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Abstract— Sepsis is one of the most common causes of death in intensive care units. Septic shock is a type of circulatory 

shock that shows signs and symptoms that are similar to non-septic shock. Despite the impact of shock in patients and the 

economic burden, knowledge on the pathophysiology of septic shock is scarce. In this context, weighted gene co-expression 

network analysis can help to elucidate the molecular mechanisms of this condition. The gene expression dataset used in this 

study was downloaded from the Gene Expression Omnibus, which contains 80 patients with septic shock, 33 patients with non-

septic shock, and 15 healthy controls. Our novel analysis revealed five gene modules specific for patients with septic shock and 

three specific gene modules for patients with non-septic shock. Interestingly, genes related to septic shock were mainly involved 

in the immune system and endothelial cells, while genes related to non-septic shock were mostly associated with endothelial 

cells. Together, the results revealed the specificity of the genes related to immune system in the septic shock. The novel 

approach developed here showed its potential to identify critical pathways for the occurrence and progression of these 

conditions while offering new treatment strategies and effective therapies. 

Index Terms— Biology and genetics, Gene co-expression network analysis, Sepsis 

——————————   ◆   —————————— 

1 INTRODUCTION

HE last definition of sepsis states that is an organ dys-
function caused by a dysregulated host response to in-

fection [1]. This condition is one of the main health care 
problems in the intensive care units (ICUs) [2] and repre-
sents a challenge for physicians due to its high mortality 
rate. Despite the advances in the care of patients, the inci-
dence of sepsis has increased while, fortunately, the mor-
tality rate has decreased [3]. In fact, a recent study has es-
timated around 31.5 million cases of sepsis worldwide, 
with 19.4 million cases being considered severe sepsis, and 
5.3 million deaths annually [4]. Moreover, sepsis 

represents the first cause of mortality in non-coronary 
ICUs [5,6], with a mortality rate of 38% in the case of septic 
shock in Europe and North America [7]. In addition to the 
negative impact of sepsis in patients, the economic burden 
of sepsis has been increasing over the last several years and 
represents a challenge for health care systems, with an in-
crease in cost due to longer hospital stays. Supporting this, 
the average hospital cost per stay was estimated at $37,424, 
$32,421, $13,292, and $24,384 for Europe, the United States, 
Asia, and South America, respectively [8]. For these rea-
sons, the World Health Organization recognizes sepsis as 
a global health priority [9]. 

In spite of the significant health problem that sepsis rep-
resents, and the advances made in understanding its path-
ophysiology in the last several years, the knowledge about 
the dysregulation of the complex molecular signaling net-
work in patients with sepsis and septic shock is scarce. 
Currently, one of the methods used to know the specific 
pathological state of sepsis is the analysis of gene expres-
sion patterns [10–13], allowing the identification of diag-
nostic and prognostic gene signatures, as well as novel 
therapeutic targets. However, this has not been enough to 
elucidate the molecular mechanisms of this condition. In 
this sense, weighted gene co-expression network analysis 
(WGCNA) applied to the gene expression values of pa-
tients with septic shock can help to uncover the underlying 
biological functions of genes and describe the huge and 
complex relationships in this condition. Thereby, the use of 
WGCNA could reveal relevant routes in the context of sep-
tic shock that, until now, have remained hidden. In recent 
years, an increasing number of works have successfully ap-
plied this method to discover the genes associated with 
various diseases, such as chronic kidney disease [14], can-
cer [15–17], asthma [18], and diabetes [19]. These 
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precedents indicate that this method could be also used to 
identify key genes as novel candidate biomarkers or thera-
peutic targets in septic shock. Moreover, sepsis lacks a 
quick and accurate gold standard for its diagnosis, making 
it difficult to differentiate between septic and non-septic 
shock following surgery, conditions that show similar 
signs and symptoms [20]. Hence, this technique could al-
low us to identify specific and unique genetic patterns of 
septic shock, opening new doors for the personalized treat-
ment in this pathology. 

Previous reports have revealed the gene co-expression 
patterns in sepsis [21–23], but these studies were focused 
on medical sepsis. Thus, the goal of the present study is to 
increase the knowledge about the correlation network in 
patients with septic shock and non-septic shock by the 
identification of specific gene clusters with the aim to un-
derstand the pathophysiology of septic shock (i.e., the cor-
relation between genes of unknown function with biologi-
cal processes or distinguish transcriptional regulatory pro-
grams). Therefore, the potential findings of this study can 
help advance the understanding of the septic shock and 
non-septic shock transcriptomes and provide novel thera-
peutic targets. 

2 METHODS 

2.1 The Gene Expression Omnibus dataset 

A microarray dataset with accession number 
GSE131761 was obtained from the Gene Expression Omni-
bus (GEO) public database. This dataset includes 129 sam-
ples comprising 15 healthy controls, 80 patients with septic 
shock, and 33 patients with non-septic shock. Pre-pro-
cessing was performed as previously described by Mar-
tínez-Paz et al. [10]. Briefly, dataset files were imported into 
the Bioconductor R package ecosystem and were normal-
exponential background corrected. Normalization was 
performed by the quantile method, and gene expression 
values were calculated using the lmFit function from the 
limma package. 

2.2 Network analysis 

After pre-processing, a correlation network was gener-
ated independently for each group by WGCNA. This 
method is a data mining method based on representing 
each gene as nodes and pairwise correlations between 
them as network links [24]. Pearson’s rank correlations 
were used to recurrently assess the relationship between 
all pairs of nodes using the Matlab ‘Statistics and Machine 
Learning Toolbox’. Due to the large size of the resulting 
networks (more than 500 million connections), the Cohen’s 
threshold for large correlations [25] or very strong correla-
tions [26] was applied. Thus, two weighted networks per 
group were generated, one representing high positive cor-
relations (R>0.8) and the other high negative correlations 
(R<-0.8). Before thresholding, the generated correlation 
networks had the same number of nodes, only differing in 
the value of each correlation. However, after thresholding, 
each network can show different number of connections. 

To assess the specific genes involved in septic shock, we 
were interested in analyzing the group-specific strong 

relationships, that is, those correlations between specific 
genes above the threshold (0.8) in the septic shock group 
but not in the non-septic shock group and vice versa. These 
networks are called differential networks. For this pur-
pose, we developed a novel approach consisting of obtain-
ing the characteristic and specific gene expression pattern 
of each group. Thus, after applying the threshold |R|>0.8, 
the networks were binarized, that is, a value of 1 was as-
signed to those connections higher than the threshold and 
a value of 0 the rest. Finally, the shared links between the 
groups were removed. In this way, new networks consist-
ing of non-shared links were obtained. These networks 
only show specific strong connections (above 0.8) from 
each group, allowing analyzed the particular patters of 
each group. 

With the aim of increase the robustness of the results 
while statistically comparing the properties of the net-
works, a previously validated bootstrap procedure [27,28] 
was applied for the first time in genetic data. Thereby, for 
each group, 100 random selections of 33 subjects with pos-
sible repetition (the number of subjects in the group of pa-
tients with non-septic shock, i.e., the more restrictive of the 
two groups) were used to generate the networks. Seven 
complementary graph parameters derived from Complex 
Network Theory were then calculated on each resulting 
network, including number of links, node degree, charac-
teristic path length, diameter, average clustering coeffi-
cient, modularity, and eigen-vector centrality [29–32]. 

Finally, Gephi software (version 0.9.2) was used for net-
work visualization [33]. Depending on the nature of the 
networks, two different force-based algorithms were used. 
The ForceAtlas2 algorithm [34] was applied to the 
weighted networks, which considers both the distance and 
the node degree of the connected nodes. On the other 
hand, the Fruchterman-Rheingold algorithm [35] was used 
to represent the binary networks, which uses custom forces 
of attraction and repulsion, depending only on the distance 
between the connected nodes. Despite the non-determinis-
tic nature of these methods, they usually reach stable 
stages (as in the case of our networks) and have the ad-
vantage of turning structural proximities into visual prox-
imities. Thereby, genetic communities or clusters emerge 
spatially separated, providing information about hidden 
genetic structures [36]. 

2.3 Pathway enrichment analysis 

Pathway enrichment analysis identifies biological path-
ways that are enriched in a gene list more than it would be 
expected by chance. Analysis was developed using g:Pro-
filer [37], database for annotation, visualization and inte-
grated discovery (DAVID) [38], and protein annotation 
through evolutionary relationship (PANTHER) [39]. These 
techniques search a collection of gene sets representing 
Gene Ontology (GO) terms, pathways, networks, regula-
tory motifs, and disease phenotypes. Pathway enrichment 
methods use Fisher’s exact test or binomial test, with Bon-
ferroni correction for multiple testing, by considering all 
annotated protein-coding genes as background genes for 
comparison purposes. The general study design is summa-
rized in Figure 1. 
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3 RESULTS 

A total of 113 patients from the Gene Expression Omni-
bus database (GSE131761) were included in the current 
study, of which 80 patients had septic shock and 33 patients 
had non-septic shock. The clinical characteristics of the 
postsurgical patients that were enrolled have been de-
scribed previously [10]. 

3.1 Consensus network construction and module 
detection 

In this work, we applied WGCNA using 34,127 probes 
from the microarrays of 133 patients to construct the gene 
modules from the matrix of gene expression values. The 
first step of the present study was to analyze the correla-
tion structure in postsurgical patients with septic shock 
and non-septic shock, with the aim to evaluate the behav-
ior of gene clusters and identify changes in gene-to-gene 
interactions that can be associated with these conditions. 
Table 1 shows the graph-theory-related parameters of the 
high positive and high negative weighted correlation net-
works considering all the possible pairs of nodes. The focus 
was on different complementary characteristics, including 
basic features, integration, segregation, and centrality, to 
compressively characterize the networks. Two basic fea-
tures of the network were provided. First, the number of 
links in the network indicates the number of correlations 
higher than 0.8 for high positive networks or lower than -
0.8 for high negative networks. The node degree also was 
calculated, which provides information on the connected-
ness of the considered gene by adding all the correlations 
that start from that node in a single index [29]. Thus, the 
average node degree summarizes the density of the net-
work. The integration measures give an estimate of the de-
gree of compactness of the network. Here, the 

characteristic path length and the diameter were reported. 
While the characteristic path length is the average shortest 
path length between all pairs of nodes [30], the diameter is 
the shortest distance between the two most distant nodes 
in the network [24]. On the other hand, network segrega-
tion is the capability of the network to be divided in differ-
ent units with high intra-unit connectivity. The average 
clustering coefficient [31] and Blondel’s modularity [32] 
were used for this work. The average clustering coefficient 
measures the presence of clusters inside the network by 
computing the ratio between the existing triangles and the 
total number of triangles that could exist. The modularity 
index provides information on how different modules in-
side the network are separated from each other in terms of 
correlations. Finally, the centrality of a node provides an 
estimate of the degree of relevance of that node within that 
network. In this context, if a node is very relevant (usually 
named ‘hub’), it means that it is well connected and, there-
fore, many paths pass through it. The degree of centrality 
of the network gives an idea of its global topology. In par-
ticular, the eigenvector centrality [40] measures the aver-
age influence of all the nodes, that is, its connectedness to 
other important/highly connected genes. 

The results obtained from this analysis show that pa-
tients with non-septic shock presented with larger high 
correlation networks as indexed by the number of links, 
both positive and negative (Table I). In addition, the overall 
connectivity of the network is diminished in septic shock, 
meaning a lower global relationship between gene expres-
sions. This is particularly noticeable in the negative corre-
lation network. Differences between networks are also ev-
ident regarding the network integration and segregation. 
Finally, higher degrees of centrality are shown by non-sep-
tic shock, supporting the lower number of hubs (high con-
nected nodes) in them. In summary, the high positive cor-
relation network presented a higher size and 

 

Fig. 1. Study workflow. Path enrichment after correlation network analysis identified genes particularly relevant in septic shock.  
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connectedness in patients with non-septic shock. Similarly, 
when the high negative correlation network was analyzed 
these parameters where higher in patients with non-septic 
shock. These results are depicted in Figure 2, where the 
structure of these correlation networks and the presence of 
different clusters is shown, allowing the possibility to char-
acterize it and to inspect the differences between these 
kinds of postsurgical patients. 

3.2 Septic shock and non-septic shock network 
analyses without shared links 

With the aim to analyze the specific relations between 
genes particularized for each group, new correlation net-
works, called differential networks, were performed by 

removing the non-shared links between groups and bina-
rizing the resulting weighted networks. Thus, these net-
works consisted of a variety of links representing high cor-
relations (|R|>0.8) that only appear in that group of pa-
tients but not in the other. The visual representation of the 
new correlation networks of patients with shock after re-
moving the shared links confirm the existence of a reduced 
number of well-defined and separated clusters in each con-
dition (Figure 3). Concerning these correlations, the septic 
shock network has a higher number of links, average of 
node degree, path length, and diameter when compared 
with the non-septic shock network, showing a high degree 
of specificity with the septic shock network (Table 2). 

TABLE 1 
GRAPH-THEORY PARAMETERS ASSOCIATED WITH THE HIGH-CORRELATION NETWORKS (POSITIVE AND NEGATIVE) FOR EACH GROUP 

Feature 
Graph 

parameter 

High positive correlation 

networks 

 High negative correlation 

networks 

Septic 

shock 

Non-septic 

shock 
p-value  

Septic 

shock 

Non-septic 

shock 
p-value 

Basic Number of links 502,031 616,045 <0.05  531 28,783 <0.05 

Average node degree 29.421 36.103 <0.05  2.855 8.489 <0.05 

Integration Characteristic path length 8.060 7.116 <0.05  3.131 5.651 <0.05 

Diameter 24 24 N.S.  8 20 <0.05 

Segregation Average clustering coefficient 0.570 0.422 N.S.  0.000 0.000 N.S. 

Modularity 0.257 0.349 <0.05  0.527 0.563 N.S. 

Centrality Eigenvector centrality 0.030 0.051 <0.05  0.007 0.074 <0.05 

N.S.: Non-significant 

 

Fig. 2. High positive and high negative correlation networks for patients with septic shock and non-septic shock. The color of each node 
represents the membership of a specific module obtained by applying Blondel's modularity [32]. The arrangement of the nodes follows the 
ForceAtlas2 algorithm [34], which is based on attractive and repulsive forces between nodes, appropriate for weighted networks. In this way, 
the nodes (and modules) with the greatest relationship between them tend to appear spatially close. 
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3.3 Cluster analysis 

Cluster analysis of septic shock and non-septic shock 
specific modules allows to study its characteristics and to 
identify the differences between both groups. 

A GO enrichment analysis on the genes in modules was 
firstly performed. The main processes obtained in this 
analysis were related to nucleic acid binding and the extra-
cellular matrix (see Table S1 in the Supplementary Material 
for details). 

In addition to the previous analyses, genes with the 
highest node degree for each cluster from these non-shared 
networks were assessed (Figure 3). The shortlist of the top 
10 genes in each cluster is shown in Table 3. From the pa-
tients with septic shock, the genes with higher node degree 
for the purple, green, blue, gray, and orange modules were 
IGLV5-48, COLEC10, MICU2, NDNF, and ST7-OT4, re-
spectively; for non-septic shock, the genes with highest 
node degree for the purple and green modules were 
FLJ36000 and AGGF1, respectively. 

4 DISCUSSION 

Most previous studies have focused on the transcrip-
tional profiling of sepsis and septic shock using microar-
rays to identify biomarker candidate genes [10–13]. How-
ever, while there are previous reports that have analyzed 
gene co-expression patterns in sepsis [21–23], there are no 
works about the scenario involving septic shock vs. non-
septic shock to assess their pattern specificity. Moreover, 
compared with the classical analysis of transcriptional pro-
files, the study of gene networks-based methods allows 
one to gain insight into the pathophysiology of both septic 
shock and non-septic shock, as well as global biology ac-
tivity, considering that both conditions show similar signs 
and symptoms [20]. 

The differences between specific modules with regard 
to patients with septic shock and non-septic shock open the 
possibility to study the particular characteristics of those 
clusters and to identify the arising differences between 

 

Fig. 3. Correlation networks (|R|>0.8) after removing shared links in patients with septic shock (left) and non-septic shock (right). The color of 
each node represents the membership of a specific module obtained by applying Blondel's modularity [32]. The arrangement of the nodes 
follows the Fruchterman-Reingold [35] algorithm, which is based on attractive and repulsive forces between nodes, appropriate for binary 
networks. The first goal of this study was to evaluate the behavior of gene clusters and identify changes in gene-to-gene interactions that can 
be associated to postsurgical patients with septic shock and non-septic shock through gene correlation networks. Non-septic patients presented 
a higher number of positive and negative links, connectivity, and centrality than septic patients. These results show marked genomic differences 
between both patient groups. However, with the aim to reinforce the hypothesis of a differentiated genetic signature in postsurgical patients 
with shock, a new network analysis was performed without shared links. In this case, the septic shock network presents a higher degree of 
specific for its correlations. Therefore, the comparison between the networks with shared and non-shared links shows that the correlation 
network of patients with non-septic shock was significantly changed after the exclusion on shared links. 

TABLE 2 
GRAPH-THEORY PARAMETERS ASSOCIATED WITH THE DIFFERENTIAL CORE NETWORK 

Feature Graph parameter Septic shock Non-septic shock p-value 

Basic 
Number of links 259,222 106,437 <0.05 

Average node degree 15.192 6.238 <0.05 

Integration 
Characteristic path length 5.772 3.180 <0.05 

Diameter 31 24 <0.05 

Segregation 
Average clustering coefficient 0.464 0.473 N.S. 

Modularity 0.423 0.570 <0.05 
Centrality Eigenvector centrality 0.078 0.396 <0.05 

N.S.: Non-significant 
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them. Related to both conditions, the GO results show that 
the most prominent processes in the detected modules are 
related to nucleic acid binding and the extracellular matrix. 
However, previous reports show that the pathways in-
volved in septic shock and non-septic shock were mainly 
related to the immune system, inflammatory processes or 
endothelial barriers [41–45]. Despite inconsistency in the 
module’s annotation, these differences could be due to the 
way that genes were obtained for the analysis. While the 
previous works explored the GO using the differentially 
expressed genes, in the present study, the analyzed genes 
were obtained from correlation networks. Particularly, 
genes were selected as those with a higher node degree in 
each module (i.e., genes highly correlated with genes of the 
same module). These results could indicate the existence of 
crossover effects that could have been hidden by the clas-
sical analysis and revealed for the first time. In this sense, 
it has been reported the modulation of the extracellular 
matrix into the immune cell function [46] and how the 
composition of the extracellular matrix undergoes changes 
during infections [47]. Regarding the nucleic acid binding 
pathways obtained, previous studies have shown that nu-
cleic acid binding proteins are associated with poor prog-
nosis in septic patients [48] and are required for interferon 
production in response to viral infection [49]. Moreover, 
bacterial and viral nucleic acids can act as inductors of in-
flammation [50]. Thus, the present routes reported in this 
work have received less attention than other pathways in 
the infection processes and can offer a new research line in 
the pathophysiology of sepsis. 

In this study, WGCNA was used with a bootstrapping 
procedure to analyze, in a robust way, those genes with 
higher node degree for each cluster from differential net-
works. Genes IGLV5-48, COLEC10, MICU2, NDNF, and 
ST7-OT4 presented the most node degree for septic shock. 
IGLV5-48 encodes for immunoglobulin lambda variable 5-

48, involved in the immune response; however, its function 
and molecular mechanism are not clear [51]. In addition, 
the gene expression of members of the IGLV family were 
upregulated in patients with cardiogenic shock and septic 
shock [45]. COLEC10 encodes for a protein C-lectin family 
member, collectin subfamily member, with one of its func-
tions being binding to antigens on microorganisms facili-
tating their recognition and removal. It has been reported 
that vascular endothelial cells have receptors for collectins 
[52]. As a result, these cells play a major role in the systemic 
response to bacterial infections [53]. In addition, the pro-
tein encoded by this gene activates the complement system 
[54]. MICU2 encodes for a transporter protein called mito-
chondrial calcium uptake 2. It has been reported its upreg-
ulated expression in cells in vitro after infection with Sal-
monella enterica Serovar Typhimurium [55]. 

Further, mitochondrial calcium uptake 2 plays an im-
portant role in the regulation of the Pseudomonas aeru-
ginosa-dependent inflammatory response [56]. This pro-
tein has been associated with the induction of autophagy 
and apoptotic cell death in endothelial cells in response to 
oxygen-glucose deprivation [57]. NDNF encodes for neu-
ron derived neurotrophic factor, which is secreted in cul-
tured endothelial cells stimulated by hypoxia, promotes 
endothelial cell survival and vessel formation, and plays 
an important role in the process of revascularization [58]. 
ST7-OT4 encodes for a long non-coding RNA whose ex-
pression is upregulated in cardiac CCR2- macrophages 
[59]. Altogether, the node genes fit with the pathophysiol-
ogy of sepsis, where this condition is defined as organ dys-
function caused by a host response to infection [1]. In this 
sense, the endothelial cells play a central role in the sys-
temic response to bacterial infection, leading to multiorgan 
failure syndrome [53,60]. Moreover, these node genes are 
involved in the immune system, which is consistent with 
the key role of this system in sepsis and with previous 

TABLE 3 
GENES WITH THE HIGHEST NODE DEGREE IN THE DIFFERENTIAL NETWORK 

Septic shock Non-septic shock 

Purple Green Blue Gray Orange  Purple Green Blue 

IGLV5-48 COLEC10 MICU2 NDNF ST7-OT4  FLJ36000 AGGF1 A_33_P38755

70 

HSPG2 KATNBL1P6 CCAR1 APOL5 ETNK2  TNXB PRRT1 C7orf65 

SAMD11 WBP2NL USP1 IGF2BP1 SCN10A  ZBTB3 A_33_P32894

56 

A_33_P32782

11 

A_33_P32093

21 

FAM154B RDH14 A_33_P33807

83 

A_33_P33120

34 

 FBXL17 A_33_P33760

26 

SLC18A1 

GPR25 TMEM207 GOPC A_33_P33752

99 

CCT7P2  A_33_P32226

64 

A_33_P33008

77 

SP5 

CDKN2A A_33_P35553

68 

TDG IL26 GPX8  ATP6V1G2 RIMBP2 A_33_P34203

47 

SLC22A11 ADH1B ATF1 TMCO5B LGALS14  A_24_P17072

6 

TEAD1 A_33_P33832

92 

CELA2B A_33_P32230

59 

ZNF721 A_33_P32666

09 

RGS13  A_33_P33068

02 

AAK1 CCDC40 

MUC3A TTPA FNTA ACTRT2 NUTM1  BCL2L15 A_33_P37130

35 

AK127999 / 

KCNIP4 

TNFRSF14 BSN A_32_P45493 A_33_P33922

13 

PM20D1  CEP104 CHD1L DEFB136 
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studies that suggest that this condition is accompanied by 
overall immune dysregulation [10,61–63]. Regarding pa-
tients with non-septic shock, the most node degree genes 
for the purple and green modules were FLJ36000 and 
AGGF1. In the case of the blue module, the most degree 
gene corresponded with an uncharacterized DNA se-
quence. FLJ36000 is a lncRNA, while AGGF1 encodes an 
angiogenic factor that acts as an anti-inflammatory factor 
by suppressing endothelial activation responses to TNF-α 
[64]. On the other hand, a brief description of the role of 
the top 10 genes of each cluster is described in Table S1 
(Supplementary Material). Overall, these results can help 
to identify new gene signatures that help to understand the 
pathophysiology of septic shock and non-septic shock. 
However, the 10 genes with the highest node degree for 
each cluster from these non-shared networks were ana-
lyzed, aiming at finding their relation to septic shock and 
non-septic shock. As shown in Table S1, these genes main-
tained the relationship with each condition. While septic 
shock genes are mostly involved in inflammatory pro-
cesses, the immune system, and endothelial cells, the non-
septic shock genes are mainly related to endothelial cells. 

This work presents limitations that we must 
acknowledge. First, no distinction of different subgroups 
within non-septic shock was made. This would allow an 
even more specific study of the patterns within this heter-
ogeneous group. However, due to the sample size of the 
database, this would also reduce the statistical power of 
studying each group separately. Second, it is a single-cen-
ter study; therefore, a multi-center study would provide 
possible inter-hospital variation, providing more robust-
ness to the results. Third, a compatible database with char-
acteristics similar to the one reported here was not found. 
This would have made it possible to validate the results, 
which would help to reinforce their robustness. However, 
for that reason, a bootstrap-based approach with 100 itera-
tions was used. Since each iteration produces different net-
works, the results found here are more robust and gener-
alizable than with a classical approach. The last limitation 
is about the nature of the samples, where the peripheral 
blood provides the gene expression patterns of white 
blood cells and offers mainly an insight into immune path-
ways. Thus, future works should keep in mind the kind of 
shock to analyze the relationship with its specific gene ex-
pression patterns and analyze its mRNA level in the endo-
thelial cells, which appear to be the target tissue for these 
conditions. 

5 CONCLUSIONS 

The present study identified novel genetic modules 
from correlation networks associated with septic shock 
and non-septic shock in post-surgical patients using gene 
co-expression network analysis. This was achieved by us-
ing a novel procedure that combines correlation network, 
differential networks, and a bootstrap procedure to in-
crease the robustness of the results. Of each module, the 
most representative genes in septic shock were mainly re-
lated to the immune system and endothelial cells, while 
genes encoding aspects related to endothelial cells were 

the most representative for non-septic shock. This novel 
way of selecting the most relevant genes could provide 
new pathways that might have remained hidden until 
now. Therefore, these results offer a new insight into pa-
tients with shock with the aim of promoting the identifica-
tion of critical pathways and providing new treatment 
strategies in future clinical studies. 
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