

XL Congreso Anual de la S o c i e d a d Española de Ingeniería Biomédica

40 AÑOS UNIENDO FUERZAS PARA IMPULSAR LA INGENIERÍA BIOMÉDICA

23–25 NOVIEMBRE 2022 | VALLADOLID

LIBRO DE ACTAS

XL Congreso Anual de la Sociedad Española de Ingeniería Biomédica

23-25 NOVIEMBRE 2022 | VALLADOLID

XL Congreso Anual de la Sociedad Española de Ingeniería Biomédica CASEIB 2022

Los trabajos incluidos en esta publicación han sido evaluados por el Comité Científico que en ella se relaciona y según el procedimiento que se recoge en *www.caseib.es/2022/*

Presidente del Comité Organizador:

Roberto Hornero Sánchez

Secretarios del Comité Organizador:

Jesús Poza Crespo Carlos Gómez Peña

Editores:

Roberto Hornero Sánchez Jesús Poza Crespo Carlos Gómez Peña María García Gadañón

Maquetación:

Aarón Maturana Candelas Carlos Gómez Peña

Diseño de portada:

Sandra Martínez Cagigal Víctor Martínez Cagigal

ISBN: 978-84-09-45972-8

Libro de Actas del XL Congreso Anual de la Sociedad Española de Ingeniería Biomédica Se distribuye bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. XL Congreso Anual de la Sociedad Española de Ingeniería Biomédica. 23-25 Nov, 2022

Viernes, 25 de noviembre de 2022, a las 8:30

Sesión oral: Sistemas de Ayuda a la Decisión

Moderadores: Begoña Acha Piñero y Fernando Vaquerizo Villar

Modelo de Deep Learning basado en redes convolucionales 1D para el diagnóstico de la apnea del sueño mediante señales respiratorias
Clasificación explicada de las lesiones pigmentadas mediante la detección de los patrones dermatoscópicos de carcinoma
Diseño de un clasificador interpretable de ruido clínico en ECG de monitorización prolongada mediante autoencoders
Análisis de factores de riesgo y predicción de enfermedades crónicas usando métodos de aprendizaje automático
Combinación de redes neuronales convolucionales y recurrentes para la detección de la apnea obstructiva del sueño en niños empleando las señales de flujo aéreo y oximetría
Clasificación de ruido clínico en ECG de monitorización prolongada mediante máquinas de vectores soporte

Sesión oral: Señales Biomédicas III

Moderadores: José Joaquín Rieta y Raúl Alcaraz Martínez

Simulación de señales ECG incluyendo dinámica del intervalo PQ con el ritmo cardiaco y ruido muscular variante en el tiempo	436
Simulación de los efectos de fármacos antiarrítmicos en la electrofisiología auricular	440
Detección automática de complejos QRS en pacientes con actividad eléctrica sin pulso durante la parada cardiorrespiratoria	444
Caracterización de los Cambios en las Medidas de la HRV durante Episodios de Apnea del Sueño	448
Métodos de filtrado adaptativo para la restauración de la forma de onda del ECG durante la reanimación cardiopulmonar	452
Análisis de la variabilidad del ritmo cardíaco durante la realización de apneas controladas en sujetos sanos	456

Sistemas de Ayuda a la Decisión

Viernes, 25 de noviembre de 2022

Combinación de redes neuronales convolucionales y recurrentes para la detección de la apnea obstructiva del sueño en niños empleando las señales de flujo aéreo y oximetría

J. Jiménez García^{1,2}, G.C. Gutiérrez Tobal^{1,2}, M. García Gadañón^{1,2}, F. Vaquerizo Villar^{1,2}, D. Álvarez González^{1,2,3}, F. del Campo³, L. Kheirandish-Gozal⁴, D. Gozal⁴, R. Hornero Sánchez^{1,2}

¹ Grupo de Ingeniería Biomédica, Universidad de Valladolid, Valladolid, España, jorge.jimenez@gib.tel.uva.es

² Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Valladolid, España

³ Servicio de Neumología, Hospital Universitario Río Hortega, Valladolid, España, fsas@telefonica.net

⁴ Dept. of Medical Pharmacology and Physiology, The University of Missouri School of Medicine, Columbia, Missouri, EEUU, gozald@health.missouri.edu

Resumen

El objetivo de este estudio fue evaluar la capacidad diagnóstica de un algoritmo de deep learning basado en la combinación de redes neuronales convolucionales y recurrentes para detectar la apnea obstructiva del sueño (AOS) en niños. Como fuentes de información se emplearon los registros nocturnos de flujo aéreo y oximetría, que se utilizaron para entrenar y validar un modelo de deep learning orientado a la estimación de la severidad de la AOS. La arquitectura del modelo está formada por sucesivas capas convolucionales, finalizado por una capa recurrente de tipo Gated Recurrent Unit (GRU). Se ha empleado una base de datos con 1.638 sujetos pediátricos repartidos aleatoriamente en conjuntos de entrenamiento, validación y test. El modelo de deep learning alcanzó una precisión del 73,20% en el conjunto de test al clasificar a los pacientes en los 4 niveles de severidad de la AOS. En los umbrales de severidad de 1, 5 y 10 eventos/hora se lograron precisiones del 86,27%, 93,46% y 93,14%, respectivamente. Estos resultados son superiores a los logrados en la literatura, mejorando también los alcanzados previamente empleando únicamente una arquitectura basada en una red neuronal convolucional. Como conclusión, la combinación de las arquitecturas convolucionales y recurrentes contribuyó a mejorar la detección de la AOS.

1. Motivación

La apnea obstructiva del sueño (AOS) es un trastorno respiratorio que se caracteriza por interrupciones totales o parciales de la respiración (apneas/hipopneas) durante el sueño [1]. En el caso de la población infantil, la AOS afecta a nivel global a entre el 1% y el 5% de los niños, y puede provocar déficits neurocognitivos, diversos problemas conductuales y trastornos en el crecimiento y el desarrollo [1]. Para diagnosticarla, el método estándar de diagnóstico es la polisomnografía nocturna (PSG), que incluye el registro de señales neuromusculares y cardiorrespiratorias, entre otras. El índice de apnea-hipopnea (IAH) obtenido de la PSG es la tasa de eventos de apnea e hipopnea por hora de sueño (e/h), y se emplea comúnmente para determinar la severidad de la AOS [1]. Sin embargo, las limitaciones de la PSG (elevado coste y complejidad, incomodidad para los niños, baja disponibilidad de unidades del sueño especializadas) ha motivado la búsqueda de alternativas más sencillas [2]. Entre ellas, la reducción del número de señales es la técnica más aceptada en la actualidad para simplificar el diagnóstico de la AOS. Las señales de flujo aéreo (FA) y oximetría (saturación de oxígeno en sangre, SpO₂) forman parte de la PSG, y los eventos de apnea e hipopnea se definen principalmente atendiendo a la información que proporcionan [1]–[3]. Por ello, son dos de las señales más empleadas en las propuestas simplificadas, que lograrían mejorar el acceso al diagnóstico y reducir la complejidad y los costes asociados. Paralelamente, las técnicas de análisis automático han demostrado ser útiles para ayudar en el diagnóstico de la AOS tanto en adultos como en niños, simplificando la labor diagnóstica [4], [5].

Las técnicas de análisis automático de las señales procedentes de la PSG con el objetivo de detectar la AOS se han estudiado ampliamente en adultos. Los paradigmas más recientes se han basado en algoritmos de deep learning (DL), tanto redes neuronales convolucionales (CNN, Convolutional Neural Network) como recurrentes (RNN, Recurrent Neural Network) [6]. Algunas propuestas han abordado la combinación de CNN y RNN (CNN+RNN) para la detección de fases del sueño y eventos de apnea e hipopnea [7], [8]. Sin embargo, los estudios que han empleado técnicas de DL para la detección de la AOS infantil son aún muy limitados [5]. La mayoría de los estudios han analizado las señales de FA y SpO2 combinando técnicas de extracción de características con algoritmos de aprendizaje automático tradicionales [5]. Recientemente se han aplicado algoritmos de DL basados en redes CNN aplicados sobre las señales de FA y SpO2 para el diagnóstico de la AOS infantil [9], [10], pero no se ha abordado la combinación CNN+RNN en este contexto. La red RNN podría añadir a los patrones obtenidos por la CNN información complementaria sobre la recurrencia de los eventos apneicos.

La hipótesis de este estudio es que un algoritmo de DL basado en la combinación CNN+RNN puede ser útil en la detección automática de la AOS en niños empleando las señales de FA y SpO₂. Por tanto, el objetivo de este estudio es entrenar y validar una red CNN+RNN orientada a establecer la presencia y severidad de la AOS mediante la estimación del IAH a partir de las señales de FA y SpO₂.

2. Materiales y métodos

2.1. Sujetos y señales

En este estudio se empleó la base de datos pública del Childhood Adenotonsillectomy Trial (CHAT), proporcionada por el National Sleep Research Resource (https://sleepdata.org/datasets/chat) [11]. Esta base de datos está formada por 1.638 registros de PSG realizados a 1.232 niños entre 5 y 10 años, procedentes de un ensayo aleatorizado con el objetivo de evaluar la eficacia de un tratamiento quirúrgico para la AOS frente a un tratamiento conservador. En este estudio, los sujetos de la base de datos se dividieron de forma aleatoria en conjuntos de entrenamiento (60%), validación (20%) y test (20%) independientes entre sí. Los dos primeros conjuntos se emplearon para entrenar y optimizar el algoritmo de DL, y su rendimiento diagnóstico se evaluó sobre el conjunto de test. En la Tabla 1 se muestran los datos sociodemográficos y clínicos de los sujetos.

Las señales de FA adquiridas mediante un termistor y de SpO₂ procedentes de un sensor de pulsioxímetría fueron extraídas de cada estudio de PSG. Después, se remuestrearon a una tasa común de 4 Hz con los objetivos de reducir la carga computacional del algoritmo y de lograr que ambas señales tuvieran la misma longitud de cara a ser procesadas por la red CNN+RNN de manera conjunta. Las señales de FA se filtraron con un filtro paso-bajo de ventana de Kaiser, con frecuencia de corte 1,5 Hz [10]. Las amplitudes de ambas señales se normalizaron restando su valor medio y dividiendo entre la desviación estándar.

Finalmente, las señales se segmentaron formando secuencias de 30 minutos, que resultaron las más adecuadas para el procesado de la red CNN+RNN. Estas secuencias de larga duración son aptas para poder analizar la distribución temporal de los eventos de apnea/hipopnea, que típicamente se producen en agrupaciones (clústeres) [9], [12]. Las secuencias están divididas en 6 épocas de 5 minutos cada una (300s, 1.200 muestras), una duración que se ha mostrado útil en el pasado para la estimación del IAH en niños empleando una CNN [10]. Por tanto, cada secuencia es una matriz con un formato de 6 épocas × 1200 muestras/época × 2 canales, etiquetada con la cantidad de eventos de apnea y/o hipopnea presentes en la misma (y_i)

	Entrenam.	Validación	Test
Sujetos (n)	1006	326	306
Edad (años)	7 [6; 8]	7 [6; 8]	6,9 [6; 8]
Varones (%)	46,8%	47,9%	43,8%
IMC (kg/m2)	17,4 [15,6; 21,7]	17,1 [15,4; 21,8]	17,6 [15,7; 21,7]
IAH (eventos/h)	2,6 [1,1; 5,9]	2,4 [1,2; 5,8]	2,3 [1,1; 6,2]
IAH<1 (n)	219	69	67
l≤IAH<5 (n)	496	168	148
5≤IAH<10 (n)	160	44	49
IAH≥10 (n)	131	45	42

Tabla 1. Datos sociodemográficos y clínicos de los sujetos.

[10], [13]. De esta forma, el entrenamiento de la arquitectura desarrollada se orientó a realizar una tarea de regresión del número de eventos apneicos.

2.2. Modelo de deep learning

El modelo CNN+RNN propuesto en este estudio está formado por NC sucesiones de capas convolucionales (Conv2D), de normalización (Batch Normalization), activación de tipo Rectified Linear Unit (ReLU), reducción de dimensionalidad (Max Pooling) y regularización (Dropout). Estas 5 capas son bloques que forman parte de una arquitectura CNN propuesta en trabajos anteriores [9], [10], y que en este estudio están orientadas al aprendizaje de características abstractas que se emplean en las capas recurrentes [8]. En la Figura 1 se muestra un esquema general del modelo de CNN+RNN propuesto. En las capas convolucionales se implementó un número de filtros 2D (NF) en cada capa, cada uno de ellos de un tamaño 9x2. De acuerdo con estudios previos, se fijaron un max pooling 2D de 2x1 y una tasa de dropout p=0,1 [10]. Después de los bloques CNN se implementó una capa de tipo Global Average Pooling (GAP), que reduce la dimensionalidad calculando el promedio de cada uno de los NF canales de salida [7]. Todas las capas descritas anteriormente están albergadas dentro de capas de tipo Time Distributed (TD) que procesan los datos de cada época de la secuencia individualmente (Figura 1). De esta forma, una arquitectura de sucesivas capas TD conserva el formato de secuencia de los datos a medida que se procesan en las capas de la CNN. Una capa de Dropout Gaussiano (p=0,3) aplica ruido gaussiano a las características aprendidas durante el entrenamiento para reducir el sobreajuste [7]. La última capa del modelo propuesto es una RNN formada por unidades de tipo Gated Recurrent Unit (GRU) bidireccional con una dimensión NG, que procesa las secuencias de características aprendidas en ambos sentidos para predecir el número de eventos de apnea/hipopnea

Figura 1. Esquema de la arquitectura CNN+RNN empleada.

presentes mediante regresión (\hat{y}_l) [13]. Se evaluaron distintos valores de los hiperparámetros *NC*, *NF* y *NG* del modelo CNN+RNN con el objetivo de maximizar el rendimiento diagnóstico en el conjunto de validación.

La arquitectura CNN+RNN se implementó empleando las librerías *Keras* y *Tensorflow*. El algoritmo de optimización Adam empleado durante entrenamiento de la arquitectura CNN+RNN se orientó a minimizar el error empleando la función de pérdidas de Huber, utilizada con frecuencia en tareas de regresión robusta. Se fijó una tasa de aprendizaje inicial de 0,0001 y un tamaño de bloque de 128 ejemplos.

2.3. Estimación del IAH

Una vez estimado el número de eventos de apnea/hipopnea en cada segmento de 30 minutos, se calculó el IAH del registro nocturno. Para ello se obtuvo el número de eventos estimado en todos los segmentos del registro dividido por su duración en horas ($IAH_{CNN+RNN}$). Esta duración es mayor que el tiempo total de sueño, por lo que este cálculo infraestima el IAH. Para compensar este sesgo, la estimación del IAH final (IAH_{EST}) se obtuvo mediante una regresión lineal [9], [10], fijando en el conjunto de entrenamiento los coeficientes de sesgo (a_0) y pendiente (a_1) de la ecuación:

$$IAH_{EST} = a_0 + a_1 \cdot IAH_{CNN+RNN} \tag{1}$$

2.4. Análisis estadístico

La concordancia entre el IAH estimado y el IAH real de cada registro se evaluó mediante el coeficiente de correlación intraclase (ICC, *Intraclass Correlation Coefficient*). El rendimiento diagnóstico del modelo CNN+RNN se evaluó en los umbrales del IAH habituales en niños (1, 5 y 10 e/h para AOS leve, moderado y severo, respectivamente), empleando la matriz de confusión y la precisión de 4 clases (Acc_4), así como la precisión (Acc), la sensibilidad (*Se*), la especificidad (*Sp*) y los valores predictivos positivo y negativo (*VPP* y *VPN*, respectivamente) para la clasificación binaria.

3. Resultados

Los valores óptimos de los hiperparámetros fueron NC=7, NF=64 y NG=16. Valores más altos de estos hiperparámetros no mejoraron el rendimiento diagnóstico en el conjunto de validación, a la vez que incrementaron el sobreajuste del modelo a los datos de entrenamiento. En la Figura 2 se muestra el gráfico de Bland-Altman correspondiente a la estimación del IAH mediante el modelo CNN+RNN frente al IAH real. La arquitectura CNN+RNN tiene una ligera tendencia a infraestimar el IAH de los sujetos (-0,2271 e/h de media), mientras que el ICC=0,9354 muestra una elevada concordancia. La Figura 3 muestra la matriz de confusión obtenida en la clasificación en los 4 niveles de severidad. La Tabla 2 muestra los resultados de clasificación binaria en los tres umbrales habituales del IAH alcanzados en el conjunto de test. Se logró una Acc₄=73,20%, con 42 casos (13,73%) en los que se infraestimó el nivel de severidad frente a 40 (13,07%) en los que se asignó una severidad mayor.

4. Discusión y conclusiones

En este estudio se ha desarrollado y evaluado un modelo de DL basado en una arquitectura combinada CNN+RNN para estimar la severidad de la AOS en niños empleando las señales de FA y SpO₂. Para ello, se ha diseñado, entrenado y validado un modelo que combina capas convolucionales y recurrentes dirigido hacia la estimación del IAH. El algoritmo propuesto logró una elevada concordancia en la predicción del IAH (*ICC*=0,9354), que se trasladó también a una elevada precisión en la estimación del nivel de severidad (*Acc4*=73,20%). Además, la capacidad diagnóstica del modelo CNN+RNN alcanzó niveles de *Acc* superiores al 85% en cada uno de los umbrales, mientras que la *Se* fue superior al 75% en todos

Figura 2. Gráfico de Bland-Altman de la estimación del IAH.

Figura 3. Matriz de confusión del modelo CNN+RNN para la clasificación en 4 clases en el conjunto de test (0: No AOS; 1: AOS leve; 2: AOS moderado; 3: AOS severo).

	Se	Sp	Acc	VPP	VPN
1 e/h	92,89	62,69	86,27	89,88	71,19
5 e/h	83,52	97,67	93,46	93,83	93,33
10 e/h	76,19	95,83	93,14	74,42	96,20

 Tabla 2. Resultados de clasificación binaria del modelo

 CNN+RNN. Valores expresados en porcentaje.

los casos. Por tanto, la arquitectura CNN+RNN logró modelar la información de las señales de FA y SpO2 y analizar su dependencia temporal a lo largo de secuencias de larga duración. Solo dos estudios previos basados en DL aplicaron una arquitectura basada únicamente en CNN para estimar el IAH: a partir de la señal de SpO₂ [9], así como de la combinación FA y SpO₂ [10]. En este sentido, la aplicación de una arquitectura CNN+RNN es una contribución novedosa en el contexto de la ayuda al diagnóstico de la AOS infantil. En comparación con el estudio basado en FA y SpO2 que utilizó la misma base de datos e idéntica partición [10], este trabajo alcanzó una Acc₄ ligeramente superior (73,20% vs. 72,55%) y mejoró la Acc en 1 e/h (86,27% vs. 84,64%) a la vez que logró mayor Se y VPN en todos los umbrales. Este trabajo logró además pares Se-Sp más equilibrados, con Acc similares en 5 y 10 e/h al comparar con el modelo CNN [10]. Por lo tanto, la capacidad diagnóstica del modelo CNN+RNN supera ligeramente a la del modelo CNN.

Otros estudios han analizado las señales de FA y SpO₂ con el objetivo de detectar la AOS empleando métodos clásicos de aprendizaje automático. El análisis *wavelet* de la señal de FA combinado con el índice de desaturación de SpO₂ alcanzó valores de *Acc* entre 77,97% y 90,99% [14]. De manera similar, una metodología basada en la aplicación del *bispectum* sobre la señal de FA logró valores de *Acc* entre 82,16% y 90,15% [15]. Esto indicaría que la capacidad diagnóstica lograda en este estudio supera la mostrada en estudios previos.

Este estudio tiene ciertas limitaciones. En primer lugar, el algoritmo se ha desarrollado y validado en una única base de datos. Sería deseable evaluar la capacidad de generalización de una manera más exhaustiva empleando otras bases de datos de AOS pediátrico. Además, la interpretabilidad del modelo CNN+RNN es muy baja, por lo que sería adecuado aplicar técnicas de *Explainable Artificial Intelligence* para identificar la información de las señales que el modelo emplea específicamente para la detección de la AOS.

En conclusión, una arquitectura de DL basada en CNN+ RNN ha demostrado ser útil en la detección de la AOS infantil empleando señales de FA y SpO₂. El rendimiento diagnóstico superó ligeramente al de estudios previos centrados en CNN. Estos resultados sugieren que el modelo CNN+RNN es capaz de analizar información útil sobre la distribución temporal de las apneas/hipopneas presentes en las señales de FA y SpO₂ para detectar la AOS en niños.

Agradecimientos

Este estudio ha sido financiado por el MCIN/AEI 10.13039/501100011033, FEDER y por NextGeneration EU/PRTR (PID2020-115468RB-I00 PDC2021-120775-I00), por el CIBER-BBN ISCIII-MCIN (CB19/01/00012), Sociedad Española de Neumología y Cirugía Torácica (SEPAR 649/2018) y por la Sociedad Española de Sueño (Beca de Investigación SES 2019). D. Álvarez cuenta con una ayuda Ramón y Cajal (RYC2019-028566-I) del MCIN/AEI y el FSE. J. Jiménez cuenta con un contrato predoctoral de la Universidad de Valladolid.

Referencias

- E. Dehlink *et al.*, "Update on paediatric obstructive sleep apnoea," *J Thorac Dis*, vol. 8, no. 2, pp. 224–235, 2016, doi: 10.3978/j.issn.2072-1439.2015.12.04.
- [2] H.-L. Tan *et al.*, "Overnight Polysomnography versus Respiratory Polygraphy in the Diagnosis of Pediatric Obstructive Sleep Apnea," *Sleep*, vol. 37, no. 2, pp. 255– 260, 2014, doi: 10.5665/sleep.3392.
- [3] R. B. Berry *et al.*, "Rules for Scoring Respiratory Events in Sleep: Update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events," *J. Clin. Sleep Med.*, vol. 8, no. 5, pp. 597–619, Oct. 2012, doi: 10.5664/jcsm.2172.
- [4] F. Mendonca *et al.*, "A Review of Obstructive Sleep Apnea Detection Approaches," *IEEE J. Biomed. Heal. Informatics*, vol. 23, no. 2, pp. 825–837, Mar. 2019, doi: 10.1109/JBHI.2018.2823265.
- [5] G. C. Gutiérrez-Tobal *et al.*, "Reliability of machine learning to diagnose pediatric obstructive sleep apnea: Systematic review and meta-analysis," *Pediatr. Pulmonol.*, vol. 57, no. 8, pp. 1931–1943, Aug. 2022, doi: 10.1002/ppul.25423.
- [6] S. S. Mostafa *et al.*, "A systematic review of detecting sleep apnea using deep learning," *Sensors (Switzerland)*, vol. 19, no. 22, pp. 1–26, 2019, doi: 10.3390/s19224934.
- [7] H. Korkalainen *et al.*, "Accurate Deep Learning-Based Sleep Staging in a Clinical Population with Suspected Obstructive Sleep Apnea," *IEEE J. Biomed. Heal. Informatics*, vol. 24, no. 7, pp. 2073–2081, 2020, doi: 10.1109/JBHI.2019.2951346.
- [8] F. Vaquerizo-Villar et al., "Modelo de deep learning basado en la combinación de redes neuronales convolucionales y recurrentes para clasificar eventos de apnea e hipopnea mediante la señal de oximetría," in XXXIX Congreso Anual de la Sociedad Española de Ingeniería Biomédica, 2021, pp. 63–66.
- [9] F. Vaquerizo-Villar *et al.*, "A Convolutional Neural Network Architecture to Enhance Oximetry Ability to Diagnose Pediatric Obstructive Sleep Apnea," *IEEE J. Biomed. Heal. Informatics*, vol. 25, no. 8, pp. 2906– 2916, Aug. 2021, doi: 10.1109/JBHI.2020.3048901.
- [10] J. Jiménez-García *et al.*, "A 2D convolutional neural network to detect sleep apnea in children using airflow and oximetry," *Comput. Biol. Med.*, vol. 147, no. August, p. 105784, Aug. 2022, doi: 10.1016/j.compbiomed.2022.105784.
- [11] C. L. Marcus *et al.*, "A Randomized Trial of Adenotonsillectomy for Childhood Sleep Apnea," *N. Engl. J. Med.*, vol. 368, no. 25, pp. 2366–2376, 2013, doi: 10.1056/nejmoa1215881.
- [12] R. T. Brouillette *et al.*, "Nocturnal Pulse Oximetry as an Abbreviated Testing Modality for Pediatric Obstructive Sleep Apnea," *Pediatrics*, vol. 105, no. 2, pp. 405–412, Feb. 2000, doi: 10.1542/peds.105.2.405.
- [13] S. Nikkonen *et al.*, "Artificial neural network analysis of the oxygen saturation signal enables accurate diagnostics of sleep apnea," *Sci. Rep.*, vol. 9, no. 1, pp. 1–9, 2019, doi: 10.1038/s41598-019-49330-7.
- [14] V. Barroso-García *et al.*, "Wavelet analysis of overnight airflow to detect obstructive sleep apnea in children," *Sensors*, vol. 21, no. 4, pp. 1–19, 2021, doi: 10.3390/s21041491.
- [15] V. Barroso-García *et al.*, "Bispectral analysis of overnight airflow to improve the pediatric sleep apnea diagnosis," *Comput. Biol. Med.*, vol. 129, no. August 2020, 2021, doi: 10.1016/j.compbiomed.2020.104167.

ÍNDICE DE AUTORES

INDICE DE AUTO	JRES	Bailón, R.	448
		Balastegui García, G.	72
Abad-González, A.	423	Barquero-Pérez, O.	245
Abella, M.	10, 213	Barrenechea Carrasco, M.	345
Abellán Rubio, E.	266	Barros-Tornay, R.	415
Abete, I.	52	Barroso García, V.	39
Acha, B.	18, 415	Bartrés-Faz, D.	521
Aginagalde Lopez, A.	217	Belda Calabuig, A.	142
Aguilar-Aguilar, E.	52	Bernabéu-Wittel, J.	18
Aguilar Paredes, F.	237	Bernal Benítez, C.	506
Aguilar Sabido, C.	486	Berner-Juhos, K.	510
Albaladejo-Belmonte, M.	146, 398	Berrocoso, E.	130
Alberola-López, C.	85, 167	Berruezo, A.	461
Alberola-Rubio, J.	146, 398	Blanco-Velasco, M.	419, 431
Albusac, J.	97	Bocos-Corredor, E.	262
Alcaraz Martínez, R.	365, 394	Bonse, J.	217
Alcon, C.	113	Bragulat Arévalo, M.	369
Aldazabal, J.	249	Buendia Aviles, S.	357
Alfano, F.	274	Bueno, G.	2
Algaba-Vidoy, M.	101	Bueno Zamora, O.	274
Almendral, J.	477	Burgaleta Ledesma, A.	117
Alonso, E.	452	Burgos Llamo, A.	121
Alonso, J. F.	283	Buruaga Lamarain, L.	217
Alonso-Linaje, G.	180		
Alonso, R.	22, 490	Cabal-Rodriguez, R.	11
Alvarez, D.	39, 411, 427, 448	Cabezaolias, C.	258
Alvarez Rodríguez, M.	184, 233	Cabrera-Umpierrez, M. F.	56, 117
Alves-Ferreira, M.	287, 402	Cadena Bontanu, A.	89
Amaro, S.	525	Calvino Arbizu, J.	93 510
André, J. M.	192	Calvo, A. Calvo Manual E	510
Anton-Rodriguez, M.	270	Carvo Manuel, F.	1/1
Aramendi, E.	155, 175, 444, 452	Campos Añón E	243
Araujo Rodriguez, H.	525	Cànaves Llabrés A I	201
Arbeio Lainez, E.	309	Candel Cano. P	473
Arce-Diego, J. L.	409, 494	Candel M I	×73 81
Arco, A.	510	Candela Muries, T	291
AICO, H. Arias Palamaras M. A	310	Cano del Pozo. M.	109
Armañac-Iulián P	505 448	Cano Mavo, P.	105
Armijo Suárez O	448	Cappella, B.	217
$\Delta rnal M I$	+00 	Carneiro, P.	353
Arredondo Waldmeyer M	T 117	Carretero-Calvo, P.	109
Avala Fernández II	345	Casado, E.	68
Aznar, S. D.	81	Castellanos, E.	477
Azorín, J. M.	188, 291, 308, 320	Castells, F.	31, 134, 138, 150
	100, 271, 000, 020	Castillo-Passi, C.	85, 167
Bachiller, A.	283, 299	Castillo Rabazo, J.	266

Castro de la Nuez, P.	93	Ferreira-Santos, D.	163
Castro Fernández, M.	529	Ferrer-Montiel, A.	361
Cattaneo, G.	521	Ferreres García, K.	274
Cenarro, R.	22	Ferrero, J. M.	361, 386
Cenis, J. L.	81	Ferrero, L.	308
Ceruelo Abajo, S.	97, 233	Ferrero, V.	320
Chausa, P.	52, 521	Fico, G.	117
Chmarra, M. K.	517	Fraile Marinero, J. C.	180
Chorro, J.	150	Franco Terriza, L.	60
Chushig-Muzo, D.	423	Fuster Palà, A.	221
Cisnal, A.	180		0.45
Climent, A. M.	245	Gabilondo Cuellar, I.	345
Costa, V.	258, 278, 349	Galarregui, C.	52
Crespo Aguirre, M.	138	Gallardo, C.	406
Cunill Rodríguez, M.	357	Ganoza-Quintana, J. L.	494
-		Garcia-Barrio, N.	121
Dankelman, J.	517	Garcia-Blas, J.	10
de Benavides, J.	490	García-Carmona, R.	262
de Ciurana Gay, J.	201	García-Casado, F. J.	142, 146, 398
de los Reyes Guzmán, A.	97, 184, 233	Garcia-Cazorla, A.	299
del-Ama, A. J.	328	García Fernandez, I.	159
del Campo, F.	39, 427	García-García, P.	465
del Cerro, C. F.	10, 213	Garcia-Lizarribar, A.	113
del Riego Gómez, S.	349	García, M.	14, 427
Delgado Atencio, J. A.	357	García-Molina, A.	52
Desco, M.	10, 213	García-Real, M. I.	10
Díaz-Pernas, F. J.	270	García-Rudolph, A.	52
Diaz Rivas, R.	506	García-Sáez, G.	341, 406
		Garcia Teruel, M.	365
Eimil-Suarez, E.	77	Garcia-Vicente, C.	423
Elena, M.	60	Garnes Camarena, O.	43
Elola, A.	155, 444, 452	Garrido Rubiales, B.	68
Elorza Fernández, D.	377	Gavidia Ceballos, L.	506
Escribano Cano, P.	365	Gil-Agudo, A.	184, 233, 328
Espinosa-Salinas, I.	68	Gil-Castillo, J.	328
Esteban Gata, M. J.	60	Gil, E.	448
	0.41	Gil Simoes, R.	105, 333
Fabregat-Sanjuan, A.	241	Gilete Preciado, V.	64
Falagan, S.	68	Giraldo Giraldo, B. F.	456
Fanjul-Velez, F.	357, 469, 494	Gjerde, JM.	517
Ferencz, A.	510	Goicolea, J. M.	274
Fernandez-Arias, I.	85, 167	Gómez, A.	213
Fernandez-Linsenbarth, I.	283	Gómez, C. 47,	109, 287, 303, 390, 402
Fernandez Moreno, G.	105	Gomez, E. J. 6, 22, 52	, 68, 225, 353, 377, 465,
Fernandez-Poyatos, M.	411	486, 490, 517, 521	
Fernandez-Rodriguez, A.	192	Gomez-García, J. A.	101
Ferre Lopez, D.	456	Gomez-Grande, A.	6, 22, 490

Gómez, J. F.	477	Irarrazaval, P.	85, 167
Gómez-Pilar, J.	163, 287, 402	Isasi, I.	452
Gomis Jimeno, F.	72	Isla-Calvo, A.	469
Gomis Roman, P.	369	Iza, A.	452
Gomis-Tena, J.	35		
González-Alonso, J.	270	Jané, R.	237
González, L.	2	Jara Muriel, M.	266
González Morcillo, C.	97	Jarrín Vera, I.	121
González-Navarro, C. J.	52	Jaureguibeitia, X.	155, 175
González Nuño, F. M.	266, 514	Jiménez Carrizosa, M.	105, 333
González-Ortega, D.	270	Jiménez García, J.	427
Gorrin, N.	274	Jordà Burgos, P.	369
Gozal. D.	39, 163, 411, 427, 448	Juan, J. V.	188
Gracia Laso, D. I.	291	Junquera Godoy, I.	35
Guerrero, A. L.	287, 402	Jutinico Alarcón, A.	89
Guerrero Pérez, M.	64		
Guijarro, E	146.398	Kamarova, K.	390
Guill A	138, 150	Kheirandish-Gozal, L.	39, 427
Guillem M S	245	Kontaxakis, G.	337
Gutiérrez A	406	Kontaxis, S.	448
Gutiérrez-de Pablo I	303	Kotzki, S.	353
Gutiérrez-de Pablo, V	47 287 303 402		
Gutiérrez Delgado M	142	Lafuente Alcázar, B.	253
Gutiérrez Fernández-Cal	$\frac{1+2}{245}$	Laguna, P.	436, 448
Gutiérrez-Tobal G C	30 163 /11 /27 //8	Lamata, P.	274
Gutier Bravo B	<i>39</i> , 10 <i>3</i> , 411, 427, 440 225	Langø, T.	517
Guilez-Blavo, B.	465 517	Lara-Doña, A.	130
Ouzillall-Oalcia, C.	403, 317	Lázaro, J.	448
Hernández-Romero, I.	245	Lazo, M.	415
Hernando, M. E.	52, 68, 341, 406	Ledesma Carbayo, M. J.	274
Herráez, D.	444	Leñero-Bardallo, J. A.	18
Herrera Tirado, V.	97	León, J.	510
Herrera-Valenzuela, D	328	Liberos, A.	159
Herrero, M.	14	Lillo Crespo, M.	72
Hingorani-Jai Prakash, S	361	Liu, V.	209
Holgado-Cuadrado R	419 431	Lizarraga, S.	274
Hornero R 14 27 39	47 125 163 180 196	Llull, L.	525
287 316 324 390 40)2 411 427 448	Lobato Gómez, C.	373, 481
Hoshi H	390	Loidi, A.	386
Huerta Herraiz A	394	López Gálvez, M. I.	14
	574	López López, S.	278
Iáñez, E.	188, 291, 308, 320	Lopez Martinez, M. J.	113
Ibáñez-Molina, A. J.	295	López-Sánchez, N.	361
Idris, A. H.	175	Lopour, B.	209
Iglesias-Parro, S.	295	Lora-Millán, J. S.	312
Imaz Higera, J.	142	Loria-Kohen, V.	52
Iniesta-Chamorro, J. M.	52, 68	Lovisolo, L.	431

Segarra, I.	134, 138	Torres-Fortuny, A.	77
Seiffert, A. P.	6, 22, 490	Torres-Pardo, A.	101
Sereno Moyano, M.	68	Torres-Sánchez, S.	130
Serra, D.	159	Torricelli, D.	101
Serrano, A.	415	Tost, A.	299
Serrano, C.	18, 415	Trenor, B.	461, 477
Shigihara, Y.	390	Tudela Fernández, R.	381
Shrey, D.	209		
Silva, M. J.	353	Unneland, E.	444
Simmross-Wattenberg, F.	85, 167	Urendes Jimenez, E.	349
Simón-Martínez, C.	270	Urteaga, J.	444
Skogvoll, E.	444	Valiente Jaén, S.	245
Soguero-Ruiz, C.	423, 529	Valle Morgado, C.	43
Solà Soler, J.	456	Vállez. N.	2
Solana, J.	521	Vaguerizo Villar, F.	39, 427
Solar Risueño, E. M.	205	Varona Torralvo, M. I.	56
Somolinos-Simón, F. J.	341	Velarde-Reyes, E.	77
Soriano, J.	221	Velasco-Álvarez, F.	192
Sörnmo, L.	436	Velasco, J. I.	6
Soto-Iglesias, D.	461	Velásquez, A.	278
Sou, G.	353	Vélez Diaz, J.	89
Stashuk, D.	43	Vidal, N.	353
		Villa-Muñoz, P.	146, 398
Tachecí, I.	510	Villacorta-Aylagas, P.	85, 167
Talaminos Barroso, A.	93	Villalba-Riquelme, E.	361
Talayero, C.	233	Villar, J.	461
Tapia-Galisteo, J.	341	Villarino Sanz, M.	68
Tello Portillo, J. P.	89	Villasante, A.	113
Tiu, C.	517	W HE	1.7.5
Tobón, C.	498	Wang, H. E.	175
Tola-Arribas, M. A.	109	Ye Lin Y	142
Toledo-Pastrana, T.	415	10 Lini, 1.	112
Tormos, A.	138, 150	Zabala Eguren, A.	217
Tormos, J. M.	521	Zattera, L.	525
Tornero, D.	221	Zubia Aranburu, J.	217
Tornero, J.	188	Zulet, M. A.	52

XL Congreso Anual de la Sociedad Española de Ingeniería Biomédica

