
  


 

Abstract— Previous studies have suggested that the typical 

slow oscillations (SO) characteristics during sleep could be 

modified in the presence of pediatric obstructive sleep apnea 

(OSA). Here, we evaluate whether these modifications are 

significant and if they may reflect cognitive deficits. We recorded 

the overnight electroencephalogram (EEG) of 294 pediatric 

subjects (5-9 years old) using eight channels. Then, we divided 

the cohort in three OSA severity groups (no OSA, mild, and 

moderate/severe) to characterize the corresponding SO using the 

spectral maximum in the slow wave sleep (SWS) band  0.1-2 

Hz (MaxSO), as well as the frequency where this maximum is 

located (FreqMaxSO). Spectral entropy (SpecEn) from  was also 

included in the analyses. A correlation analysis was performed 

to evaluate associations of these spectral measures with six OSA-

related clinical variables and six cognitive scores. Our results 

indicate that MaxSO could be used as a moderate/severe OSA 

biomarker while providing useful information regarding verbal 

and visuo-spatial impairments, and that FreqMaxSO emerges as 

an even more robust indicator of visuospatial function. In 

addition, we uncovered novel insights regarding the ability of 

SpecEn in 1 to characterize OSA-related disruption of sleep 

homeostasis. Our findings suggest that the information from SO 

may be useful to automatically characterize moderate/severe 

pediatric OSA and its cognitive consequences. 

Clinical Relevance— This study contributes towards reaching 

an objective, quantifiable, and automated assessment of the 

potential cognitive consequences of pediatric sleep apnea. 

I. INTRODUCTION 

Pediatric obstructive sleep apnea (OSA) leads to overnight 
events of total or partial cessation of respiratory flow in the 
presence of ongoing respiratory efforts, also termed as apnea 
and hypopnea events, respectively [1]. OSA is a highly 
prevalent disease affecting up to 5% of children [2], and the 
increased risk of cardiovascular dysfunction, cognitive 
deficits, and behavioral problems are among its most frequent 
morbid consequences [2]. Particularly, cognitive deficits and 
decreased academic performance have been frequently 
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reported, with stronger associations being detected as OSA 
severity increases [2]–[4]. However, there is no viable clinical 
procedure allowing for routine evaluation of OSA-related 
cognitive deficits, even though studies have reported 
reversibility of such deficits if OSA is timely treated [5]. 

Recent works have focused on analyzing overnight 
electroencephalography (EEG) to evaluate possible effects of 
OSA and to detect biomarkers for cognitive dysfunction [6]–
[10]. Specifically, alterations in slow wave sleep (SWS) 
activity, measured as the spectral power in the delta frequency 

band (: 0.1-4 Hz.), has been proposed as reflecting impaired 
verbal performance and executive functioning [9], [10]. In our 
latest study on this topic, however, we found that irregularity 

of low  (1: 0.1-2 Hz.), measured using the spectral entropy 
(SpecEn), showed stronger relationships with verbal tests 
(Peabody picture vocabulary test, PPVT3; and expressive 

vocabulary test, EVT) than  activity [8]. We suggested that 
this higher characterization ability of SpecEn compared to 
conventional power (or activity) analysis relied in part on the 
modifications that we observed in the normal pattern of the 
slow oscillation (SO) [8]. SO, as the main component of SWS, 
is typically located around 0.75 Hz and within 0.55–0.95 Hz 
[11]. We found that this behavior was altered in the presence 
of pediatric OSA, which gradually showed lower SO 
frequencies as illness severity increased [8]. We also observed 
a progressive increase in the SO spectral maximum, leading 
these concurrent findings to a gradual spectral concentration 

that explained the SpecEn ability to characterize the 1 
spectrum [8]. Despite these observations, their associations 
with cognitive and sleep-related variables or with statistical 
analysis on SO features were not conducted. 

In this study, our main goal was to evaluate whether the 
maximum of SO in the spectrum (MaxSO) and its 
corresponding frequency (FreqMaxSO) can characterize 
typical OSA-related variables obtained during the nightm, as 
well as cognitive deficits in affected children. We also add 

SpecEn in 1 to the analyses for direct comparison with already 
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published metrics on the topic, and to further elucidate its 
behavior. We hypothesized that the information contained in 
these EEG SWS-related features would be associated with 
both the phenotypic expression of OSA and with negative 
cognitive effects. Accordingly, we explored these features 
across three different OSA severity categories (no OSA, mild 
OSA, and moderate/severe OSA) and evaluated their 
association with six clinical measures obtained during 
polysomnography (PSG), the standard overnight diagnostic 
test, and with six cognitive test results obtained during testing 
in the morning immediately after PSG. 

II. MATERIALS 

A. Subjects and signals 

This study involved 294 nonreferral children (5-9 years 
old). All the children were recruited after obtaining an 
informed consent from their parents or legal caregivers. The 
protocol was approved by the Ethics Committee of the 
University of Chicago (#09-115-B). OSA diagnosis was 
conducted through a PSG test while adhering to the technical 
and clinical recommendations of the American Academy of 
Sleep Medicine [12], [13]. Accordingly, the apnea-hypopnea 
index (AHI) was used to establish an OSA diagnosis and its 
severity. AHI common cutoffs were used to classify the 
children in three severity subgroups: no OSA (AHI < 1 
event/hour, 176 subjects), mild OSA (1 e/h ≤ AHI < 5 e/h, 98 
subjects), and moderate/severe OSA (5 e/h ≤ AHI, 20 
subjects). Table 1 shows the sociodemographic and clinical 
characteristics of these children. No significant differences 
were found among the three subgroups in age (p-value > 0.05 
Mann-Whitney U test) or sex (p-value > 0.05 Fisher exact 
test). Significant differences were found in standardized body 
mass index (BMIz) between no OSA and moderate/to severe 
OSA groups and, as expected, in AHI between all groups. 

Eight EEG channels referenced to mastoids were recorded 
during PSG following the 10-20 international system: F3, F4, 
C3, C4, O1, O2, T3, and T4, acquired at a sample rate of 200 
Hz [12], [14]. A four-step methodology was used as pre-
processing stage: i) re-referencing to the common average of 
the 8 channels; ii) band-pass filtering between 0.1 and 70 Hz 
(Hamming window) and stop-band filtering at 60 Hz (both 
were finite impulse response filters); iii) an automatic rejection 
of artifacts following an epoch-adaptive thresholding approach 
[8], [15]; and iv) rejection of the first and last 15 minutes 
periods of the EEG to eliminate initial and final awake states.  

B. Cognitive and polysomnographic variables 

We used six common PSG-related variables to explore the 
information obtained from the EEG: AHI, respiratory arousal 
index (RA, i.e. number of arousals per hour of sleep caused by 
abnormal respiratory events), spontaneous arousals index (SA, 
i.e. number of arousals per hour of sleep whose occurrence is 
part of the normal sleep physiological process), minimum 
oxygen saturation value (MinSpO2, which is associated to 
desaturations due to apneic events), sleep efficiency (SleepEff, 
i.e. percentage of minutes spent asleep relative to the total 
minutes in bed), and sleep pressure score (SPS). This latter 
variable estimates the degree of sleep disruption in children by 
computing the proportion of RA relative to all arousals, 
multiplied by the proportion of all arousals except SA relative 
to all arousals [16]. 

Six neurocognitive tests were used to evaluate the 
association between the EEG information and possible OSA-
related cognitive impairments: Differential ability scales 
(DAS), in its composite form, to measure the ‘general 
conceptual ability’ [2]; the PPVT3, the EVT, and the NEPSY 
(for NEuroPSYchological) Phonological Processing (PhPro) 
to assess the performance in three complementary domains of 
language, namely receptive, expressive, and phonological 
processing, respectively; and, finally, the NEPSY Design 
Copy test (DesCop) to assess visual-spatial processing, and the 
NEPSY Tower test (Tow) to assess executive functions [2], 
[8]. All these cognitive scores have already shown decreasing 
tendencies as pediatric OSA severity increases [8]. 

III. METHODS 

A.  EEG spectral characterization 

The Blackman-Tukey technique was used to compute the 
power spectral density (PSD) of the eight EEG channels from 
all the children under study. A 6,000-sample length (30 
seconds) non-overlapping window was used for this purpose. 
The PSDs from each channel were normalized (PSDn) by 
dividing their amplitude values by the corresponding total 
power. Then, SpecEn, MaxSO, and FreqMaxSO were obtained 

from 1 band (0.1-2 Hz). MaxSO was simply computed as the 
maximum value in this band, and FreqMaxSO as the frequency 
at which this maximum is located. SpecEn is the application of 

the normalized Shannon’s entropy equation to the PSDn in 1. 
Further PSD normalization was required to assimilate the 

spectrum in 1 to a probability density function, as required by 
Shannon’s equation. Then, it was computed as follows [17]: 

𝑆𝑝𝑒𝑐𝐸𝑛 = −
1

log 𝑁
∑ 𝑃𝑆𝐷𝑛(𝑓) ∙ log(𝑃𝑆𝐷𝑛(𝑓)),           (1)

2 𝐻𝑧

𝑓=0.1 𝐻𝑧
 

where N is the number of frequency bins in the range 0.1-2 Hz. 
SpecEn values closer to 0 represent less spectral components 
and, consequently, more spectral concentration and regularity 
in time domain. In contrast, values closer to 1 represent a more 
equally distributed spectrum among frequencies, i.e., a more 
irregular signal in time domain [17]. 

B. Statistical analysis 

As the EEG spectral features did not pass the Lilliefors 
normality test, the non-parametrical Mann-Whitney U test was 
used to evaluate statistically significant differences (p-value < 
0.05) between the three OSA severity groups. Similarly, a 

TABLE I.  SOCIODEMOGRAPHIC AND CLINCAL DATA (MEDIAN AND 

INTERQUARTILE RANGE) 

 no OSA 
mild  

OSA 

mod/sev 

 OSA 

p-value 

<0.05 

#subjects 176 98 20 - 

Age (y) 
6.92  

(6.50, 7.42) 

6.92  

(6.50, 7.42) 

6.81  

(6.37, 7.29) 
n.s. 

Sex (M/F) 104/72 55/43 10/10 n.s. 

BMIz 
0.65 

(-0.11, 1.47) 

0.76 

(-0.14, 2.04) 

1.70 

(-0.08, 2.24) 
a 

AHI (e/h) 
0.40 
(0.10, 0.60) 

1.50 
(1.20, 2.20) 

9.20 
(7.30, 17.20) 

all 

BMIz: standardized body mass index; AHI: apnea-hypopnea index; 
M/F: male/female; n.s.: no significant; a: no OSA vs. 

moderate/severe OSA comparison 
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partial correlation analysis was conducted between the spectral 
features and the PSG-derived variables and cognitive scores. 
This analysis was conducted per each OSA severity group by 

adjusting the Spearman’s correlation () by age, sex, and wake 
time after sleep onset (WASO). To compensate for possible 
bias due to the different size of each group, a bootstrap 
procedure was used to estimate the correlations. Accordingly, 
for every OSA severity level, 1,000 bootstrap samples were 
built with 20 subjects each, which were selected with 
replacement from the original group. Partial correlations 
between the EEG spectral features and the PSG and cognitive 
variables were obtained for each bootstrap sample, and the 
median of the 1,000 values was considered as the correlation 
estimation. Only absolute correlations above 0.30 are shown 
in the results [18]. 

IV. RESULTS 

A. SO differences in OSA severity degrees 

Fig. 1a shows the topographical maps of the three EEG 
spectral features in the three OSA severity groups (mean 
values). Decreasing tendencies can be observed in SpecEn and 
FreqMaxSO. Conversely, MaxSO increases with OSA severity. 
Fig. 1b displays the p-values in logarithmic scale reached in 
each channel for each feature in the three possible 
comparisons: no OSA vs. mild OSA, mild vs. moderate/severe, 
and no OSA vs. moderate/severe. No differences are observed 
between no OSA and mild groups in any feature. Moreover, 

only MaxSO shows significant differences when comparing 
mild with moderate/severe (channels T3, T4, and F4). SpecEn 
only reaches significant differences in F3 when comparing no 
OSA with moderate/severe, whereas FreqMaxSO shows p-
values below 0.05 in all channels but F3. Finally, MaxSO 
reaches significant differences in all the EEG channels in this 
same comparison. 

B. Correlation matrix 

Fig. 2 shows the partial correlations (age, sex, and WASO 

adjusted) between the spectral features in each EEG channel, 

the PSG-related variables, and the cognitive scores for each 

OSA severity group. No absolute correlations above 0.30 

were reached in no OSAS (Fig. 2a) and only SpecEn in some 

channels surpassed this threshold for RA and, especially, SPS, 

in mild OSAS (Fig. 2b). In contrast, the three spectral features 

reached multiple absolute correlations above 0.30 in 

moderate/severe OSA. Interestingly, the three of them appear 

to be associated with RA and AHI in this group. In addition, 

SpecEn also shows relationships with SA and SPS. None of 

the spectral features showed associations with MinSpO2, and 

only FreqMaxSO showed some marginal relationships with 

SleepEff.  

In this moderate/severe group, SpecEn and MaxSO reached 

multiple significant associations with the cognitive scores. 

          
     

        a)                              b) 

Figure 1. a) Tendency of the EEG spectral features among the 3 OSA severity degrees and b) pairwise statistically significant differences between them. 

                      
 

a)                   b)                 c) 

Figure 2. Partial correlation between the EEG spectral features in each channel and the PSG and cognitive variables in a) no OSA, b) mild OSA, and c) 

moderate/severe OSA. Blue/Red color are negative/positive  higher than 0.30 in absolute values. Otherwise, the color is white.  
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This way, SpecEn reached the highest correlations with the 

DAS test (3 channels in correlations within 0.34/0.41), which 

is intended for general cognitive assessment. It also showed 

strong associations with EVT (7 channels within 0.32/0.55) 

and, especially, PPVT3 (8 channels within 0.54/0.74). 

Moreover, MaxSO also showed robust associations with 

PPVT3 (8 channels within -0.36/-0.51), EVT (8 channels 

within -0.33/-0.47), and DesCop (6 channels within -0.36/-

0.50). Finally, FreqMaxSO also showed significant 

associations with DesCop (5 channels within 0.38/0.63). 

V. DISCUSSION AND CONCLUSIONS 

In this study, we have expanded on our investigation of the 

potential associations between the SO information in pediatric 

OSA and its cognitive consequences. SpecEn in 1 behaved in 

a similar way than in our previous work [8], showing 

meaningful associations in moderate/severe children with 

respiratory and spontaneous arousals, as well as with PPVT3 

and EVT. An interesting novelty is that SpecEn also reached 

significant negative correlations with SPS in both mild and 

moderate/severe groups, thereby indicating that the lower 

SpecEn (lower irregularity) the higher the sleep homeostasis 

disruption. This suggests that SWS irregularity may account 

not only for RA and SA but also for any form of arousal, while 

highlighting SpecEn usefulness as an automatic way to 

measure disturbed sleep [16]. 

MaxSO and FreqMaxSO showed significant differences 

between no OSA and moderate/severe groups. Additionally, 

MaxSO also reached significant differences when comparing 

mild and moderate/severe children, thus suggesting that these 

measures may be particularly useful EEG-based biomarkers 

for moderate/severe pediatric OSA. This would be supported 

by the posotive correlations between MaxSO and AHI in this 

cohort. Although the 3 spectral features showed meaningful 

correlations with AHI, MaxSO was the only one whose 

relationships appear to go beyond those involving arousals, as 

highlighted by higher correlations with AHI than with RA or 

SA in several channels. Moreover, MaxSO reached negative 

correlations below -0.30 in all cognitive scores but DAS, with 

PPVT3, EVT, and DesCop showing these associations in 6 

channels or more. This suggests its usefulness to evaluate 

verbal and visuo-spatial impairments in moderate/severe 

children. Nonetheless, FreqMaxSO seems to be more specific 

for visuo-spatial processing assessments. 

Despite these interesting results, some limitations need to 

be addressed. First, although the sample size is large, the 

number of moderate/severe subjects is relatively low 

compared to the other groups. We have minimized this issue 

using a bootstrap procedure to obtain the correlation matrices. 

However, further assessment on moderate/severe subjects 

would be desirable to generalize our findings. Similarly, the 

age of the subjects under study is within 5-9 years, which 

suggests the need for future analyses on other pediatric 

ranges. In addition, the median AHI of our mild group (1.5 

e/h) is very close to the range of AHI values that defines the 

no OSA group (AHI < 1 e/h), which may be contributing to 

hide some differences between these groups. Another import 

feature that deserves comment relates to the fact that these 

were community children and not a clinical referral cohort, 

the latter traditionally exhibiting more severe symptoms and 

OSA.  

In summary, we have shown that the maximum of the 

spectrum in the range 0.1-2 Hz (1) may be used as an OSA 

biomarker, while also providing useful information regarding 

verbal and visuo-spatial processing. Similarly, the decrease in 

the frequency where this maximum is located is specifically 

related to a decrease in visuo-spatial processing. Finally, we 

have shown that the EEG irregularity associated to1 could 

be used as an estimator of sleep fragmentation due to pediatric 

OSA. Our results suggest that the information from SWS and 

SO are useful to automatically characterize moderate/severe 

pediatric OSA and its cognitive consequences. 
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