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Sleep apnea is a sleep disorder with a very high prevalence and many health 
consequences. As such it is a major health burden (Benjafield et al., 2019). 
Sleep apnea has been systematically explored only a little more than 40 years 
now (Guilleminault & Dement, 1978). Major impacts of sleep apnea are 
sleepiness and associated risks for accidents (Bonsignore et al., 2021). Major 
health impacts are cardiovascular risk and pathophysiological traits, even if 
this is currently much debated when focusing on the apnea-hypopnea index 
as the measure for sleep apnea severity (Arnaud et al., 2020). Sleep apnea is 
a disorder which is a chronic condition and can be treated successfully.

The disorders of sleep-disordered breathing have largely supported the 
growth of sleep medicine in general from a small specialty field to a major 
spectrum of disorders in the arena of medical specialties. This activity 
helped to convert the niche field of sleep research into sleep medicine, a 
clinical discipline with its own departments, its own center certification, 
physician certification, dedicated conferences, journals, and research activ-
ities. The recognition and importance have grown so much that the new 
International Classification of Disorders by WHO in its 11th version, being 
launched in 2022, has added a new section on sleep and wake disorders 
with its own range of codes. This worldwide recognition will enable the 
growth of medical education on sleep physiology, sleep pathology, and spe-
cific sleep disorders.

The diagnostic field for sleep disorders, and for sleep apnea specifically, 
is strongly linked to the development of new and recent methods, which 
allow long-term recording and analysis of physiological functions during 
sleep. Sleep and sleep apnea are not just identified by taking a single blood 
sample or by a single measurement by a physician at a visit, but sleep 
recording requires the continuous recording of biosignals. This is compa-
rable to monitoring of vital functions during anesthesia or intensive care. 
Because of this methodological challenge, biomedical engineering as well 
as new sensor and analysis technologies are closely linked to the develop-
ment of sleep apnea diagnosis. New technologies helped to a large extent 
develop new diagnostic and treatment modalities for sleep-disordered 
breathing. Sleep apnea diagnostic research is now linked to the develop-
ment of new wearables, nearables, and smartphone apps, and profits much 
from the ubiquitous development of photoplethysmography recording 
everywhere.
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Artificial intelligence is playing a very important role in analyzing sleep 
recordings and, particularly, in automatizing several of the stages of sleep 
apnea diagnosis. Since the generalization of computerized analysis in the 
1990s, automated processing of cardiorespiratory and neuromuscular signals 
from polysomnographic studies provided a number of indices able to assist 
sleep experts in the characterization of the disease (Shokoueinejad et  al., 
2017). Parameterization of the influence of apneic events on biological sys-
tem dynamics has relied on widely known techniques from the engineering 
field, such as spectral and nonlinear analysis. Currently, there is a demand for 
novel alternative metrics able to overcome the limitations of the standard 
apnea-hypopnea index concerning its low association with patient symptoms 
and outcomes (Malhotra et al., 2021). In this regard, signal processing and 
pattern recognition are going to play a key role. In addition, machine learning 
has also shown its usefulness in the last decades (Uddin et al., 2018) and, like 
many other areas in our society, sleep apnea diagnosis is rapidly entering the 
deep learning era (Mostafa et al., 2019) and big data. These new analytical 
techniques, along with the advances in health device development, are the 
main hope for reaching a reliable diagnostic paradigm shift. One that finally 
could cope with the disease prevalence, personalized interventions, and run-
away spending.

Beyond the widespread application of machine learning methods to auto-
mate polysomnography scoring and to provide sleep experts with tools for 
automated diagnosis, artificial intelligence has also the potential to signifi-
cantly improve the management of sleep apnea treatment. Recent advances in 
the framework of big data together with remote monitoring capability of 
novel treatment devices are able to promote conventional sleep medicine 
towards a real personalized medicine. Identification of refined clinical pheno-
types of patients will allow the development of precision interventions, 
enabling the quick identification of the treatment option that best fits the par-
ticular characteristics of a patient (Watson & Fernández., 2021). Similarly, 
machine learning is able to accurately model patient’s adherence from usage 
data (pressure setting, residual respiratory events, mask leaks) derived from 
portable treatment devices, improving the efficacy of available therapies 
(Goldstein et al., 2020). Thus, artificial intelligence is going to significantly 
change the management of sleep apnea treatment in the short term.

This volume gives a basis of current knowledge on sleep research, sleep 
medicine, and sleep apnea, with a strong focus on new challenges and new 
research directions in the diagnosis of sleep apnea and its treatment. The 
volume contains three sections: the first one is on physiology and pathophysi-
ology, the second one is on diagnostic advances, and the third one is on treat-
ment advances. Each chapter author was asked to not only describe the state 
of the art but also develop visions for future research as seen from their spe-
cial angle and viewpoint.
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As editors, we think that the volume can serve as an introduction to the 
field of sleep-disordered breathing, can serve as a basis for educating in sleep- 
disordered breathing, and can immediately stimulate and trigger new research 
in physiology, clinical trials, and biomedical engineering for sensors and 
analysis methodologies.

Berlin, Berlin, Germany Thomas Penzel
Valladolid, Spain Roberto Hornero 
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14Airflow Analysis in the Context 
of Sleep Apnea

Verónica Barroso-García, Jorge Jiménez-García, 
Gonzalo C. Gutiérrez-Tobal, and Roberto Hornero

Abstract

The airflow (AF) is a physiological signal 
involved in the overnight polysomnography 
(PSG) that reflects the respiratory activity. 
This signal is able to show the particularities 
of sleep apnea and is therefore used to define 
apneic events. In this regard, a growing num-
ber of studies have shown the usefulness of 
employing the overnight airflow as the only or 
combined information source for diagnosing 
sleep apnea in both children and adults. Due to 
its easy acquisition and interpretation, this 
biosignal has been widely analyzed by means 
of different signal processing techniques. In 
this chapter, we review the main methodologi-
cal approaches applied to characterize and 
extract relevant information from this signal. 
In view of the results, we can conclude that the 
overnight airflow successfully reflects the par-
ticularities caused by the occurrence of apneic 
and hypopneic events and provides useful 

information for obtaining relevant biomarkers 
that characterize this disease.

Keywords

Airflow · Automatic analysis · Sleep apnea · 
Sleep disorders

14.1  Introduction

Simplification of sleep apnea diagnosis has 
become a major concern in the field of sleep 
medicine and the motivation of several investiga-
tions in recent years. Currently, the standard 
method for diagnosing the disease in children 
and adults remains overnight polysomnography 
(PSG) (Jon, 2009; Patil et al., 2007). This is an 
effective medical test, but it has some limitations 
that should be pointed out. Firstly, a high number 
of physiological parameters are monitored during 
PSG, which requires appropriate and expensive 
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acquisition equipment (Collop et al., 2007; Ryan 
et  al., 1995). In addition, specialized medical 
staff should be present during its performance. 
Then, they should visually assess all acquired 
recordings, which makes it a complex and inten-
sive task (Collop et al., 2007; Ryan et al., 1995). 
Another limitation is that patient should spend a 
night hospitalized in a sleep unit. This involves 
sleeping in a different environment than usual, 
which can affect sleep development and charac-
teristics (Bennett & Kinnear, 1999). Moreover, 
the large number of sensors attached to the 
patient’s body can be very uncomfortable and 
even distressing, particularly for children (Jon, 
2009). It should also be noted that not all hospi-
tals have specialized sleep units, or these are 
overwhelmed by increasing demand. This fact 
hinders access to PSG, which causes long wait-
ing lists, thereby leading to diagnosis and treat-
ment delays (Alonso-Álvarez et  al., 2015; 
Ghegan et al., 2006).

Accordingly, great efforts have been made to 
search and develop simpler alternative methods 
that help diagnose the sleep apnea. A common 
approach is to automatically analyze physiologi-
cal signals with ability to reflect the particulari-
ties of the disease (Álvarez et al., 2020; Koley & 
Dey, 2013c). In this regard, apneic and hypopneic 
events are defined based on airflow reductions 
(Berry et al., 2012). When the respiratory cessa-
tion is partial (hypopnea), the amount of inspired 
and expired air is limited. Consequently, airflow 
(AF) signal experiences a reduction of between 
30% and 90% (Berry et  al., 2012). When the 
respiratory cessation is total (apnea), the airflow 
into the lungs is blocked, causing AF signal to 
present a ≥90% reduction and values ≈ 0 
(Barroso-García et al., 2020; Berry et al., 2012). 
Hence, the analysis of this signal is a natural way 
of determining the presence and severity of the 
disease.

Regarding the overnight AF acquisition, the 
American Academy of Sleep Medicine (AASM) 
recommends using a thermistor sensor to suit-
ably identify apneas and a nasal pressure sensor 
to identify hypopneas (Berry et  al., 2012). 
Thermistor sensor is placed in the nostrils and 
mouth from patient to measure the difference of 

temperature between inspired (cold air) and 
expired air (warm air). In the case of nasal pres-
sure sensor, it is also placed in the nostrils from 
patient to measure the pressure changes that 
occur during inspiration, when airway pressure 
is negative respect to atmospheric, and during 
 expiration, when airway pressure becomes pos-
itive. Thereby, AF signal acquired by these sen-
sors allows modeling the behavior of respiratory 
activity and detecting the abnormalities caused 
by apneic and hypopneic events (Berry et  al., 
2012). The specifications for routine PSG 
recordings indicate that AF should be acquired 
at a minimum sampling rate of 25  Hz, being 
100  Hz the recommended rate (Iber et  al., 
2007).

AF signal can be obtained by means of a por-
table equipment with built-in thermistor sensor 
and/or nasal pressure sensor (Collop et al., 2007; 
Flemons et al., 2003; Tan et al., 2015). Thus, the 
required equipment is less expensive than for 
PSG as fewer signals are monitored (Collop 
et  al., 2007). Moreover, the portable equipment 
can be used at patient’s home, without disturbing 
their usual sleep patterns (Bennett & Kinnear, 
1999). This test is also less uncomfortable due to 
a decreased number of sensors involved. Another 
advantage is that a single channel is analyzed 
(AF), resulting in a less complex and less time- 
consuming task (Ferber et  al., 1994). All this 
would make the diagnostic test more accessible, 
which would reduce waiting lists and streamline 
diagnosis. Therefore, the use of AF is a poten-
tially promising way for simplifying sleep apnea 
diagnosis.

All the above mentioned have led multiple 
works to be focused on the automatic analysis 
and characterization of the AF signal, in both 
pediatric and adult sleep apnea context (Gutiérrez- 
Tobal et al., 2021; Mendonca et al., 2019). These 
analyses are conducted from three different per-
spectives: (i) the evolution of AF signal in the 
time domain, (ii) its characterization in the fre-
quency domain, and (iii) its study in the time–fre-
quency domain. Thus, the main techniques used 
to analyze the behavior of AF in the presence of 
apneic events from these three methodological 
approaches are reviewed in Sects. 14.2, 14.3, and 

V. Barroso-García et al.
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14.4 of this chapter. In addition, Sect. 14.5 is 
devoted to studies that combine the aforemen-
tioned approaches. Finally, the discussion and 
conclusions of our study are presented in Sect. 
14.6.

14.2  Analysis in Time Domain

As can be seen in Fig. 14.1, apneic events alter 
the behavior of AF in the time domain by causing 
significant reductions in its amplitude. Thus, sev-
eral studies have focused on automatic detection 
of these events based on the temporal analysis of 
AF signal.

One of the first approaches to analyze the 
information of AF focused on the analysis of the 
instantaneous respiratory amplitude (IRA) and 
interval (IRI) signals, directly obtained from AF 
(Várady et  al., 2002). Várady et  al. (2002) used 
the raw AF and respiratory inductive plethys-
mography (RIP) signals and the IRA and IRI sur-
rogates of them to discriminate between apnea, 
hypopnea, and normal breathing segments. An 
artificial neural network (ANN) fed with the IRI 
and IRA from AF was subsequently trained to 
perform the detection task.

Cabrero-Canosa et  al. (2004) proposed an 
algorithm based on the identification of respira-
tory cycles and quantification of AF, in combina-
tion with the information provided by other 
biosignals (Cabrero-Canosa et al., 2004). In their 
study, symbolic classification was used to deter-
mine intervals of normal respiration and different 
types of airflow reduction (apnea, total reduction; 
hypopnea, clear reduction). These intervals were 

subsequently grouped and classified as apneic 
events or normal respiration.

Other approaches combined the information 
of AF and thoracic effort signals to detect and 
classify apneic events as obstructive, mixed, or 
central (Fontenla-Romero et  al., 2005). The 
apneic segments were identified from AF signal 
by applying a moving average filter together with 
an adaptive threshold. Then, these segments were 
classified according to their origin using the addi-
tional information provided by the thoracic effort.

In the study of Pépin et  al. (2009), an auto-
matic time-domain analysis of the AF signal from 
a Holter device with an additional nasal pressure 
sensor was performed and compared to the medi-
cal specialists’ annotations. The algorithm relied 
on the calculation of period, inspiratory surface, 
and maximum amplitude of breathing cycles. 
From the information provided by these features, 
amplitude reductions and cessations lasting at 
least 10 s were scored, and the apnea–hypopnea 
index (AHI) was automatically obtained.

The work of Álvarez-Estévez and Moret- 
Bonillo (2009) proposed the application of fuzzy 
reasoning methodology to detect apneic events 
from AF combined with other PSG-derived sig-
nals. The method relied on amplitude reductions 
of AF and oximetric desaturations to build rea-
soning units, which allow the fuzzy algorithm to 
determine if these reductions were actual apneic 
events.

Aydoğan et  al. (2016) employed the nasal 
pressure AF jointly with the thoracic effort and 
the oxygen saturation (SpO2) signals to evaluate 
two automatic scoring algorithms (Aydoğan 
et  al., 2016). These algorithms calculated the 

Fig. 14.1 Apneic events presented in overnight airflow (AF) signal. Sleep apnea causes reductions in AF amplitude 
(≥30%). Consequently, AF signal decreases toward 0 values during the occurrence of these events

14 Airflow Analysis in the Context of Sleep Apnea
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mean of the absolute values and power from the 
signal to derive a rule-based method and an ANN, 
respectively. It is remarkable that the rule-based 
method obtained a slightly higher scoring accu-
racy than the ANN.

In order to predict the pre-apneic and regular 
breathing events, the work of Ozdemir et  al. 
(2016) extracted 39 statistical and temporal fea-
tures from the AF signal and its first derivative, 
since the latter can contribute to reduce false 
apneic detections (Ozdemir et  al., 2016). These 
features were used to train and evaluate several 
classifiers, being the support vector machine 
(SVM) model the one that showed the highest 
diagnostic performance.

In the case of Kim et al. (2019) and Elmoaqet 
et  al. (2020), they focused their studies on the 
characterization of the changes caused in the AF 
signal by the presence of apneic events. They 
developed an algorithm based on the location of 
peaks (relative maximum amplitude) and valleys 
(relative minimum amplitude) of oronasal 
AF.  Then, peak-to-valley amplitudes and peak- 
to- peak intervals were computed. The apneic 
event detection relied on the comparison of these 
metrics in a baseline window and a consecutive 
detection window. The optimization of this 
framework was carried out both manually (Kim 
et al., 2019) and automatically using a Gaussian 
mixture model (Elmoaqet et al., 2020).

Envelope analysis is also a natural way to 
characterize the amplitude reductions of AF sig-
nal. Hence, several studies have focused on the 
estimation and analysis of the envelope of AF for 
detecting apneic events. This is the case of 
Selvaraj and Narasimhan (2013), who focused on 
the AF envelope analysis to reflect the changes 
produced by the apneic events in the respiration. 
They extracted the amplitude of the envelope and 
characterized it using three parameters: variabil-
ity of the respiratory instantaneous amplitudes up 
to 0.4 Hz, the adaptive trend to quantify the very- 
low- frequency variations, and the dispersion of 
the amplitude in a 120-s window. In the study 
conducted by Diaz et  al. (2014), the authors 
applied the Hilbert transform to derive a respira-
tory disturbance variable (RDV) from the coeffi-
cient of variation of the envelope (Diaz et  al., 

2014). The RDV was then used as a predictor 
variable in regression models aimed at estimating 
the AHI. Other approaches identified the apneas 
and hypopneas as an amplitude modulation of the 
normal respiration waveform in AF signal (Ciolek 
et  al., 2015). The apnea detection algorithm 
relied on the envelope extraction using the 
 following methods: square-law and Hilbert trans-
form. In order to minimize distortions caused by 
these envelope detectors, standard and recursive 
median filtering were proposed in substitution of 
classical linear low-pass filters. The empirical 
mode decomposition (EMD) was also applied to 
AF signal to extract and subsequently analyze its 
envelope. Wang et al. (2019) derived the intrinsic 
mode functions (IMFs) by means of the EMD 
algorithm and computed the root-sum-square of 
the first four (IMFs) (Wang et al., 2019). Then, 
they obtained the instantaneous respiratory inten-
sity signal and extracted the respiratory fluctua-
tion index. In a recent study conducted by Uddin 
et  al. (2021), a novel method was proposed to 
detect apneic events based on the analysis of the 
AF peak excursion (difference between upper 
and lower envelopes of AF) (Uddin et al., 2021). 
Thus, an adaptive thresholding was applied to the 
drops from the maximum peak excursion to 
determine the presence of apneas and hypopneas. 
The latter were scored when a drop ≥30% in AF 
was accompanied to a drop ≥3% in SpO2, or a 
drop >2% during at least 20 s.

Among time-domain characterization tech-
niques applied to AF, non-linear methods have 
been widely used in the sleep apnea context. The 
study of Kaimakamis et  al. (2016) focused on 
predicting the AHI from a linear equation of non- 
linear variables (Kaimakamis et  al., 2016). The 
non-linear variables were derived from the larg-
est Lyapunov exponent (LLE), detrended fluctua-
tion analysis (DFA), and approximate entropy 
(ApEn). Some of these non-linear features 
showed significant correlation with the AHI. 
Rathnayake et  al. (2010) and Barroso-García 
et al. (2020) also proposed a methodology based 
on the non-linear analysis of AF signal. In the 
first of these studies, the authors segmented the 
AF signal and extracted several features derived 
from its corresponding recurrence plots (RPs) to 
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obtain useful apnea-related information 
(Rathnayake et al., 2010). After, this information 
was used to compute the respiratory disturbance 
index (RDI) and discriminate between segments 
of apneic events and normal breathing in adults. 
In the case of Barroso-García et  al. (2020), the 
RPs from AF signal were used to characterize the 
behavior of the pediatric overnight AF in the 
presence of apneas and hypopneas (Barroso- 
García et  al., 2020). This characterization was 
carried out by computing up to 9 RP-derived fea-
tures: 1 from the recurrence density, 5 from the 
diagonal structures, and 3 from the vertical struc-
tures of the RP. The results showed that sleep 
apnea modifies underlying dynamics and phase 
space of overnight AF. Particularly, apneic events 
reduce the variability, stationarity, and complex-
ity of AF, as well as the exponential divergence of 
its phase space. In addition, this disease also 
increments the dwell time in the same phase 
space state, the mean prediction time, and the 
irregularity of pediatric AF.

14.3  Analysis in Frequency 
Domain

As can be seen in Fig. 14.2, the recurrent behav-
ior of apneic and hypopneic events modifies the 
AF spectrum. This has led several studies to 
focus on the automatic processing of AF signal 
from a frequency point of view.

Nakano et  al. (2007) proposed a method to 
detect apneas based on the analysis of the power 
spectrum of 12.8 s AF segments (Nakano et al., 
2007). Thus, the AF recordings from 399 subjects 
were automatically processed to extract the flow 
power by means of the fast Fourier transform 
(FFT). Flow power decays in the respiratory band 
were associated to the presence of apneic events. 
Once these dips were detected in the overnight 
AF signal, the RDI was subsequently derived.

The work conducted by Gutiérrez-Tobal et al. 
(2015) was the first study that applied a spectral 
analysis to AF signals from pediatric subjects 
(Gutiérrez-Tobal et  al., 2015). Thus, overnight 
AF was investigated by means of the power spec-
tral density (PSD), and new spectral bands of 

interest were specifically defined for children: 
0.119–0.192 Hz and 0.784–0.890 Hz. These fre-
quency bands were characterized by calculating 
the maximum and minimum amplitude and first- 
to- fourth statistical moments. The results indi-
cated that the spectral power in these bands is 
higher in the presence of sleep apnea, suggesting 
that the repetitive occurrence of apneic events 
modifies the spectral components of pediatric AF.

In order to overcome the limitations of classical 
spectral analysis, such as the assumption of sta-
tionarity and linearity, the work of Barroso- García 
et al. (2021a) proposed the bispectral analysis of 
AF signal (Barroso-García et  al., 2021a). They 
defined a frequency band adapted to the normal 
respiratory rate of each pediatric subject. This 
band was characterized by  computing up to 13 fea-
tures derived from bispectrum: 3 from the ampli-
tude of the bispectral band, 4 from the entropy of 
distribution, 4 from the bispectral moments of the 
band, and 2 from the weighted center of the bispec-
trum. The four types of bispectral features showed 
complementarity with each other. In addition, the 
obtained results suggest that the presence of sleep 
apnea reduces the non-gaussianity and the non-
linear interaction of harmonic components of AF, 
increments its irregularity, and displaces the activ-
ity to lower frequencies that are associated with 
apnea occurrence.

14.4  Time–Frequency Analysis

A common approach to characterize the presence 
of sleep apnea in AF is to conduct a time–fre-
quency analysis employing the Hilbert–Huang 
transform (Fig.  14.3). This method applies an 
EMD process followed by the Hilbert spectrum 
computation. In this regard, Salisbury and Sun 
(2007) obtained the first and second IMFs and 
computed the Hilbert–Huang spectrum and its 
histogram in the frequency domain. Afterward, 
the apnea percentage was derived from the latter 
(Salisbury & Sun, 2007). Similarly, Caseiro et al. 
(2010) also employed the Hilbert–Huang trans-
form and extracted features from the spectral his-
togram: frequency value in the first quarter, ratio 
between the first and the second halves, and ratio 
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Fig. 14.2 Average spectrum of airflow (AF) signal from 
974 subjects with and without sleep apnea (405 patients 
and 569 controls). The recurrence of apneic events leads 
to an AF spectrum with less power in the normal breathing 

band. This spectral power is redistributed in a wide range 
of frequency components. Particularly, the power increase 
at certain frequencies would be associated with the 
repeated occurrence of these event

Fig. 14.3 Apneic 
events in the Hilbert 
envelope transform and 
spectrum of AF signal. 
Sleep apnea causes 
reductions in AF 
envelope. Consequently, 
Hilbert spectrum of AF 
vanishes during the 
occurrence of these 
events

between the maxima found in the first and second 
halves (Caseiro et al., 2010). Both methods were 
applied to the AF during an awake period rather 
than an overnight recording (Caseiro et al., 2010; 
Salisbury & Sun, 2007).

Another time–frequency mathematical tool is 
the wavelet transform. Several studies have 
applied this method to analyze the AF dynamics 
during sleep apnea. Kermit et al. (2000) applied 
the Haar wavelet to decompose the AF signal into 
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16 coefficients, which were directly used to feed a 
predictive model (Kermit et  al., 2000). Further 
work from the same authors generated templates 
of apneas and normal respiration using a Haar 
wavelet decomposition. These templates were 
used to test the similarity of AF segments with the 
normal and apneic patterns (Kermit et al., 2002). 
Based on the continuous wavelet transform, Koley 
and Dey (2013a) used the cross wavelet analysis 
for the first time to differentiate between central, 
obstructive, and mixed apnea (Koley & Dey, 
2013a). They assessed three pairwise combina-
tions of signals to be analyzed via cross wavelet 
transform: AF, thoracic effort, and abdominal 
effort. The combination of the cross wavelet 
amplitude and phase coefficients from AF and 
thoracic effort showed to be more effective dif-
ferentiating the apnea types. Avci and Akbaş 
(2015) also employed a wavelet decomposition 
approach to analyze respiratory signals (Avci & 
Akbaş, 2015). They selected the Daubechies 
wavelet family and extracted up to 8 features from 
the coefficients of 11 detail levels. In the same 
way, AF recordings from 946 children were ana-
lyzed by means of the discrete wavelet transform 
in Barroso-García et  al. (2021b). They used the 
Haar and Daubechies mother wavelets for the AF 
analysis and extracted features from the eighth 
detail level. This detail level approximately cor-
responds to the normal breathing activity. 
Consequently, the AF reductions and cessations 
caused by sleep apnea modified the frequency 
components and the energy in this frequency band 
(0.195–0.391 Hz) (Barroso- García et al., 2021b).

McCloskey et  al. (2018) employed wavelet 
spectrograms to generate graphic representations 
of AF that were analyzed by a convolutional neu-
ral network (CNN) for discriminating between 
normal breathing, apneic, and hypopneic events 
(McCloskey et al., 2018). The method was also 
compared with a 1D CNN trained with raw AF 
data. The 2D CNN trained with wavelet spectro-
grams outperformed the 1D CNN trained with 
raw AF data, thus highlighting the usefulness of 
the wavelet analysis. Similarly, Wu et al. (2021) 
proposed a method to detect apneic and hypop-
neic events from the AF signal by computing 
spectrograms with the short-time Fourier trans-

form (STFT) (Wu et  al., 2021). These spectro-
grams fed a CNN aimed at classifying 15-s 
segments as normal, hypopnea, and apnea.

14.5  Other Combined Approaches

In addition to the joint time–frequency analysis, 
other studies have shown the usefulness of com-
bining the time and frequency domain informa-
tion of the AF signal. In the study of Han et al. 
(2008), the mean magnitude of the second deriva-
tive (MMSD) of AF was analyzed, and an adap-
tive thresholding method was applied to detect 
apneic events (Han et  al., 2008). The MMSD 
minimizes the contribution of baseline drifts and 
offset of the AF signal and, thus, is easier to inter-
pret. The algorithm was designed and tested 
using the signals from 24 subjects. The normal 
respiration activity was also analyzed in the fre-
quency domain between 0.2  Hz and 0.4  Hz to 
establish the reference behavior of the MMSD in 
normal respiration.

Novel time-domain features were proposed in 
Bricout et  al. (2021), where non-periodic rate, 
low energy rate, and variance of the dispersion 
metric were analyzed along with statistical mea-
surements, spectral power from the conventional 
heart rate variability (HRV) frequency bands 
(VLF, LF, HF), the ratio LF/HF, and the spectral 
kurtosis (Bricout et al., 2021). It is important to 
highlight that diagnostic performance of these 
features was higher using the AF signal from 
nasal pressure sensor than that obtained with a 
novel accelerometry sensor.

Koley and Dey (2013b, c) proposed apneic 
event detection models based on the analysis of 
short AF segments (Koley & Dey, 2013b, c). 
Statistical metrics were computed from the IRA 
and IRI signals, directly obtained from the air-
flow. The raw signal was also characterized by 
means of spectral (total and relative powers in the 
full spectrum, in the LF, and HF bands, respira-
tory frequency and its corresponding power, 
mean, and variance of the spectrum) and non- 
linear features (ApEn, Lempel–Ziv complexity, 
LLE-derived features, Higuchi fractal dimension, 
and correlation dimension).
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In the study conducted by Gutiérrez-Tobal 
et  al. (2012, 2013), the authors investigated the 
diagnostic ability of the AF signal obtained by a 
thermistor and the respiratory rate variability 
(RRV) signal derived from AF (Gutiérrez-Tobal 
et al., 2012, 2013). These two signals were char-
acterized using statistical, spectral, and non- 
linear features. Two spectral bands of interest 
were defined from AF and RRV: 0.022–0.059 Hz 
and 0.095–0.132  Hz, respectively. The features 
that obtained the highest diagnostic ability were 
the mean, standard deviation, peak amplitude, 
and power in the interest band of AF together 
with the central tendency measurement (CTM), 
skewness, and kurtosis of the full spectrum of 
RRV (Gutiérrez-Tobal et  al., 2012). The com-
bined use of AF and RRV improved the diagnos-
tic performance reached by several classification 
and regression models to estimate the severity of 
sleep apnea (Gutiérrez-Tobal et al., 2012, 2013).

The combination of spectral and non-linear 
features from thermistor-recorded AF and RRV 
was also conducted in the pediatric sleep apnea 
context (Barroso-García et  al., 2017). In this 
work, the spectral information was obtained 
using the first- to third-order spectral entropies 
(SEs) and the non-linear behavior by means of 
the CTM. These measurements characterized 
the irregularity (through SE) and variability 
(through CTM) of AF and RRV.  The study 
showed the complementarity between both 
methodological approaches and that existing 
between both respiratory signals. The results 
suggest that the presence of apneic events 
reduce the variability and increase the irregular-
ity of AF, while the variability of RRV is 
increased. The diagnostic ability of pediatric 
overnight AF was also assessed in combination 
with the nocturnal SpO2 signal (Jiménez- García 
et  al., 2020). The authors calculated time-
domain statistics, spectral, and non-linear fea-
tures from both AF and SpO2, as well as the 3% 
oxygen desaturation index (ODI3). A spectral 
interest band of AF was obtained: 0.134–
0.176 Hz, which is very similar to the low fre-
quency band defined in the study of 
Gutiérrez-Tobal et al. (2015). A model combin-
ing the CTM of AF and ODI3 obtained the high-

est diagnostic ability, suggesting that the 
variability of AF provides relevant and comple-
mentary information to the ODI3 to diagnose 
pediatric sleep apnea.

Finally, other studies jointly employed time 
and frequency features from a nasal pressure 
 signal. The work of Gutiérrez-Tobal et al. (2016) 
aimed to distinguish the different severity degrees 
of sleep apnea in adults. The authors defined a 
new band of interest characteristic of AF from 
nasal pressure sensor: 0.025–0.050  Hz, which 
covers the typical duration of apneic events (20–
40 s) and matches the frequency band obtained 
using thermistor. A total of 12 features were 
extracted: 9 spectral and 3 non-linear features. 
The mean, standard deviation, minimum, and 
maximum from the frequency band, as well as 
the CTM, showed statistically significant differ-
ences among severity groups, suggesting that 
these approaches are useful to establish the sever-
ity degree of sleep apnea. Álvarez et  al. (2020) 
combined the nasal pressure-derived AF with 
SpO2 to evaluate the diagnostic ability of these 
two signals jointly (Álvarez et  al., 2020). Both 
signals were characterized using time, spectral, 
and non-linear features, as well as clinical vari-
ables such as conventional oximetric indices and 
the respiratory disturbance index. The regression 
algorithm trained with features from both signals 
largely outperformed the individual diagnostic 
ability of these signals, suggesting that the infor-
mation of AF and SpO2 can be jointly used to 
diagnose sleep apnea.

14.6  Discussion

In this chapter, we have reviewed a variety of 
methodological approaches aimed at character-
izing and extracting relevant information from 
the AF signal that can be used to help in the auto-
matic diagnosis of sleep apnea. These approaches 
have been categorized from the four main per-
spectives: time domain, frequency domain, time–
frequency analysis, and other combined 
strategies. Each of these perspectives focused on 
different characteristics that AF manifest in the 
presence of apneas and hypopneas. We have dis-
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tinguished these particularities between children 
and adults throughout this section.

14.6.1  AF Characterization in Adults

The alterations caused by sleep apnea in the AF 
signal have motivated the development of algo-
rithms for apneic event detection. Most of these 
algorithms were intended to obtain the localiza-
tion of apneas and hypopneas by analyzing the 
changes of amplitude caused by respiratory 
cessations (Elmoaqet et  al., 2020; Kim et  al., 
2019; Koley & Dey, 2013b). In this regard, 
algorithms based on the time-domain behavior 
of AF have been widely investigated. The 
reductions of amplitude in the AF signal led to 
the detection of apneic events in most of these 
algorithms (Uddin et  al., 2021). In the same 
way, the amplitude reductions were character-
ized by the differences between AF peaks and 
valleys, as well as the differences between con-
secutive peaks, which are also reduced in the 
presence of apneas (Elmoaqet et al., 2020; Kim 
et  al., 2019). Some authors have focused on 
envelope analysis (Diaz et  al., 2014; Uddin 
et  al., 2021). This is an intuitive way to track 
the amplitude of the AF in the time domain 
since it is narrowly related with the AASM 
manual scoring guidelines (Berry et al., 2012). 
A reduction of the amplitude level of the enve-
lope with respect to the previous baseline 
described the presence of an apneic event 
(Ciolek et  al., 2015; Selvaraj & Narasimhan, 
2013). It is also observed that the apneas and 
hypopneas increase the long-term correlations 
of the AF and its irregularity in the time domain. 
Variability and complexity alterations are other 
particularities presented by sleep apnea in AF 
(Gutiérrez-Tobal et al., 2012, 2016). However, 
there is no consensus to it. While some studies 
observed a reduction in both variability and 
complexity, others characterized AF as more 
variable and more complex as severity 
increased, even using the same analysis tech-
niques (Gutiérrez-Tobal et al., 2012, 2016).

Regarding frequency-domain approaches, 
the oscillatory pattern of the respiration and, 
therefore, the AF signal, have motivated the 
use of spectral analysis methods. The normal 
respiration generates activity in a narrow spe-
cific frequency band that is altered by the 
repeated occurrence of apneic events (Nakano 
et  al., 2007). These respiratory bands ranges 
from 0.2 Hz to 0.4 Hz, which matches the nor-
mal breathing periods (every 2.5–5  s). 
However, the presence of sleep apnea leads to 
a redistribution of the spectral power, displac-
ing the activity focus of AF to frequencies 
below the normal respiratory frequency 
(Gutiérrez-Tobal et  al., 2012, 2013). This is 
also observed in the typical frequency range 
of the apneic events (around 0.04 Hz), where 
AF presents a higher spectral power, as well 
as a more asymmetric and peaked distribution 
of its frequency components as severity 
increased. In these cases, the spectral distri-
bution of AF has higher statistical distance to 
the uniform distribution (Gutiérrez-Tobal 
et al., 2016).

These two previous approaches can be fused 
to exploit simultaneously their strengths in 
order to characterize the particularities of sleep 
apnea in the AF. Instantaneous variations of the 
respiratory activity due to apneas and hypop-
neas lead to changes in the spectrum of AF. The 
reviewed studies revealed that these changes 
can be analyzed using time–frequency 
approaches, since these can characterize spec-
tral alterations that occur in short time intervals 
(Koley & Dey, 2013a). In this regard, it has been 
observed that the spectrogram of AF estimated 
by the STFT presents lower activity in the nor-
mal respiratory frequency during the occurrence 
of apneic events (Wu et al., 2021). This was also 
observed in the wavelet spectrograms, where 
the amplitude around the respiratory frequency 
is significantly reduced during the apneic/
hypopneic events (McCloskey et  al., 2018). 
Nevertheless, an exhaustive characterization of 
the AF signal using the wavelet transform is still 
lacking in adults.
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14.6.2  AF Characterization 
in Children

The analysis of the AF signal has been much less 
studied in children than in adults, and some stud-
ies suggest that the diagnosis of sleep apnea in 
children is more challenging due to more restric-
tive criteria to define apneic events and severity 
degrees (Rosen et  al., 2012). In view of the 
reviewed studies, apneic events reduce the vari-
ability, stationarity, and complexity of AF 
(Barroso-García et  al., 2017, 2020; Jiménez- 
García et al., 2020). Moreover, when the AF was 
characterized in the phase space, the exponential 
divergence was reduced as the severity of sleep 
apnea increased (Barroso-García et  al., 2020). 
This disease also increments the dwell time in the 
same phase space state, the mean prediction time, 
and the irregularity of pediatric AF in the time 
domain (Barroso-García et al., 2020).

The pediatric overnight AF also experiences 
variations in the frequency domain (Gutiérrez- 
Tobal et al., 2015; Jiménez-García et al., 2020). 
As in the case of adults, the spectral power in spe-
cific low frequency bands is higher in the pres-
ence of sleep apnea. This suggests that the 
recurrence of apneic events displaces the spectral 
power of AF to frequencies below the normal 
respiratory frequency (Gutiérrez-Tobal et  al., 
2015). By extension of the classic spectral analy-
sis, the bispectrum also revealed that the severity 
of the disease localizes more activity around 
lower frequencies associated with apnea occur-
rence (Barroso-García et  al., 2021a). Moreover, 
the pediatric AF has a more gaussian behavior as 
the severity of sleep apnea increases. In addition, 
the non-linear interaction of harmonic compo-
nents of AF is reduced in the presence of apneic 
events, leading to lower phase coupling in the 
normal breathing band (Barroso-García et  al., 
2021a).

As far as we know, the combined time–fre-
quency approach was only explored using the 
wavelet transform (Barroso-García et al., 2021b). 
In this case, the wavelet coefficients in the detail 
level related to the normal breathing are reduced 
as the severity degree of sleep apnea increases. At 

the same time, the distribution of these wavelet 
coefficients is more skewed and peaked around 
lower values. This is in accordance with the 
reduction of the energy in the frequency band 
related to normal respiration (Barroso-García 
et al., 2021b).

Lastly, it was observed that the AF character-
ization can improve using of a combination of 
methodological approaches both in adults and 
children (Álvarez et  al., 2020; Barroso-García 
et al., 2017; Jiménez-García et al., 2020; Koley & 
Dey, 2013b, c). According to the reviewed stud-
ies, the joint use of different analyses is able to 
provide useful and complementary information 
to aid in the detection of sleep apnea. This com-
binational approach has also been applied to the 
analysis of AF along with other cardiorespiratory 
signals (Álvarez et  al., 2020; Aydoğan et  al., 
2016; Cabrero-Canosa et  al., 2004; Jiménez- 
García et al., 2020). These studies show that other 
signals can be complementary to AF and enhance 
its diagnostic ability.

14.7  Conclusions

In view of the results, we can conclude that the 
overnight AF successfully reflects the particulari-
ties caused by the occurrence of apneic and 
hypopneic events. The automatic signal process-
ing methods provide useful information to define 
AF-based biomarkers for characterizing and 
helping in the diagnosis of this disease.

Regarding future research directions on the 
AF signal analysis in the sleep apnea context, 
deep-learning methods have revolutionized the 
automatic diagnosis of this disease in the last few 
years. It is true that these techniques are more 
focused on the classification tasks (apneic events 
versus normal respiration, or sleep apnea severity 
degree), rather than for the characterization of AF 
signal. However, explainable artificial intelli-
gence (XAI) methods are expected to clarify the 
functional interpretation of deep-learning mod-
els, identify novel relevant information from AF 
signal, and thus improve the diagnosis of sleep 
apnea in future studies.
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