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Sleep apnea is a sleep disorder with a very high prevalence and many health 
consequences. As such it is a major health burden (Benjafield et al., 2019). 
Sleep apnea has been systematically explored only a little more than 40 years 
now (Guilleminault & Dement, 1978). Major impacts of sleep apnea are 
sleepiness and associated risks for accidents (Bonsignore et al., 2021). Major 
health impacts are cardiovascular risk and pathophysiological traits, even if 
this is currently much debated when focusing on the apnea-hypopnea index 
as the measure for sleep apnea severity (Arnaud et al., 2020). Sleep apnea is 
a disorder which is a chronic condition and can be treated successfully.

The disorders of sleep-disordered breathing have largely supported the 
growth of sleep medicine in general from a small specialty field to a major 
spectrum of disorders in the arena of medical specialties. This activity 
helped to convert the niche field of sleep research into sleep medicine, a 
clinical discipline with its own departments, its own center certification, 
physician certification, dedicated conferences, journals, and research activ-
ities. The recognition and importance have grown so much that the new 
International Classification of Disorders by WHO in its 11th version, being 
launched in 2022, has added a new section on sleep and wake disorders 
with its own range of codes. This worldwide recognition will enable the 
growth of medical education on sleep physiology, sleep pathology, and spe-
cific sleep disorders.

The diagnostic field for sleep disorders, and for sleep apnea specifically, 
is strongly linked to the development of new and recent methods, which 
allow long-term recording and analysis of physiological functions during 
sleep. Sleep and sleep apnea are not just identified by taking a single blood 
sample or by a single measurement by a physician at a visit, but sleep 
recording requires the continuous recording of biosignals. This is compa-
rable to monitoring of vital functions during anesthesia or intensive care. 
Because of this methodological challenge, biomedical engineering as well 
as new sensor and analysis technologies are closely linked to the develop-
ment of sleep apnea diagnosis. New technologies helped to a large extent 
develop new diagnostic and treatment modalities for sleep-disordered 
breathing. Sleep apnea diagnostic research is now linked to the develop-
ment of new wearables, nearables, and smartphone apps, and profits much 
from the ubiquitous development of photoplethysmography recording 
everywhere.
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Artificial intelligence is playing a very important role in analyzing sleep 
recordings and, particularly, in automatizing several of the stages of sleep 
apnea diagnosis. Since the generalization of computerized analysis in the 
1990s, automated processing of cardiorespiratory and neuromuscular signals 
from polysomnographic studies provided a number of indices able to assist 
sleep experts in the characterization of the disease (Shokoueinejad et  al., 
2017). Parameterization of the influence of apneic events on biological sys-
tem dynamics has relied on widely known techniques from the engineering 
field, such as spectral and nonlinear analysis. Currently, there is a demand for 
novel alternative metrics able to overcome the limitations of the standard 
apnea-hypopnea index concerning its low association with patient symptoms 
and outcomes (Malhotra et al., 2021). In this regard, signal processing and 
pattern recognition are going to play a key role. In addition, machine learning 
has also shown its usefulness in the last decades (Uddin et al., 2018) and, like 
many other areas in our society, sleep apnea diagnosis is rapidly entering the 
deep learning era (Mostafa et al., 2019) and big data. These new analytical 
techniques, along with the advances in health device development, are the 
main hope for reaching a reliable diagnostic paradigm shift. One that finally 
could cope with the disease prevalence, personalized interventions, and run-
away spending.

Beyond the widespread application of machine learning methods to auto-
mate polysomnography scoring and to provide sleep experts with tools for 
automated diagnosis, artificial intelligence has also the potential to signifi-
cantly improve the management of sleep apnea treatment. Recent advances in 
the framework of big data together with remote monitoring capability of 
novel treatment devices are able to promote conventional sleep medicine 
towards a real personalized medicine. Identification of refined clinical pheno-
types of patients will allow the development of precision interventions, 
enabling the quick identification of the treatment option that best fits the par-
ticular characteristics of a patient (Watson & Fernández., 2021). Similarly, 
machine learning is able to accurately model patient’s adherence from usage 
data (pressure setting, residual respiratory events, mask leaks) derived from 
portable treatment devices, improving the efficacy of available therapies 
(Goldstein et al., 2020). Thus, artificial intelligence is going to significantly 
change the management of sleep apnea treatment in the short term.

This volume gives a basis of current knowledge on sleep research, sleep 
medicine, and sleep apnea, with a strong focus on new challenges and new 
research directions in the diagnosis of sleep apnea and its treatment. The 
volume contains three sections: the first one is on physiology and pathophysi-
ology, the second one is on diagnostic advances, and the third one is on treat-
ment advances. Each chapter author was asked to not only describe the state 
of the art but also develop visions for future research as seen from their spe-
cial angle and viewpoint.
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As editors, we think that the volume can serve as an introduction to the 
field of sleep-disordered breathing, can serve as a basis for educating in sleep- 
disordered breathing, and can immediately stimulate and trigger new research 
in physiology, clinical trials, and biomedical engineering for sensors and 
analysis methodologies.

Berlin, Berlin, Germany Thomas Penzel
Valladolid, Spain Roberto Hornero 
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13Oximetry Indices 
in the Management of Sleep 
Apnea: From Overnight Minimum 
Saturation to the Novel 
Hypoxemia Measures

Daniel Álvarez, Gonzalo C. Gutiérrez-Tobal, 
Fernando Vaquerizo-Villar, Fernando Moreno, 
Félix del Campo, and Roberto Hornero

Abstract

Obstructive sleep apnea (OSA) is a multidi-
mensional disease often underdiagnosed due to 
the complexity and unavailability of its stan-
dard diagnostic method: the polysomnography. 
Among the alternative abbreviated tests search-
ing for a compromise between simplicity and 
accurateness, oximetry is probably the most 
popular. The blood oxygen saturation (SpO2) 
signal is characterized by a near- constant pro-
file in healthy subjects breathing normally, 
while marked drops (desaturations) are linked 
to respiratory events. Parameterization of the 
desaturations has led to a great number of indi-
ces of severity assessment commonly used to 
assist in OSA diagnosis. In this chapter, the 
main methodologies used to characterize the 
overnight oximetry profile are reviewed, from 

visual inspection and simple statistics to com-
plex measures involving signal processing and 
pattern recognition techniques. We focus on the 
individual performance of each approach, but 
also on the complementarity among the great 
amount of indices existing in the state of the art, 
looking for the most relevant oximetric feature 
subset. Finally, a quick overview of SpO2-based 
deep learning applications for OSA manage-
ment is carried out, where the raw oximetry 
signal is analyzed without previous parameter-
ization. Our research allows us to conclude that 
all the methodologies (conventional, time, fre-
quency, nonlinear, and hypoxemia-based) dem-
onstrate high ability to provide relevant 
oximetric indices, but only a reduced set pro-
vide non- redundant complementary informa-
tion leading to a significant performance 
increase. Finally, although oximetry is a robust 
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tool, greater standardization and prospective 
validation of the measures derived from com-
plex signal processing techniques are still 
needed to homogenize interpretation and 
increase generalizability.

Keywords

Apnea · Blood oxygen saturation · Deep 
learning · Desaturation · Hypopnea · 
Hypoxemia · Hypoxic burden · Nonlinear 
dynamics · Obstructive sleep apnea · 
Oximetry, oxygen desaturation index · 
Resaturation · Signal processing · Spectral 
analysis

13.1  Introduction

The blood oxygen saturation (SpO2) signal from 
nocturnal oximetry is one of the most valuable 
tools in the framework of abbreviated diagnosis of 
obstructive sleep apnea (OSA). Overnight SpO2 
has shown to gather the relevant changes in the 
respiratory pattern linked to the presence and 
severity of OSA while being non-intrusive for 
patients, portable, and highly available (Del 
Campo et al., 2018; Terrill, 2020). Parameterization 
of the overnight oximetry profile focused the 
effort of many researchers, looking for indices 
able to characterize the number, duration, and 
severity of desaturations (Levy et al., 2021). The 
oxygen desaturation index (ODI) and the cumula-
tive time (CT) below a certain saturation level 
have been traditionally used due to their simple 
computation and interpretation (Terrill, 2020). 
Indeed, many commercial oximeters provide the 
values of these indices in their summary reports, 
besides the mean and the minimum saturation val-
ues throughout the night (Otero et al., 2012).

Despite its widely known usefulness (Tsai 
et al., 2013; Dawson et al., 2015; Sharma et al., 
2017), traditional measures just based on the 
number of events or the cumulative duration of 
the desaturations seem to be insufficient to com-
pletely characterize the severity of the disease, 
particularly in complex patients. In order to over-

come this limitation, new measures have been 
proposed in the last years, aimed at quantifying 
the amount of hypoxemia involving the depth and 
duration of the events jointly (Kulkas et  al., 
2013a). Simultaneously, advanced signal pro-
cessing techniques have provided clinicians with 
a number of automated oximetry indices during 
the past two decades, looking for a better charac-
terization of oximetry dynamics in OSA patients 
(Zamarrón et  al., 1999, 2003; Álvarez et  al., 
2006, 2010, 2012, 2013; Hornero et  al., 2017; 
Terrill, 2020). Besides avoiding the problem of 
lack of standardization (as they are computed 
from well-known mathematical algorithms), 
these indices have demonstrated significant 
effectiveness in OSA diagnosis, though are some-
times difficult to interpret in terms of the physio-
pathology of the disease. Similarly, machine 
learning has been also applied to build oximetry- 
based models for decision support in the frame-
work of OSA (Marcos et al., 2009; Álvarez et al., 
2013; Uddin et al., 2018; Gutiérrez-Tobal et al., 
2019). Additionally, the joint analysis of oximet-
ric features by means of pattern recognition and 
artificial intelligence has allowed the detection of 
complementary (non-redundant) indices able to 
improve the diagnostic capability of oximetry 
(Álvarez et al., 2012, 2013). Concerning the use-
fulness of artificial intelligence, the raising of 
deep learning approaches has recently opened a 
new way to exhaustively analyze biomedical sig-
nals. Particularly, deep neural networks have 
been found appropriate tools to automatically 
learn discriminant features from the raw oxime-
try signal (Vaquerizo-Villar et al., 2021), poten-
tially allowing to provide new oximetric indices 
if these new models (highly complex) are thor-
oughly interpreted.

Performance of oximetry-based methods for 
OSA diagnosis shows significant variability 
among studies (Uddin et al., 2018; Del Campo 
et al., 2018). In order to minimize this variabil-
ity, it would be interesting to clarify some major 
points: search for the top-performance index; 
quantify the actual performance increase linked 
to the use of complex mathematical algorithms 
compared to the conventional ones (i.e., the 
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complexity- effectiveness balance); or investi-
gate the degree of complementarity among avail-
able indices, owing that they are all obtained 
from the same data source. The main goal of this 
chapter is to review and analyze the current 
knowledge concerning the diagnostic informa-
tion derived from automatic processing of noc-
turnal oximetry recordings in the context of OSA 
management: from the conventional desatura-
tion indices to the popular new measures of 
hypoxemia and the novel deep learning 
approaches. Accordingly, both individual (uni-
variate) and joint (multivariate) performance of 
the most common characteristics found in the 
literature are assessed, which are categorized in 
the following groups: conventional indices, fre-
quency-domain features, nonlinear measures, 
morphology-based parameters, and deep learn-
ing architectures. Furthermore, when possible, 
the performance increase concerning the inclu-
sion of a particular set of features (statistical, 
spectral, nonlinear) is analyzed, in order to gain 
insight into the complementarity of the available 
oximetry indices.

13.2  Approaches 
for Parameterizing Changes 
in the Dynamics 
of the Oximetry Signal

A plethora of oximetric features derived from 
many different manual and automatic method-
ologies can be found in the literature. In order to 
facilitate its analysis throughout this chapter, 
oximetry measures are grouped in the following 
categories: (i) conventional measures (visual 
inspection, simple statistics, and the oxygen 
desaturation index); (ii) frequency-domain fea-
tures (power spectral density, high-order spec-
tra, wavelet); (iii) nonlinear measures (entropy, 
complexity, multiscale analysis); (iv) 
morphology- based parameters (hypoxic burden 
measures, characteristics of the desaturation 
curve); and (v) application of deep learning to 
the raw oximetry signal.

13.2.1  Conventional Approaches 
to Characterize the Overnight 
Oximetry Profile: Visual 
Inspection, Common 
Statistics, and the Oxygen 
Desaturation Index

Table 13.1 summarizes the main traditional meth-
odologies applied for easy assessment and 
 interpretation of the nocturnal oximetry profile. 
Visual inspection of the overnight SpO2 tracing 
was predominantly used in the 1990s, in order to 
identify consecutive drops in the saturation value 
leading to the common “saw-tooth” pattern 
linked to the presence of OSA. The specificity of 
manual analysis is particularly high in severe 
OSA subjects. Subjectivity and complexity when 
analyzing long nocturnal profiles are major limi-
tations even for trained sleep experts. 
Nevertheless, examination of overnight oximetry 
tracings is still used to perform preliminary OSA 
screening in especial patient groups, such as chil-
dren (Brouillette et  al., 2000; Velasco-Suarez 
et  al., 2013; Tsai et  al., 2013; Van Eyck et  al., 
2015) and those with concomitant respiratory 
comorbidities, such as chronic obstructive pul-
monary disease (COPD) (Scott et  al., 2014). In 
these studies, sensitivity ranges from 40.6% to 
91.6%, while specificity varies between 40.6% 
and 98.9%.

Simple statistics derived from the data his-
togram of the nocturnal oximetry signal are 
also commonly used to characterize averages 
and trends potentially indicative of pathologi-
cal states. Overall mean, variance, skewness (a 
measure of histogram asymmetry), and kurto-
sis (a measure of data concentration) have been 
proposed as an easy to obtain measures able to 
further complement more advanced automated 
features in numerous studies (Marcos et  al., 
2010a; Marcos et  al., 2012; Álvarez et  al., 
2010, 2012, 2013, 2020; Gutiérrez-Tobal et al., 
2019, 2021a). It is remarkable that at least one 
of these indexes is systematically included in 
the final optimum feature subset when a vari-
able selection procedure is implemented, 
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Table 13.1 Visual inspection approaches and conventional oximetric parameters commonly used to characterize 
oximetry in the context of OSA diagnosis

Approach Indices
Visual inspection
Brouillette et al. (2000), Nixon et al. (2004), Velasco-Suarez 
et al. (2013), Tsai et al. (2013), Van Eyck et al. (2015), Scott 
et al. (2014), Villa et al. (2015)

• Recurrent drops in the SpO2 profile 
along the night

• Saw-tooth pattern
• Clusters of desaturations (mainly in 

pediatric OSA)
SpO2 data histogram and simple statistics
Lévy et al. (1996), Olson et al. (1999), Magalang et al. (2003), 
Marcos et al. (2010a, 2012), Álvarez et al. (2010, 2012, 2013, 
2017, 2018, 2020), Garde et al. (2014), Crespo et al. (2018), 
Vaquerizo-Villar et al. (2018c), Gutiérrez-Tobal et al. (2019, 
2021a)

• Mean (central tendency), variance 
(dispersion), skewness (asymmetry), 
kurtosis (peakedness)

• Median (central tendency), quantiles, 
and interquartile range (dispersion) are 
less used

• Delta index (variability measure)
Intermittent hypoxemia
Gyulay et al. (1993), Magalang et al. (2003), Rofail et al. 
(2010), Chung et al. (2012), Schlotthauer et al. (2014), Dawson 
et al. (2015), Kirk et al. (2003), Chang et al. (2013), Malbois 
et al. (2010), Ward et al. (2012), Aaronson et al. (2012), Mazière 
et al. (2014), Sharma et al. (2017)

• Oxygen desaturation index (ODI) of 
2% (children) and 3% or 4% (adults)

Persistent hypoxemia
Chaudhary et al. (1998), Golpe et al. (1999), Magalang et al. 
(2003)

• Overnight minimum saturation
• Percentage of cumulative time (CT) 

spent with a saturation below a thresh-
old: in the range 80–90% in adults and 
95% in children

which highlights the importance and comple-
mentarity of the information provided by these 
simple measures. In the pediatric framework, 
the same behavior has been reported (Álvarez 
et  al., 2017, 2018; Crespo et  al., 2018; 
Vaquerizo-Villar et  al., 2018c), showing sig-
nificant complementarity among these com-
mon statistical moments and other techniques, 
such as spectral, wavelet, and nonlinear 
measures.

In addition to conventional standard deviation 
and variance, the delta index was also proposed 
to estimate the variability of the overnight SpO2 
recording (Lévy et al., 1996). It quantifies varia-
tion as the sum of the absolute differences 
between the saturation values corresponding to 
the upper and lower limits of each SpO2 segment 
(commonly 12 s length with no overlap), normal-
ized by the total number of intervals. Large 
imbalance in the sensitivity-specificity pair was 
shown, with high sensitivities ranging 88–98% 

and notably lower specificities ranging 40–59% 
(Lévy et al., 1996; Olson et al., 1999; Magalang 
et al., 2003).

Parameterization of the desaturations by quan-
tifying their number, duration, and depth, either 
manually or automated, has been traditionally 
used to characterize oximetry patterns in patho-
logical patients. The number of desaturations 
from baseline greater than a threshold (usually 
3% or 4%) per hour of sleep, i.e., the widely 
known oxygen desaturation index (ODI) (Gyulay 
et al., 1993; Magalang et al., 2003), and the over-
all minimum saturation value and the cumulative 
time (CT) with a saturation below a cutoff value 
(usually 90% for adults and 95% for children) 
relative to the total recording time (Chaudhary 
et al., 1998; Golpe et al., 1999) have been exten-
sively used and commonly embedded in com-
mercial pulse oximeters. Overall, the ODI has 
been found to remarkably outperform CT 
(Magalang et  al., 2003). Individually, the ODI 
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has demonstrated to be a high-performance oxi-
metric feature for OSA detection, both in the 
adult (Rofail et  al., 2010; Chung et  al., 2012; 
Schlotthauer et  al., 2014; Dawson et  al., 2015) 
and the pediatric context (Kirk et  al., 2003; 
Chang et al., 2013) and also even in the presence 
of comorbidities (Malbois et  al., 2010; Ward 
et al., 2012; Aaronson et al., 2012; Mazière et al., 
2014; Sharma et al., 2017). Reported sensitivities 
and specificities ranged 70.0–96.3% and 67.3–
97.2% for adults, 59.26–70.59% and 60.0–86.0% 
for children, and 33.3–100% and 32.0–100% in 
the presence of comorbidities.

In addition, the ODI raised as an essential 
index in studies using multivariate approaches, 
being systematically selected to be part of the 
final optimum models, for both adult (Álvarez 
et al., 2020; Gutiérrez-Tobal et al., 2019, 2021a) 
and pediatric (Hornero et al., 2017; Crespo et al., 
2017, 2018; Álvarez et al., 2017, 2018; Vaquerizo-
Villar et al., 2018a, b, c) OSA automated detec-
tion. Similarly, the ODI has been combined with 
features from other biomedical signals in the 
context of pediatric sleep apnea diagnosis, show-
ing significant correlation with novel spectral 
cardiac indices (Martín-Montero et al. 2021a, b) 
and remarkable complementarity with frequency/
scale (power spectrum, bispectrum, and wavelet) 
and nonlinear (recurrence plots) characteristics 
from airflow recordings (Gutiérrez-Tobal et  al., 
2015; Barroso-García et  al., 2020, 2021a, b; 
Jiménez-García et al., 2020). In the latter case, it 
is important to note that the ODI was selected 
100% of times within the optimum feature sub-
set. Interestingly, the studies by Barroso-García 
et al. (2020, 2021a, b) and Jiménez-García et al. 
(2020) design and assess their models with and 
without including the ODI, allowing to quantita-
tively measure the complementarity of this index 
in terms of the performance increase. In this 
regard, Jiménez-García et  al. (2020) reported 
minor accuracy increments (from +0.77% to 
+1.28%) for the most restrictive cutoff for posi-
tive OSA (1 event/h) when the ODI is included in 
the analysis, while the increase was notably 
higher for larger cutoffs, particularly when the 
ODI is combined with airflow-derived measures 
(+19.23% for 5 events/h and +  11.29% for 10 

events/h). Similarly, Barroso-García et al. (2020, 
2021a, b) also reported higher performance 
increase when using cutoffs for detecting moder-
ate-to-severe cases, achieving increments in the 
accuracy value ranging from +10.4% to +25.0%.

13.2.1.1  An Especial Oximetric Index 
in Childhood OSA: Clusters 
of Desaturations

This approach exploits the widely known recur-
rent behavior of desaturations, which tend to 
group in different time periods along the sleep 
time. This characteristic is closely related with 
the periodicity of desaturations and hence with 
the analysis of the signal in the frequency domain. 
However, while spectral analysis has been exten-
sively applied regardless the context (either adult 
or pediatric), the characterization of the depth, 
number, and clustering of desaturations has been 
mostly used as a marker of childhood OSA. The 
intuition is that the larger the number of clusters, 
the larger the probability of OSA. However, there 
is not a clear definition of what a cluster is, and 
they are mainly detected by visual inspection 
(Nixon et al., 2004; Velasco-Suarez et al., 2013; 
Van Eyck et al., 2015; Villa et al., 2015). Recent 
reviews of the state of the art pointed out that this 
approach is particularly useful for the detection 
of moderate-to-severe OSA cases (Van Eyck & 
Verhulst, 2018).

Brouillette et al. (2000) firstly pointed out the 
screening ability of clusters of desaturations in 
children. They reported that the presence of three 
or more clusters showing falls greater than 4% 
from baseline and three or more falls in the satu-
ration value below the threshold of 90% was pre-
dictive of pediatric OSA, though sensitivity was 
notably lower than specificity (42.9% vs. 97.8%, 
respectively). Based on this study, Nixon et  al. 
(2004) defined the McGill oximetry score (MOS), 
reporting that the number and depth of the clus-
ters could be used to estimate the severity of 
pediatric OSA, prioritize treatment, and schedule 
perioperative interventions. Similarly, Velasco- 
Suarez et  al. (2013) reported higher and more 
balanced sensitivity and specificity values (86.6% 
vs. 98.9%) using a lower number of clusters (>2) 
and drops below 90% (>1) for positive OSA in 
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children with adenotonsillar hypertrophy. 
Recently, Van Eyck et  al. (2015) prospectively 
assessed the methods by Brouillette et al. (2000) 
and Velasco-Suarez et  al. (2013) for childhood 
OSA detection based on the characterization of 
clusters of desaturations. Accuracies ranging 
68–78% were reported using a conservative diag-
nostic threshold of 2 events/h for childhood OSA. 
Looking for a performance increase, Villa et al. 
(2015) combined the parameterization of clusters 
with data from the patient’s clinical history, 
reaching 85.8% accuracy in the detection of this 
condition, while accurateness decreases to 69.4% 
for the detection of moderate-to-severe cases.

13.2.2  Analysis of Nocturnal 
Oximetry in the Frequency 
Domain

In addition to simple statistics and the ODI, one 
of the first attempts to automatically characterize 
the SpO2 signal relied on the use of tools in the 
frequency domain. Nocturnal desaturations com-
monly present in the oximetry signal from OSA 
patients show a relative periodicity. The parame-
terization of the changes in the power spectrum 
of the signal linked to this pseudo-periodicity has 
been found to provide relevant and discriminative 
features able to discern OSA patients from 
healthy subjects.

In the framework of frequency analysis, a 
major decision is to define the spectral band of 
frequencies that is going to be analyzed. In this 
regard, standardized spectral bands exist in other 
biomedical signals, such as heart rate variability 
(HRV) or electroencephalogram (EEG). The 
low-frequency (LF: 0.04–0.15 Hz) and the high- 
frequency (HF: 0.15–0.40 Hz) bands were pro-
posed many years ago to assess the influence of 
diseases in the cardiac autonomic function using 
the HRV signal as a surrogate of more intrusive 
techniques (Stein & Pu, 2012). Similarly, the 
power spectra in the classical EEG bands delta 
(0.1–3.5 Hz), theta (4–7.5 Hz), alpha (8–13 Hz), 
and beta (14–30  Hz) have been widely used to 
quantitatively measure the impact of diseases in 
the brain activity (Penttonen & Buzsáki, 2003). 
On the contrary, no standardized frequency bands 
are defined concerning the spectral analysis of 
the oximetry signal.

In the literature, different oximetry-based 
spectral bands have been proposed to character-
ize the severity of the disease. Table 13.2 sum-
marizes the main spectral bands of interest used 
to assess the oximetry signal in the frequency 
domain. In the context of adult OSA, the fre-
quency band 0.014–0.033 Hz has been predomi-
nantly used (Zamarrón et al., 2003; Chen-Liang 
et  al., 2009; Álvarez et  al., 2010, 2012, 2013). 
Shiomi et al. (1996) firstly identified a synchro-
nization between decreased arterial oxygen satu-

Table 13.2 Most common spectral bands of interest of the oximetry signal in the frequency domain

Frequency bands for adults Frequency bands for children
• 0.008–0.04 Hz (VLF)

Shiomi et al. (1996)
• 0.014–0.033 Hz (T30–70)

Zamarrón et al. (1999)
• 0.017–0.1 Hz (T10–60)

Sánchez-Morillo and Gross (2013)
• 0.017–0.05 Hz (T20–60)

Sánchez-Morillo and Gross (2013)
• 0.013–0.1 Hz (T10–75)

Sánchez-Morillo and Gross (2013)
• 0.013–0.05 Hz (T20–75)

Sánchez-Morillo and Gross (2013)
• <0.2 Hz (artifact removal)

Schlotthauer et al. (2014)

• ±0.02 around the peak in 0.005–0.1 Hz
Garde et al. (2014)

• 0.01755–0.03433 Hz (for AHI ≥1 event/h)
Álvarez et al. (2017)

• 0.02136–0.03967 Hz (for AHI ≥3 events/h)
Álvarez et al. (2017)

• 0.01755–0.03357 Hz (for AHI ≥5 events/h)
Álvarez et al. (2017)

• 0.02136–0.03357 Hz
Álvarez et al. (2017)

• 0.018–0.050 Hz
Vaquerizo-Villar et al. (2018a, c)

• 0.020–0.044 Hz
Hornero et al. (2017)

• 0.021–0.040 Hz
Crespo et al. (2018)
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ration and a power increase in the 
very-low-frequency components of the heart rate 
variability signal (VLF: 0.008–0.04 Hz). In this 
study, the authors laid the foundations of subse-
quent analysis of oximetry in the frequency 
domain, relating the upper and lower limits of 
the VLF band to the maximum and minimum 
durations of apneas, respectively: 120 s is stated 
as the maximum cycle length (i.e., 0.008  Hz), 
while 25 s is considered the minimum duration 
(i.e., 0.04 Hz), including the recovery (awaken-
ing response) after apnea episodes (Shiomi et al., 
1996). Then, Zamarrón et al. (1999, 2003) thor-
oughly analyzed the spectral content of the 
oximetry signal within this band, reporting a 
characteristic and highly discriminative power 
increase in the period 30–70  s, i.e., the widely 
used 0.014–0.033 Hz band. Other authors used 
similar approaches, leading to slightly different 
bands. Sánchez-Morillo and Gross (2013) and 
Sánchez-Morillo et al. (2014) analyzed the his-
togram of the duration of the desaturations to 
determine the most common desaturation peri-
ods. They reported that 83.4% of the desatura-
tions last between 10 and 60  s and that 90.5% 
between 10 and 75 s (Sánchez-Morillo and Gross, 
2013). Accordingly, they defined the following 
periods of interest in order to parameterize the 
power spectrum of the oximetry signal: 10–60 s 
(i.e., 0.017–0.1 Hz), 20–60 s (i.e., 0.017–0.05 Hz), 
10–75  s (0.013–0.1  Hz), and 20–75  s (0.013–
0.05 Hz). Other authors used a more conservative 
approach when locating the spectral content of 
oximetry. In this regard, Schlotthauer et al. (2014) 
considered that desaturations linked to apneas 
have periods larger than 5  s, leading to relevant 
frequency components below 0.2 Hz.

In the framework of childhood OSA, there is a 
larger variability regarding the spectral band of 
interest of the oximetry signal compared to adults 
(see Table 13.2). Garde et al. (2014) used a fre-
quency interval of 0.02 Hz centered around the 
peak amplitude of the power spectrum that they 
searched from 0.005 to 0.1  Hz. Álvarez et  al. 
(2017) performed a statistical analysis searching 
for the frequencies leading to the highest dis-
criminant ability between OSA groups. 
Accordingly, they identified three different bands 

of interest for pediatric OSA: 0.01755–0.03433 
Hz for a cutoff of 1 event/h, 0.02136–0.03967 Hz 
for a cutoff of 3 events/h, and 0.01755–0.03357 
Hz for 5 events/h. Finally, they proposed a single 
spectral frequency range as the broadest interval 
showing significant differences regardless the 
clinical threshold for positive OSA: 0.02136–
0.03357  Hz. Similarly, Vaquerizo-Villar et  al. 
(2018a, c) searched for a spectral band of interest 
able to maximize the differences between differ-
ent OSA severity groups (AHI < 5 events/h, 5 
≤AHI < 10 events/h, and AHI ≥10 events/h), 
leading to the interval 0.018–0.050  Hz. Other 
authors used slight variations of these bands, 
such as Hornero et al. (2017) (0.020–0.044 Hz) 
and Crespo et al. (2018) (0.021–0.040 Hz).

Concerning the methodology used to inspect 
the frequency content of oximetry, different 
approaches have been assessed. The estimation 
of the power spectral density (PSD) using the 
non-parametric Welch method based on the fast 
Fourier transform has been predominantly used 
(Zamarrón et al., 1999, 2003; Chen-Liang et al., 
2009; Álvarez et  al., 2010, 2012, 2013, 2017; 
Hornero et  al., 2017; Crespo et  al., 2018). 
Alternatively, autoregressive methods were used 
by Sánchez-Morillo and Gross (2013) and Garde 
et al. (2014) to estimate the PSD. A number of 
measures have been used to parameterize the 
power spectrum (see Table 13.3), mainly based 
on amplitudes and total or relative power in the 
spectral band of interest. Additionally, common 
statistics, such as first-to-fourth statistical 
moments and the median frequency, as well as 
regularity measures as the Shannon spectral 
entropy have been also widely used to further 
characterize the spectral content of the signal. In 
this regard, peak amplitude, relative power, skew-
ness, and spectral entropy have been found to 
jointly summarize oximetry dynamics in the 
 frequency domain, for both adults (Álvarez et al., 
2010, 2012, 2013, 2020; Sánchez-Morillo & 
Gross, 2013) and children (Garde et  al., 2014; 
Hornero et al., 2017; Álvarez et al., 2017; Crespo 
et al., 2018).

On the other hand, novel and complementary 
approaches have been recently proposed to fur-
ther assess the recurrent behavior of desatura-
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Table 13.3 Measures commonly used to characterize the power spectrum of oximetry in the frequency domain

Method Indices
Power spectral density (PSD)
• Non-parametric fast Fourier transform (FFT)-

based methods (Welch, Blackman-Tukey)
 Zamarrón et al. (1999, 2003), Chen-Liang et al. 
(2009), Álvarez et al. (2010, 2012, 2013, 2017), 
Hornero et al. (2017), Crespo et al. (2018)

• Autoregressive methods (Yule-Walker)
 Sánchez-Morillo and Gross (2013),  
Garde et al. (2014)

• First-to-fourth statistical moments (mean, vari-
ance, skewness, kurtosis), median frequency

• Shannon spectral entropy (SSE), mobility, 
Wootters’ distance, Euclidean distance (mea-
sures of the concentration of the signal power)

• Peak and minimum amplitudes, total power, 
relative power in the band of interest

Bispectrum (high-order spectra)
Vaquerizo-Villar et al. (2018a) • Mean amplitude

• Sum of the logarithmic amplitudes of the whole 
bispectrum, sum of the logarithmic amplitudes 
in the main diagonal, first-order spectral moment 
of amplitudes in the main diagonal

• Normalized bispectral entropy and normalized 
bispectral squared entropy

• Phase entropy
• Mean and variance of the bispectrum invariant

Wavelet transform
Vaquerizo-Villar et al. (2018c), Poupard et al. (2012)

• First-to-fourth-order moments of the wavelet 
coefficients in the 9th detail band (D9: 
0.0244–0.0488 Hz)

• Maximum amplitude of wavelet coefficients in 
D9

• Energy of the coefficients in D9

• Wavelet entropy
• Ventilatory hypoxemic index

tions and to obtain complementary information 
to that provided by the PSD.  In this regard, 
Vaquerizo-Villar et  al. (2018a) used high-order 
spectra (HOS) to detect deviations from 
Gaussianity, linearity, and stationarity of the 
oximetry signal potentially linked to the apneic 
events. Particularly, they applied the bispectrum, 
a representation of the spectral decomposition of 
the third-order cumulant (skewness) of a signal 
over the frequency. In this study, two bispectral 
measures showed complementarity with PSD, 
the mean amplitude of the bispectrum and the 
mean of the bispectrum invariant, which account 
for magnitude differences and for phase coupling 
between spectral components, respectively. The 
authors reported a remarkable performance 
increase (+6.7% three-class accuracy) when 
including these bispectral features in a model for 
automated pediatric OSA diagnosis. Similarly, in 

a subsequent study in the same research line, 
Vaquerizo-Villar et  al. (2018c) applied wavelet 
analysis in order to further characterize the spec-
tral content of the signal, particularly in the very 
low frequencies owing that oximetry is character-
ized by very slow variations. In such low 
 frequencies, traditional methods lack for appro-
priate spectral resolution, while the wavelet 
transform performs a multilevel analysis able to 
provide high frequency resolution at low frequen-
cies and high time resolution at high frequencies. 
In the study by Vaquerizo-Villar et al. (2018c), 
the skewness and the energy of the coefficients in 
the level 9 detail signal (D9, corresponding to the 
frequency range 0.0244–0.0488 Hz), as well as 
the overall wavelet energy, showed complemen-
tarity with conventional oximetric indices, 
including ODI, statistical moments, and features 
from the PSD.
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In the context of adult OSA, the wavelet trans-
form has been also applied to the oximetry signal 
to obtain a new measure of hypoxemia. Poupard 
et al. (2012) implemented a wavelet-aggregation 
procedure to quantify the overall absolute varia-
tions (both increases and decreases of amplitude) 
along the overnight oximetry recording. The ven-
tilatory hypoxemic index (VHI) was defined as 
the cumulative time with absolute variations 
>4%, divided by the theoretical apnea cycle 
period, which was defined as the middle point in 
the interval 30–70 s identified by Zamarrón et al. 
(2003), i.e., 50 s. The VHI showed higher corre-
lation with standard AHI than ODI (0.87 vs. 
0.81), as well as lower bias (+5.7 vs. +13.5). In 
the same regard, VHI achieved more balanced 
sensitivity-specificity pair than the ODI for the 
common cutoffs for OSA (91–88% vs. 65–100%, 
AHI ≥5 events/h; 81–98% vs. 58–100%, AHI 
≥15 events/h; 67–99% vs. 59–100%, AHI ≥30 
events/h).

13.2.3  Methods Derived 
from Nonlinear Dynamics 
in the Oximetry Signal

Despite the usefulness shown by conventional 
oximetric indices, statistics, and frequency- 
domain methods, they are unable to completely 
explain all the dynamics of the oximetry signal. In 
addition to periodicities linked to the recurrent 
apneic events, there are also nonlinear changes 
typical of natural systems present in biomedical 
signals. In this regard, nonlinear methods derived 
from the chaos theory have demonstrated to pro-
vide relevant and complementary information in 
the automated diagnosis of OSA from oximetry. 
Table  13.4 shows the methods predominantly 
used to quantify nonlinear dynamics in the SpO2 
signal.

Approximate (ApEn) and sample (SampEn) 
entropies, central tendency measure (CTM), and 
Lempel-Ziv complexity (LZC) have been pre-
dominantly used. Individually, the quantification 
of irregularity in the overnight oximetry record-
ing by means of ApEn shows remarkable perfor-
mance in the detection of adult OSA (Del Campo 

et al., 2006; Hornero et al., 2007), reaching bal-
anced sensitivity and specificity, as well as area 
under the ROC curve >0.90. In the same regard, 
CTM matches the behavior of ApEn, achieving 
accuracy values >87% with balanced sensitivity- 
specificity pair and area under the ROC curve 
>0.90 (Álvarez et al., 2006, 2007). Finally, LZC 
has shown slightly lower performance than single 
CTM or ApEn, although reaching notable accu-
racy (>82%) and area under the curve (>0.85) 
(Álvarez et al., 2006).

Concerning multivariate approaches, nonlin-
ear measures have shown valuable complemen-
tarity with conventional oximetric indices for 
automated OSA diagnosis in both adults and 
children. In the adult context, nonlinear measures 
are systematically included in the final optimum 
subset from automated feature selection proce-
dures. Particularly, the width of the Poincaré plot 
(SD1) is complemented with different desatura-
tion and resaturation indices as well as with spec-
tral power (Sánchez-Morillo & Gross, 2013), 
LZC shows remarkable joint relevance with sta-
tistical moments in the time domain and the spec-
tral power (Álvarez et al., 2010, 2013), and CTM 
fits with statistical moments in both the time and 
frequency domains and the peak spectral ampli-
tude (Álvarez et al., 2012, 2013). Under a multi-
class approach, SD1, SampEn, CTM, and LZC all 
together combined with the ODI and a histogram- 
based index to discern between no-OSA and mild 
OSA individuals, whereas ApEn combined with 
histogram-based indexes, resaturation measures, 
and the ODI to classify moderate and severe OSA 
patients (Sánchez-Morillo et al., 2014). Without 
an appropriate feature selection stage, comple-
mentarity of nonlinear measures is not properly 
exploited, as shown in the study by Marcos et al. 
(2009), where the combination of nonlinear and 
spectral features did not significantly improve the 
accuracy reached with each individual approach 
(spectral vs. nonlinear). Alternatively, dimen-
sionality reduction by means of principal compo-
nent analysis showed a remarkable performance 
increase (+6.20% accuracy) when combining 
spectral and nonlinear features (Marcos et  al., 
2010b). Under a regression approach aimed at 
estimating the apnea-hypopnea index (AHI), 

13 Oximetry Indices in the Management of Sleep Apnea: From Overnight Minimum Saturation…



228

Table 13.4 Nonlinear methods commonly used to quantify changes in nonlinear dynamics of oximetry

Method Indices
Irregularity or disorderliness measures by means of 
entropy
del Campo et al. (2006), Hornero et al. (2007), 
Álvarez et al. (2006, 2010, 2012, 2013, 2017, 2020), 
Marcos et al. (2009, 2012); Marcos et al. (2010b), 
Sánchez-Morillo et al. (2014), Garde et al. (2014), 
Hornero et al. (2017), Crespo et al. (2018)

• Approximate entropyEntropies (ApEn) and 
cross- approximate entropy (cross-ApEn)

• Sample entropy (SampEn)
• Kernel entropy (KerEn)

Variability measures from scatter plots
Álvarez et al. (2006, 2007, 2010, 2012, 2013, 2017, 
2020), Marcos et al. (2009, 2012), Marcos et al. 
(2010b), Sánchez-Morillo and Gross (2013), 
Sánchez-Morillo et al. (2014), Garde et al. (2014), 
Hornero et al. (2017), Crespo et al. (2018)

• Length of the main (SD1) and secondary (SD2) 
axes of the ellipse that encloses the points in 
Poincaré plots

• Central tendency measure (CTM) from second-
order difference plots

Complexity measures
Álvarez et al. (2006, 2010, 2012, 2013, 2020), 
Marcos et al. (2009, 2010b, 2012), Sánchez-Morillo 
et al. (2014), Hornero et al. (2017), Crespo et al. 
(2018)

• Lempel-Ziv complexity

Multiscale approaches
Crespo et al. (2017), Vaquerizo-Villar et al.  
(2018a, b)

• Multiscale entropy (MSE): Individual entropy 
values in single scales; entropy value in the 
scale reaching the maximum margin between 
groups under study; slope of the MSE curve 
between a pair of scales; area enclosed under 
the MSE curve between a pair of scales; area 
enclosed between the first and the maximum 
margin scales; time scale where maximum 
entropy is reached

• Detrended fluctuation analysis (DFA): slopes 
(scaling exponents) of the lines fitting the 
regions identified in the DFA curve; coordinates 
of the intersection of the line fitting these 
regions; value of the fluctuation function in the 
scale that maximizes its correlation with the 
AHI

Symbolic dynamics
Álvarez et al. (2018)

• Probability of the words (particular sequence of 
symbols) representative of different states (high 
and low saturation values) and changes (desatu-
rations and resaturations) of the signal

• Forbidden words
• Symbolic entropy

SampEn, CTM, and LZC from oximetry showed 
reliable completeness with statistical, spectral, 
and conventional oximetric indices (Marcos 
et al., 2012; Álvarez et al., 2020).

In the framework of pediatric OSA, the use-
fulness of traditional nonlinear indexes (SampEn, 

CTM, and LZC) from overnight oximetry has 
been less investigated, and their relevance seems 
to be slightly lower than in the adult context. The 
studies by Álvarez et al. (2017) and Crespo et al. 
(2018) include these measures in the beginning 
of a feature selection process, and only SampEn 

D. Álvarez et al.



229

was found non-redundant and finally selected to 
be part of the optimum model for binary classifi-
cation of children (non-OSA vs. OSA) using dif-
ferent cutoffs for the disease (1, 3, and 5 events/h). 
Additionally, Garde et  al. (2014) and Hornero 
et  al. (2017) also used nonlinear measures to 
characterize the nocturnal oximetry profile of 
children with suspicion of OSA, but no nonlinear 
index was included in the optimum model (binary 
classification and regression approaches) due to 
redundancy.

In addition to these conventional nonlinear 
measures of irregularity, variability, and com-
plexity, novel nonlinear methods have been 
recently applied to the oximetry signal in order to 
obtain as much information as possible from the 
recording. This is particularly important in the 
pediatric context, where pattern recognition and 
machine learning methods face a more challeng-
ing task compared to adults. In the study by 
Crespo et al. (2017), multiscale sample entropy 
(MSE) was applied to quantify entropy changes 
in the oximetry signal along larger time scales. 
Features derived from the MSE curve shown high 
performance (AUC 0.80) both individually and 
jointly. It is remarkable the complementarity of 
MSE variables and conventional oximetric indi-
ces (ODI, CT, minimum and average saturation), 
leading to a significant performance increase 
(+4.5% accuracy; +6% AUC) when properly 
combined using a stepwise approach. Similarly, 
Vaquerizo-Villar et  al. (Vaquerizo-Villar et  al., 
2018b) applied detrended fluctuation analysis 
(DFA) to analyze changes in the correlation prop-
erties of the nocturnal oximetry profile for differ-
ent ranges of scales. The slope in the first scaling 
region of the DFA curve showed high relevancy 
and complementarity with the ODI. Both were 
combined using a regression neural network 
aimed at estimating the AHI, reaching high 
agreement with actual AHI (0.891 intra-class cor-
relation coefficient; 0.412  kappa) and notably 
outperforming the ODI alone (0.866 intra-class 
correlation coefficient; 0.355  kappa). Finally, 
Álvarez et  al. (2018) analyzed nonlinearities 
present in the oximetry recording using a sym-
bolic dynamics approach, which stablishes an 
alternative framework for investigating complex 

nonlinear systems. Features from the histogram 
of symbols reached the highest performance 
compared to conventional indexes, anthropomet-
ric measures, and common statistical moments. 
Moreover, symbolic dynamics features showed 
significant complementarity with these variable 
subsets, leading to a significant performance 
increase (+4.8% accuracy; +7% AUC) when used 
together after appropriate feature selection.

13.2.4  Quantifying the Morphology 
of Desaturation: Influence 
of the Area and the Velocity 
of Events

The conventional oxygen desaturation index has 
demonstrated to provide highly relevant informa-
tion on the severity of OSA, reaching high per-
formance when used individually as well as being 
systematically selected within the optimum fea-
ture subset under multivariate approaches. 
Nevertheless, the ODI is just based on counting 
the number of desaturations, regardless the total 
depth and length of these events. Hence, there is 
room for improvement if all these characteristics 
are put together in the same index. Table  13.5 
shows several indices found in the literature 
aimed at parameterizing the morphology of the 
desaturation.

First attempts for joint characterization of 
both the length and depth of the desaturations 
were made by Chesson et al. (1993, 2001). They 
proposed the so-called saturation impairment 
time (SIT), an automated index aimed at quanti-
fying cumulative nocturnal oxygen desaturation 
as a measure of hypoxemia in the context of 
respiratory-related breathing disorders. Contrary 
to traditional indices of hypoxemia just based on 
the percentage of time spent below a predeter-
mined threshold (CTx%, being x% the cutoff), 
the SIT index integrates both time (length) and 
severity (depth) of the desaturations (Chesson 
et al., 1993). To measure the joint contribution of 
both characteristics, SIT is computed as the area 
enclosed under a fixed saturation value (similar 
to the threshold in CT indices) and the saturation 
curve. The authors reported good correlation 
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Table 13.5 Measures used to parameterize the morphology of the desaturation curve

Method Indices
Severity of desaturations (quantification of the 
total or partial area of the desaturation)
Chesson et al. (1993, 2001), Kulkas et al. (2013a, 
b, 2017), Muraja-Murro et al. (2014), Leppänen 
et al. (2017), Kainulainen et al. (2019, 2020), 
Linz et al. (2018), Khoshkish et al. (2018), 
Azarbarzin et al. (2019), Kim et al. (2020)

• Saturation impairment time (SIT)
• Apnea severity, hypopnea severity, obstruction 

severity, and desaturation severity
• Hypoxia load (HL)
• Hypoxic burden

Parameterization of the sections of the 
desaturation
Otero et al. (2012)

• Duration of the desaturation
• Average and minimum (nadir) values of the satura-

tion throughout the event
• Elapsed time from the beginning of the event until 

the nadir point and from the nadir to the end of the 
desaturation

• Overall drop in the saturation during the fall part of 
the event and overall increase in the rise section

• Slope of both the fall and the rise parts of the event
• Desaturation area

with CT (r2  >  0.8) as well as complementarity 
with the respiratory disturbance index (RDI), i.e., 
patients with similar RDI showed variability in 
their SIT values.  Accordingly, they concluded 
that the SIT index may provide additional and 
useful information in the characterization of 
desaturations during sleep.

The standard AHI from nocturnal PSG is com-
monly criticized due to its low correlation with 
physiological symptoms and consequences of 
OSA. In a similar way to the ODI, this problem is 
attributed to the own definition of the parameter, 
which is just based on counting the number of 
apneas and hypopneas throughout the time of 
sleep regardless their severity. Motivated by the 
increasing demand for alternatives to the standard 
AHI due to these limitations, different respiratory 
disturbance indices have been recently proposed 
aimed at gathering the severity of each individual 
event. These indices are commonly known as 
measures of “hypoxic burden.” In 2013, Kulkas 
et al. (2013a) proposed a set of indices they named 
severity parameters, aimed at accounting for both 
the morphology and the duration of desaturations: 
apnea severity, hypopnea severity, obstruction 
severity, and desaturation severity. They are all 
based on the quantification of the desaturation 
area for each single event, which is the area 

enclosed between a saturation level determined 
by the starting point of the event and the oximetry 
curve until the minimum saturation value (nadir), 
i.e., the resaturation part of the event is not con-
sidered. The desaturation severity index is com-
puted as the cumulative sum of the desaturation 
area of each single event and normalized by the 
total analyzed time. Apnea severity, hypopnea 
severity, and obstruction severity are based on the 
same definition, but the desaturation area is 
weighted by the duration of each kind of event, 
and only those events (apnea, obstructive, or 
hypopnea) followed by a desaturation event 
within the next 60 s are considered (Kulkas et al., 
2013a). The authors reported moderate correla-
tion of the novel severity indices with the standard 
AHI (r2  <  0.7; p  <  0.001) and with the ODI 
(r2 < 0.75; p < 0.001) (Kulkas et al., 2013a), as 
well as remarkable variability for patients within 
the same AHI/severity range (Kulkas et al. 2013a, 
b), suggesting that the proposed severity parame-
ters might provide complementary information on 
the assessment and management of the severity of 
OSA. In a subsequent study by the same group, 
Muraja-Murro et al. (2014) used the obstruction 
severity parameter to adjust the AHI. Interestingly, 
the adjusted AHI correlated better than standard 
AHI with mortality (both all-cause and cardiovas-
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cular) and non-fatal cardiovascular events, lead-
ing to significantly higher association (higher risk 
ratios) for these outcomes in the corrected moder-
ate and severe groups. In addition, using the novel 
severity indices, Kulkas et  al. (2017) and 
Leppänen et al. (2017) were able to gain insight 
into the differences among OSA patients concern-
ing gender, while Kainulainen et al. (2019, 2020) 
found that severity of desaturations had a great 
impact on the level of daytime sleepiness and 
vigilance/reaction time in patients with OSA.

More recently, Linz et al. (2018) proposed a 
new measure for the quantification of the 
hypoxemic burden during sleep that they 
termed hypoxia load. The hypoxia load is 
defined as the integrated area of the desatura-
tion curve to the theoretical maximal satura-
tion, i.e., 100%. This way, the hypoxia load 
encompasses all the changes in the saturation 
signal linked to respiratory events (baseline 
saturation, number and length of desaturations, 
time below 90%, and minimum saturation 
value) regardless any threshold. This index is 
presented in the context of cardiovascular risk 
assessment in patients with sleep-disordered 
breathing (SDB). Linz et  al. (2018) reported 
that the hypoxia load showed significant mod-
erate correlation (r2  =  0.316; p  <  0.05) with 
epicardial fat volume, an established marker of 
cardiovascular risk, in patients with SDB after 
acute myocardial infarction. On the contrary, 
the AHI and conventional measures of hypox-
emia did not show significant association. 
Additionally, Khoshkish et al. (2018) reported 
significant correlation (r2  ≈  0.1; p  <  0.05) 
between hypoxia load and pulse pressure dur-
ing both the day and the night, while standard 
AHI did not. These findings led the authors to 
suggest that the new measures of hypoxic bur-
den could be used to predict blood pressure 
patterns and help in the management of hyper-
tensive patients.

In 2019, Azarbarzin et  al. (2019) defined a 
similar index of OSA-related hypoxemia, the 
hypoxic burden, which was presented as a poten-
tial predictor of cardiovascular disease (CVD)-
related mortality. The hypoxic burden index aims 
to characterize just intermittent hypoxemia typi-

cal of OSA and not persistent hypoxemia com-
monly present in other respiratory diseases. 
Accordingly, it was defined as the area under the 
oxygen saturation curve only in the desaturations 
associated with apneas or hypopneas. A subject- 
specific search window is defined by segmenting, 
overlapping using a common synchronization 
point at the end of each event, and finally averag-
ing all the oximetry segments linked to annotated 
respiratory events of the individual (i.e., apneas 
and hypopneas both obstructive and central, 
regardless their association to a desaturation or an 
arousal). Finally, the total hypoxic burden is com-
puted as the cumulative sum of individual areas 
normalized by the total sleep time. The authors 
found that the hypoxic burden index was a strong 
predictor of CVD mortality in different popula-
tions (Osteoporotic Fractures in Men Sleep Study, 
hazard ratio 2.73, 95%CI 1.71–4.36; Sleep Heart 
Health Study, hazard ratio 1.96, 95%CI 1.11–
3.43) independent of the AHI/ODI and traditional 
measures of hypoxemia (CT90, minimum satura-
tion). In a subsequent study, Kim et  al. (2020) 
found a significant association between an incre-
ment (1 SD increment in a log- transformed space) 
in the hypoxic burden index and the increase in 
blood pressure (1.1% increase in systolic blood 
pressure, 95%CI 0.1–2.1%; 1.9% increase in dia-
stolic blood pressure, 95%CI 1.0–2.8%) in 
patients not using hypertensive medication.

Concerning the morphology of events, Otero 
et al. (2012) proposed a set of indices aimed at 
parameterizing additional features of desatura-
tions that are not usually considered in the diag-
nosis and characterization of OSA severity. These 
indices include not only measures of duration 
and depth but also features related to the velocity 
of both the fall and rise parts of the desaturation. 
The following measures were defined: (i) dura-
tion of the desaturation; (ii) average and mini-
mum (i.e., nadir point) values of the saturation 
throughout the whole event; (iii) elapsed time 
from the beginning of the event until the nadir 
point is reached as well as from the nadir to the 
end of the desaturation; (iv) overall drop in the 
saturation during the fall part of the event and 
overall increase in the rise section; (v) slope of 
both the fall and the rise parts of the event; and 
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(vi) the desaturation area, measured as the area 
enclosed between the straight line joining the 
starting and ending points on the event and the 
saturation curve. In addition, these oximetry- 
based measures were computed to characterize 
the whole overnight oximetric recording: (i) 
mean saturation throughout the recording; (ii) 
basal saturation; (iii) difference between the 
basal value and the mean value; (iv) percentage 
of the sleep time while the patient is in hypox-
emia; and (v) area between a straight line set to 
the basal saturation value and the oximetry curve.

When assessing the relevance of these indices 
in the context of OSA diagnosis, the authors 
found that the most common oximetry features 
(duration of the desaturation, average, and mini-
mum values) were not selected using a battery of 
automated feature selection processes. The most 
relevant oximetry indices were the following: (i) 
percentage of time in hypoxemia; (ii) difference 
between basal and average values; (iii) area 
between basal level and the oximetry profile; (iv) 
saturation increase during the rise part of the 
desaturation associated with apnea events; and 
(v) saturation drop during the fall section of the 
desaturation associated with apnea events. 
Individually, the performance of these 
morphology- related desaturation indices in the 
detection of OSA ranged 81–90.9% accuracy 
(86.5–95.7% sensitivity; 47.8–76.1% 
specificity).

13.2.5  Oximetry and Deep Learning 
Approaches

Deep learning is changing the paradigm of both 
image and signal processing in the field of medi-
cine. Traditional machine learning methods rely 
on the so-called feature engineering, where mod-
els are fed with features previously derived from 
the signals based on the knowledge of the prob-
lem under study. Thus, this is a human-driven 
approach, and so it is highly dependent on the 
skills of the researchers to compose a relevant fea-
ture set. On the contrary, deep learning is able to 
learn hidden complex patterns directly from the 
raw signal (Faust et al., 2018), avoiding the bias 
linked to an a priori known limited set of indices. 
To do that, deep learning techniques use architec-
tures with multiple levels of representation or data 
abstraction (Goodfellow et al., 2016), commonly 
different types of neural networks, such as convo-
lutional or recurrent deep neural networks.

In the context of OSA, deep neural networks 
have been used in the last years for automated 
decision-making (Mostafa et  al., 2019). 
Table  13.6 summarizes the main goals of deep 
learning approaches in the framework of OSA 
involving the oximetry signal. Main tasks focus 
on abbreviated OSA diagnosis and automated 
sleep staging. Nikkonen et  al. (2019) applied a 
fully connected deep neural network to estimate 
the AHI directly from overnight oximetry (10- 

Table 13.6 Techniques and approaches involving deep learning and oximetry in the management of OSA

Goals Methods
Automated diagnosis
Classification of segments (normal vs. apneic) and 
subsequent estimation of the AHI (short segments: 1- to 
5-min length epochs, with or without overlapping)
Mostafa et al. (2020a, b), Bernardini et al. (2021)
Direct regression of the AHI (larger segments: 10- to 
20-minute length epochs, with or without overlapping)
Nikkonen et al. (2019), Leino et al. (2021), Vaquerizo-Villar 
et al. (2021)

Dense fully connected neural networks
Convolutional neural networks (CNN)
Recurrent neural networks (RNN)
Long short-term memory (LSTM)
Convolutional + dense (CNN+ dense)
Convolutional + recurrent (CNN + RNN)

Sleep staging (short segments: 30 s epochs)
Casal et al. (2021)
2-class categorization (wake vs. sleep)
3 class (wake vs. NREM (N1/N2/N3) vs. REM)
4-class (wake vs. light sleep (N1/N2) vs. deep sleep (N3) vs. 
REM)
5-class (wake vs. N1 vs. N2 vs. N3 vs. REM)

Recurrent neural networks (RNN)
Long short-term memory (LSTM)
Gated recurrent unit (GRU)
Convolutional + recurrent (CNN+ RNN)
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min epochs with 98% overlap were used), achiev-
ing 0.96 intra-class correlation coefficient (ICC) 
with actual AHI. Using the estimated AHI, 90.9% 
of patients were classified in the correct OSA 
severity group. On a subsequent study by this 
research group, Leino et  al. (2021) proposed a 
convolutional neural network instead, in order to 
estimate the rate of respiratory events overnight 
using single-channel oximetry (10-min epochs 
with 98% overlap). They obtained 0.97 ICC and 
88.3% overall four-class accuracy in a test set 
composed of patients commonly referred to the 
sleep unit due to suspicion of OSA, while 0.97 
ICC and 77.9% four-class accuracy were reached 
in a test set of patients with acute cardiovascular 
disease. Similarly, Vaquerizo-Villar et al. (2021) 
implemented a convolutional neural network 
aimed at estimating the AHI from oximetry alone 
(20-minute segments with no overlapping), 
reaching ICC values ranging 0.58–0.96 in differ-
ent extensive test datasets. Using the estimated 
AHI, the overall three-class accuracy varies 
between 60.2% and 72.8%.

Mostafa et al. (2020a) used shorter epochs (1, 
3, and 5  min with 1-minute overlap) to imple-
ment an event-based approach (detection of 
apneas) using different architectures of convolu-
tional neural networks, achieving accuracies 
ranging 84.8–94.2%. In a subsequent study 
(Mostafa et  al., 2020b), the same group imple-
mented a new convolutional neural network 
architecture based in the same approach, report-
ing patient-based accuracies of 95.7% and 100% 
in different test datasets. In a recent study by 
Bernardini et  al. (2021), oximetry (2.5-minute 
epochs) is analyzed under a deep learning 
approach both alone (using a recurrent neural 
network) and together with ECG (combining 
convolutional and recurrent neural networks). A 
long short-term memory (LSTM) neural network 
(a kind of recurrent deep neural network) reached 
67.6% and 63.3% accuracies under per-second 
and per-patient classification approaches, respec-
tively. Using ECG segments as inputs to a deep 
learning architecture that combines convolutional 
and recurrent blocks, 76.9% and 73.3% accura-
cies were reported for the same performance 
assessment schemes. Interestingly, when both 

ECG and oximetry were analyzed jointly (2D 
input), the network achieved 81.5% and 93.3% 
accuracies for per-second and per-patient classi-
fication, respectively, i.e., +4.6% and +20.0% 
increase compared to the use of ECG alone.

In automatic sleep staging, only one study has 
used the raw oximetry signal (Casal et al., 2021). 
In this work, recurrent neural networks are used 
to discern wakefulness from sleep (binary classi-
fication) using blood oxygen saturation and heart 
rate from pulse oximetry (30-sec epochs), report-
ing 90.1% accuracy and 0.74 Cohen’s kappa. 
Similar approaches exist using the photoplethys-
mogram (PPG) signal from pulse oximetry 
instead of the blood oxygen saturation or pulse 
rate times series, achieving promising perfor-
mance (84.2% accuracy) in a two-class classifi-
cation problem (Malik et  al., 2018), while the 
accuracy decreases to 80.1%, 68.5%, and 64.1% 
for three-, four-, and five-stage classification 
tasks, respectively (Korkalainen et al., 2020).

13.3  Discussion and Conclusions

The great amount of indices derived from the 
oximetry signal existing in the literature (Del 
Campo et  al., 2018; Terrill, 2020; Levy et  al., 
2021) is representative of the high relevance of 
this biomedical recording in the framework of 
OSA. Recent reviews and meta-analyses summa-
rizing all the research made around oximetry dur-
ing the last years confirm this intuition. In a 
systematic review by Uddin et al. (2018), single- 
channel oximetry raises as an effective biomedi-
cal signal to implement binary expert systems for 
automated OSA detection (OSA positive vs. 
OSA negative). Similarly, in the recent meta- 
analysis by Wu et al. (2020), oximetry is found to 
yield remarkable specificity in the detection of all 
OSA severity groups. In the context of pediatric 
OSA, the meta-analysis by Gutiérrez-Tobal et al. 
(2021b) revealed that top performance method-
ologies were those involving oximetry, particu-
larly for the detection of moderate and severe 
cases, showing also less variability among stud-
ies. Beyond its diagnostic ability, nocturnal 
oximetry dynamics have been also found to be 
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associated with clinical and epidemiological out-
comes (Suen et al., 2019; Terrill, 2020), increas-
ing its usefulness as essential tool for integrated 
management of OSA.

Since first attempts to characterize changes in 
overnight oximetry by means of the minimum 
saturation value, ODIs, and CTs, different 
approaches have been applied to obtain as much 
information as possible from the recording, 
including characterization of the data histogram 
using different statistics, analysis in the fre-
quency domain with different methods of power 
spectral density estimation, nonlinear analysis, 
parameterization of the parts of the desaturation, 
quantification of the area enclosed within each 
desaturation, and, recently, deep learning. All 
these methodologies have yielded relevant indi-
ces in the characterization of OSA severity. 
Despite being one of the first measures developed 
for that aim, usually used as benchmark for com-
parison purposes, the ODI stands out for its great 
individual accuracy, rarely outperformed by uni-
variate approaches. Moreover, the ODI has been 
found as an essential predictor under multivariate 
schemes, being systematically selected within 
the final optimum feature subsets. In the same 
regard, statistical, spectral, and nonlinear vari-
ables, as well as the novel hypoxic burden mea-
sures, have shown major complementarity, 
leading to a significant performance increase 
when input features are properly selected via 
automated variable selection procedures (Álvarez 
et al., 2010, 2012, 2013). Additionally, oximetry 
in general, and particularly ODI, has also shown 
significant complementarity with other cardiore-
spiratory signals related to OSA, such as pulse 
rate (Álvarez et al., 2009; Garde et al., 2014) and 
airflow (Gutiérrez-Tobal et  al., 2015; Álvarez 
et al., 2020; Barroso-García et al., 2021b) in both 
adults and children.

Besides the nonlinear methods based on tradi-
tional entropy and complexity measures, novel 
nonlinear methods, such as multiscale entropy, 
detrended fluctuation analysis, and symbolic 
dynamics, recently demonstrated major effi-
ciency when applied to the oximetry signal. 
Nevertheless, ApEn, SampEn, CTM, and LZC 
are predominantly used under multivariate 

approaches instead of MSE scales, DFA slopes, 
and symbolic entropy. Although these methods 
are computationally demanding, it would be 
important to promote their use to prospectively 
validate their accuracy and to include them in the 
available toolboxes for automated signal process-
ing of oximetry.

Concerning the novel measures of hypoxemia 
named hypoxic burden indices (saturation impair-
ment time, desaturation severity, hypoxia load, 
and hypoxic burden), they have been found to pro-
vide complementary data to the AHI/ODI and con-
ventional hypoxemia measures (CT90, minimum 
saturation). This suggests that not only the recur-
rence but also the morphology (depth and dura-
tion) of the events have jointly a significant impact 
on the characteristics of respiratory- related dis-
eases and associated comorbidities. Nevertheless, 
this “information gain” has not become a signifi-
cant performance increase regarding automated 
detection of OSA from oximetry. Thus, further 
research is encouraged to exploit all the diagnostic 
capability available in these indices. On the other 
hand, hypoxic burden measures have demon-
strated to be robust predictors of cardiovascular 
status and mortality due to the intermittent hypox-
emia typical of OSA (Muraja-Murro et al., 2014; 
Khoshkish et  al., 2018; Azarbarzin et  al., 2019; 
Kim et  al., 2020). These novel hypoxemia mea-
sures seem to outperform conventional indices 
(overnight minimum saturation, CT90, and ODIs), 
which performed modestly as predictors of cardio-
vascular events (stroke, heart failure) and related 
mortality (Kendzerska et  al., 2014; Stone et  al., 
2016; Gellen et al., 2016). Nonetheless, due to the 
dissimilarities in the computation of these new 
parameters, thorough research and prospective 
validation are still needed to fully understand the 
link between each particular index and patient 
outcomes.

In regard to the usefulness of artificial intel-
ligence, relevant recent reports highlight its 
potential to boost sleep medicine (Goldstein 
et  al., 2020; Watson & Fernandez, 2021; 
Malhotra et al., 2021). Concerning the oximetry 
signal, a number of automated expert systems 
have been developed for OSA diagnosis, mostly 
using feature engineering and traditional 
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machine learning models for both binary and 
multiclass classification of patients, as well as 
regression of the AHI. Nevertheless, deep learn-
ing approaches recently raised as valuable tool 
able to boost the diagnostic ability of oximetry, 
mainly when applied to categorize segments 
(apneic vs. normal) and predict the AHI using 
oximetry alone. The next step (individual indi-
ces, multivariate analysis, artificial intelligence, 
deep learning) should be the application of 
eXplainable Artificial Intelligence (XAI) tech-
niques to thoroughly interpret the  particularly 
complex models derived from deep learning. 
XAI methods are able to identify which parts of 
the oximetry signal mainly contribute to the 
final decision. Thus, XAI might be used to con-
firm the relevance of sections of the desaturation 
event highlighted in some studies, whose wide-
spread application is commonly hindered by 
more popular indices. For example, higher satu-
ration values and resaturations have shown sig-
nificant relevancy and complementarity 
(Sánchez-Morillo & Gross, 2013; Sánchez- 
Morillo et  al., 2014; Álvarez et  al., 2018), 
although they have been marginally used in 
multivariate subsequent studies. Furthermore, 
XAI approaches have the potential to provide 
clinicians with new oximetric features with the 
upmost diagnostic capability hidden until now 
in the raw oximetry signal.

During the last two decades, the oximetry sig-
nal has been found to provide high-performance 
indices in the framework of OSA management. 
With the improvement of medical technology in 
terms of portability, autonomy, and computa-
tional capability, and taking into account the sim-
plicity, low cost, and high availability of 
oximeters, peripheral blood oxygen saturation 
raises as a key signal in the development of sim-
ple as well as accurate diagnostic tests for OSA. 
Moreover, oximetry could be an essential tool to 
foster sleep medicine toward the concept of pre-
cision and personalized medicine. However, both 
greater standardization in the definition of avail-
able indices and extensive validation of the novel 
measures derived from the signal processing the-
ory are still needed to increase generalizability of 
overnight oximetry as an alternative abbreviated 
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