, 
and AHICNN) are underestimating those from 
standard PSG (AIPSG, HIPSG, and AHIPSG), as 
reported by their mean difference (bias). HICNN 

reached a lower bias (−4.22) than AICNN (−7.87) 
and AHICNN (−12.09), whereas AHICNN achieved 
a slightly lower confidence interval (40.82) than 
AICNN (45.49) and HICNN (45.66). In addition, 
AHICNN showed a higher agreement with manual 
scoring (ICC = 0.8466) than AICNN (ICC = 0.8023) 
and HICNN (ICC = 0.6774).

15.4  Discussion

In this chapter, we evaluated the potential useful-
ness of a CNN architecture to automatically clas-
sify respiratory events (apnea, hypopnea, and 
normal respiration) from the SpO2 signal in adult 
OSA patients. To our knowledge, this is the first 
study applying a deep-learning model to auto-
matically identify apnea and hypopnea events 
from the oximetry signal.

The proposed CNN-based deep-learning 
model reached a high performance, with 80.3% 
3-class Acc and 0.539 kappa for the classification 
of respiratory events. According to the guidelines 
of McHugh (2012), a kappa value between 0.41 
and 0.60 indicates that there is a moderate agree-
ment between our CNN architecture and manual 
PSG-based scoring (McHugh, 2012). Hence, our 
approach could be potentially used to detect 
respiratory events in at-home pulse oximetry 
tests for OSA diagnosis (del Campo et al., 2018).

Looking at the confusion matrix of 
Fig.  15.2., it can be seen that 93% of normal 
respiration epochs are rightly classified by the 
CNN model, which may indicate that oxygen 
desaturations infrequently occur without being 
associated to a respiratory event. Furthermore, 
47% of apnea and 51% of hypopnea epochs are 
rightly detected by the CNN architecture, 
which indicates that the characteristics of SpO2 
desaturations caused by apneas that differ from 
those related to hypopneas. This agrees with 
Kulkas et al. (2017), who reported that oxygen 
desaturations associated to obstructive apneas 
have significantly larger duration and depth 
than SpO2 desaturations related to hypopneas. 
In this sense, 35% of apnea epochs are misclas-
sified as hypopneas. This can be explained by 
the fact that oxygen desaturations related to 
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Fig. 15.3 Bland–Altman plots comparing (a) AICNN with AIPSG, (b) HICNN with HIPSG, and (c) AHICNN with AHIPSG

obstructive apnea events of short duration may 
have similar characteristics to those related to 
long-duration hypopneas, as the duration and 
area of SpO2 desaturations are significantly 
correlated to the duration of obstructive apnea 
and hypopnea events (Kulkas et  al., 2017). 
Conversely, 40% of hypopnea epochs are pre-
dicted as normal respiration by the CNN. These 
misclassified hypopneas may be associated to 
electroencephalographic arousals that do not 
produce any physiological perturbation in the 
oximetry signal (Berry et al., 2012).

Regarding the respiratory indices, the CNN 
model shows a trend to underestimate them, 
especially AICNN and AHICNN. Nonetheless, 
the CNN model showed promising results, 
reaching ICCs of 0.8023 (AICNN), 0.6774 
(HICNN), and 0.8466 (AHICNN). The higher 
ICC obtained by AICNN and AHICNN can be 
explained by the fact that their Bland–Altman 
plots show a linear underestimation trend, 
whereas HICNN has outliers in both directions. 
In this respect, an ICC value in the range 
0.50–0.75 indicates a moderate agreement, 
whereas an ICC value in the range 0.75–0.90 
indicates a good reliability (Koo & Li, 2016). 
Accordingly, our CNN-based deep- learning 
approach could be used to calculate these 
respiratory indices in oximetry tests.

Recent studies showed the usefulness of deep- 
learning techniques to automatically score respi-
ratory events from raw cardiorespiratory signals 
in OSA patients, outperforming conventional 
feature-based methodologies (Mostafa et  al., 
2019). Particularly, some studies faced the auto-
mated detection of normal respiration, apneas 
and hypopneas from airflow; thoracic, abdomi-
nal, and chest respiratory signals; and the electro-
cardiogram (Haidar et  al., 2020; McCloskey 
et  al., 2018; Nikkonen et  al., 2021; Urtnasan 
et al., 2018; Van Steenkiste et al., 2020; Yue et al., 
2021), reaching a 3-class accuracy (normal, 
apnea, and hypopnea) in the range 73–91%. In 
contrast to these studies, our work achieved a 
3-class accuracy of 80% using only the SpO2 sig-
nal. In this regard, the oximetry signal has been 
frequently advocated for OSA screening due to 
its accessibility, simplicity, and reliability (del 
Campo et al., 2018).

Vaquerizo-Villar et  al. (2019) and Mostafa 
et al. (2020a, b) have also focused on the auto-
mated classification of respiratory events using 
oximetry-based deep-learning approaches. These 
studies employed CNNs to differentiate respira-
tory events from normal respiration episodes 
using 60-s SpO2 segments, reaching accuracies in 
the range 85–95% (Mostafa, Baptista, et  al., 
2020a; Mostafa, Mendonca, et  al., 2020b; 
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Vaquerizo-Villar et  al., 2019). In the present 
chapter, the 2-class accuracy (normal versus 
apnea/hypopnea) was included in this range 
(86%) with a 30-s segment size, which is more 
appropriate for the detection of clusters of respi-
ratory events that contain more than one respira-
tory event in a 60-s segment. Furthermore, our 
CNN-based model addresses for the first time the 
distinction between apneas and hypopneas from 
raw oximetry data and the estimation of respira-
tory indices (AI, HI, and AHI).

Despite the potential usefulness of our pro-
posed approach, some limitations need to be 
considered. First, the database employed in 
this work did not contain healthy control sub-
jects (AHI  <  5  e/h). The inclusion of these 
subjects could help to improve the character-
ization of normal respiration. Another limita-
tion concerns the use of 30-s SpO2 segments 
to automatically detect respiratory events, 
which does not allow to identify the onset and 
end of apneas and hypopneas. Nonetheless, 
SpO2 does not contain this information, as the 
delay of oxygen desaturations occurring after 
respiratory events is variable (Kulkas et  al., 
2013). Similarly, the proposed CNN does not 
differentiate between obstructive and central 
respiratory events. However, this would 
require information about breathing effort 
(Berry et al., 2012), which is not included in 
the oximetry signal. In this respect, the acqui-
sition of the photoplethysmography (PPG) 
signal with the pulse oximetry sensor may 
contribute to enhance the diagnostic ability of 
our proposal, as it contains information 
related to respiratory events (Karmakar et al., 
2014; Papini et  al., 2020). Furthermore, the 
use of novel deep-learning techniques (e.g., 
transformer or generative adversarial net-
works) may help improve the automatic clas-
sification of respiratory events at the cost of 
higher computational complexity. Finally, the 
application of eXplainable artificial intelli-
gence techniques could help to further under-
stand the perturbations in the oximetry signal 
linked with apnea and hypopnea events and 
the differences between them.

15.5  Conclusions

Our CNN-based deep-learning model exhibited a 
high performance in the automatic identification 
of apnea and hypopnea events from the SpO2 sig-
nal. The CNN model also showed a high agree-
ment in the estimation of OSA-related respiratory 
indices (AI, HI, and AHI). According to our find-
ings, we can conclude that CNN-based SpO2 
approaches could be potentially used to provide 
an automated diagnosis of OSA in at-home oxim-
etry studies.
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