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v

Sleep apnea is a sleep disorder with a very high prevalence and many health 
consequences. As such it is a major health burden (Benjafield et al., 2019). 
Sleep apnea has been systematically explored only a little more than 40 years 
now (Guilleminault & Dement, 1978). Major impacts of sleep apnea are 
sleepiness and associated risks for accidents (Bonsignore et al., 2021). Major 
health impacts are cardiovascular risk and pathophysiological traits, even if 
this is currently much debated when focusing on the apnea-hypopnea index 
as the measure for sleep apnea severity (Arnaud et al., 2020). Sleep apnea is 
a disorder which is a chronic condition and can be treated successfully.

The disorders of sleep-disordered breathing have largely supported the 
growth of sleep medicine in general from a small specialty field to a major 
spectrum of disorders in the arena of medical specialties. This activity 
helped to convert the niche field of sleep research into sleep medicine, a 
clinical discipline with its own departments, its own center certification, 
physician certification, dedicated conferences, journals, and research activ-
ities. The recognition and importance have grown so much that the new 
International Classification of Disorders by WHO in its 11th version, being 
launched in 2022, has added a new section on sleep and wake disorders 
with its own range of codes. This worldwide recognition will enable the 
growth of medical education on sleep physiology, sleep pathology, and spe-
cific sleep disorders.

The diagnostic field for sleep disorders, and for sleep apnea specifically, 
is strongly linked to the development of new and recent methods, which 
allow long-term recording and analysis of physiological functions during 
sleep. Sleep and sleep apnea are not just identified by taking a single blood 
sample or by a single measurement by a physician at a visit, but sleep 
recording requires the continuous recording of biosignals. This is compa-
rable to monitoring of vital functions during anesthesia or intensive care. 
Because of this methodological challenge, biomedical engineering as well 
as new sensor and analysis technologies are closely linked to the develop-
ment of sleep apnea diagnosis. New technologies helped to a large extent 
develop new diagnostic and treatment modalities for sleep-disordered 
breathing. Sleep apnea diagnostic research is now linked to the develop-
ment of new wearables, nearables, and smartphone apps, and profits much 
from the ubiquitous development of photoplethysmography recording 
everywhere.
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Artificial intelligence is playing a very important role in analyzing sleep 
recordings and, particularly, in automatizing several of the stages of sleep 
apnea diagnosis. Since the generalization of computerized analysis in the 
1990s, automated processing of cardiorespiratory and neuromuscular signals 
from polysomnographic studies provided a number of indices able to assist 
sleep experts in the characterization of the disease (Shokoueinejad et  al., 
2017). Parameterization of the influence of apneic events on biological sys-
tem dynamics has relied on widely known techniques from the engineering 
field, such as spectral and nonlinear analysis. Currently, there is a demand for 
novel alternative metrics able to overcome the limitations of the standard 
apnea-hypopnea index concerning its low association with patient symptoms 
and outcomes (Malhotra et al., 2021). In this regard, signal processing and 
pattern recognition are going to play a key role. In addition, machine learning 
has also shown its usefulness in the last decades (Uddin et al., 2018) and, like 
many other areas in our society, sleep apnea diagnosis is rapidly entering the 
deep learning era (Mostafa et al., 2019) and big data. These new analytical 
techniques, along with the advances in health device development, are the 
main hope for reaching a reliable diagnostic paradigm shift. One that finally 
could cope with the disease prevalence, personalized interventions, and run-
away spending.

Beyond the widespread application of machine learning methods to auto-
mate polysomnography scoring and to provide sleep experts with tools for 
automated diagnosis, artificial intelligence has also the potential to signifi-
cantly improve the management of sleep apnea treatment. Recent advances in 
the framework of big data together with remote monitoring capability of 
novel treatment devices are able to promote conventional sleep medicine 
towards a real personalized medicine. Identification of refined clinical pheno-
types of patients will allow the development of precision interventions, 
enabling the quick identification of the treatment option that best fits the par-
ticular characteristics of a patient (Watson & Fernández., 2021). Similarly, 
machine learning is able to accurately model patient’s adherence from usage 
data (pressure setting, residual respiratory events, mask leaks) derived from 
portable treatment devices, improving the efficacy of available therapies 
(Goldstein et al., 2020). Thus, artificial intelligence is going to significantly 
change the management of sleep apnea treatment in the short term.

This volume gives a basis of current knowledge on sleep research, sleep 
medicine, and sleep apnea, with a strong focus on new challenges and new 
research directions in the diagnosis of sleep apnea and its treatment. The 
volume contains three sections: the first one is on physiology and pathophysi-
ology, the second one is on diagnostic advances, and the third one is on treat-
ment advances. Each chapter author was asked to not only describe the state 
of the art but also develop visions for future research as seen from their spe-
cial angle and viewpoint.
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As editors, we think that the volume can serve as an introduction to the 
field of sleep-disordered breathing, can serve as a basis for educating in sleep- 
disordered breathing, and can immediately stimulate and trigger new research 
in physiology, clinical trials, and biomedical engineering for sensors and 
analysis methodologies.

Berlin, Berlin, Germany Thomas Penzel
Valladolid, Spain Roberto Hornero 
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4Diagnosis of Obstructive Sleep 
Apnea in Patients with Associated 
Comorbidity

Félix del Campo, C. Ainhoa Arroyo, 
Carlos Zamarrón, and Daniel Álvarez

Abstract

Obstructive sleep apnea (OSA) is a heteroge-
neous disease with many physiological impli-
cations. OSA is associated with a great 
diversity of diseases, with which it shares 
common and very often bidirectional patho-
physiological mechanisms, leading to signifi-
cantly negative implications on morbidity and 
mortality. In these patients, underdiagnosis of 
OSA is high. Concerning cardiorespiratory 
comorbidities, several studies have assessed 
the usefulness of simplified screening tests for 
OSA in patients with hypertension, COPD, 
heart failure, atrial fibrillation, stroke, morbid 
obesity, and in hospitalized elders.

The key question is whether there is any 
benefit in the screening for the existence of 
OSA in patients with comorbidities. In this 
regard, there are few studies evaluating the 
performance of the various diagnostic proce-
dures in patients at high risk for OSA. The 
purpose of this chapter is to review the exist-
ing literature about diagnosis in those diseases 
with a high risk for OSA, with special refer-
ence to artificial intelligence-related methods.

Keywords

Obstructive sleep apnea · Comorbidities · 
Diagnosis · Polysomnography · Respiratory 
event · Sleep staging · Home sleep apnea 
testing · Screening · Decision support system 
· Artificial intelligence · Machine learning

4.1  Introduction

Obstructive sleep apnea (OSA) is a chronic, com-
plex, and heterogeneous respiratory disease of 
high prevalence in the general population, with 
important health consequences. OSA is associ-
ated with a great diversity of diseases. In the 
clinical evaluation of these patients cardiorespi-
ratory, cerebrovascular, and metabolic comorbid-
ities potentially linked with OSA should be 
investigated (Bonsignore et al., 2019; Marin-Oto 
et  al., 2019). It shares common and very often 
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bidirectional pathophysiological mechanisms, 
which have significant implications on morbidity 
and mortality. The most frequent comorbidities 
are found in the vascular field, respiratory or met-
abolic among others. Associated diseases vary 
according to sex, being more frequent in patients 
with a higher severity of OSA.

Table 4.1 shows the most frequent comorbidi-
ties in which screening studies have been per-
formed due to the high possibility of presenting 
OSA. In these patients, underdiagnosis of OSA is 
high. There are many reasons for this, including 
the fact that these patients often do not present 
with daytime sleepiness or the usual symptoms 
of OSA. Moreover, the symptoms of the disease 
themselves often mask the presence of OSA. 
Added to this is the fact that there is little diag-
nostic suspicion on the part of the physician 
(Costa et  al., 2015). Hence the importance of 
early diagnosis in order to initiate treatment as 
soon as possible. In most of these comorbidities, 
the treatment of OSA is a therapeutic objective in 
itself, as it acts as a risk factor.

The key question is whether there is any ben-
efit in the screening for the existence of OSA in 
patients with comorbidities. Currently, there are 
not enough studies to establish the existence of a 
benefit in the general asymptomatic population 
(Jonas et al., 2017; Rosen et al., 2017). Given the 
high frequency of OSA in these diseases with the 
possible benefit of treatment, the need for 

 diagnostic studies in these patients can be 
assumed. However, some authors advocate the 
need to confirm the benefits of treatment through 
randomized studies, especially in relation to 
CPAP treatment, as a step prior to the need for 
screening (Sanchez-de-la-Torre et al., 2021, Kee 
et  al., 2018). Moreover, there are few studies 
evaluating the performance of the various diag-
nostic procedures in patients at high risk for OSA 
(Treptow et al., 2015).

Table 4.2 summarizes the main approaches to 
the abbreviated diagnosis of OSA in the pres-
ence of comorbidities using simplified tools. 
Among the level IV procedures, pulse oximetry 
has been one of the most exhaustively studied 
biological signals for screening. Table 4.3 shows 
the characteristics of the main approaches to 
OSA diagnosis in patient with comorbidities 
based on the analysis of pulse oximetry. 
Biomedical signal processing techniques and 
artificial intelligence- based tools have hardly 
been applied to evaluate their usefulness in the 
group of diseases where there is a high risk of 
associated OSA.

The purpose of this chapter is to review the 
existing knowledge regarding diagnosis in those 
diseases with a high risk for OSA, with special 
reference to artificial intelligence-related 
methods.

4.2  Chronic Obstructive 
Pulmonary Disease (COPD)

Both COPD and OSA are two very prevalent dis-
eases in the general population, which are associ-
ated with high morbidity, especially in the area of 
cardiovascular disease. Their association has 
been widely described in the literature. Both dis-
eases are characterized by low-grade inflamma-
tion (Zamarrón et  al., 2008). Their association 
increases morbimortality and the costs associated 
with them, which makes it necessary to maintain 
an integral vision of the patient, being able to 
identify both diseases early and optimize their 
control (Jelic, 2008). The use of CPAP in these 
patients has been shown to reduce mortality 
(Marin et al., 2010).

Table 4.1 Main conditions commonly related to OSA 
where abbreviated screening tests have been assessed

High-risk 
patients

Obesity (BMI >35)
Chronic obstructive pulmonary 
diseases
Asthma
Congestive heart failure
Atrial fibrillation
Refractory hypertension
Type 2 diabetes
Stroke
TIA
Pulmonary hypertension
High-risk driving populations
Preoperative for bariatric surgery
Chronic renal failure
Retinal vein occlusion
Pregnancy
Down syndrome

F. del Campo et al.
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Table 4.3 Summary of the studies using oximetry to assist in OSA diagnosis in patients with comorbidities and espe-
cial risk groups

Author (year) Dataset (n)
Gold 
standard Aim

Variables 
from 
oximetry

Classification 
technique

Se 
(%)

Sp 
(%)

Acc 
(%)

Ward et al., 
(2012)

173 patients 
with 
congestive 
heart failure 
regardless 
suspicion of 
OSA

Unattended 
PSG (either 
in-lab or 
at-home)

Binary 
classification 
(AHI ≥15 
events/h)

ODI3 from 
portable 
oximetry

ODI3 > 7.5 
desaturations/h

97 32 –

Aaronson 
et al., (2012)

56 stroke 
patients 
admitted to 
rehabilitation 
regardless 
suspicion of 
OSA

In-hospital 
attended 
RP

Binary 
classification 
(AHI ≥15 
events/h)

ODI4 from 
RP

ODI4 > 15 
desaturations/h

77 100 –

Scott et al., 
(2014)

59 COPD 
admitted for 
pulmonary 
rehabilitation 
regardless of 
suspicion of 
OSA

In-hospital 
PSG

Binary 
classification 
(AHI ≥15 
events/h)

Visual 
inspection 
and ODI4 
from 
in-lab 
portable 
oximetry

Manual visual 
inspection
Automated 
ODI4

59
60

60
63

–
–

Andrés-Blanco 
et al., (2017)

407 patients 
suspected of 
OSA with 
and without 
COPD

In-hospital 
PSG

Regression of 
AHI, 
common 
cut-offs

Statistical, 
spectral, 
and 
nonlinear

MLP ANN: 
AHILAB ≥ 15
   Non-COPD 97.5 58.6 87.3
   COPD 96.2 56.3 86.8

AHIHOME ≥ 15
   Non-COPD 97.5 24.1 78.2
   COPD 86.5 37.5 75.0

Lajoie et al., 
(2020)

674 COPD 
patients

In hospital 
PSG
Home 
nocturnal 
oximetry

Binary 
Classification

Visual 
inspection

Cyclical 
changes

Mohammadieh 
et al., (2021)

98 patients 
atrial 
fibrillation

In hospital 
PSG
Home 
HSAT III

Severity 
categories 
AHI

AHI
ODI3

ODI 4,95
AHI=5.15

84.4
79.7

79.4
88.2

0.87 
0.89

Sharma et al., 
(2017)

105 patients 
hospitalized 
heart failures

In-hospital 
Apnea link
High 
resolution 
oximetry

Binary
Classification
AHI >5

ODI3 ODI>5 89.8 50 83.8

Siarnick et al., 
(2021)

49 patients 
hospitalized 
stroke

In hospital 
PSG
Oximetry 
before 
7 days

Binary 
classification
(AHI ≥15 
events/h)

Variability 
index
ODI3

ODI 15.3 90.5 75

Lin et al., 
(2018)

Stroke Home 
HSAT

Binary 
classification

Variability 
index
ODI3

ODI>5 88.4 91.7 89.3

Acc accuracy, AHI apnea-hypopnea index, AHIHOME estimated apnea-hypopnea index from at-home oximetry, AHILAB 
apnea-hypopnea index from PSG, ANN artificial neural network, COPD chronic obstructive pulmonary disease, HSAT 
home sleep apnea test, MLP Multilayer perceptron, ODI3 oxygen desaturation index ≥3%, ODI4 oxygen desaturation 
index ≥4%, OSA obstructive sleep apnea, PSG polysomnography, RP respiratory polygraphy, Se sensitivity; Sp speci-
ficity, Var. ind. variability index
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Despite the high prevalence of its association, 
nocturnal polysomnography is not routinely rec-
ommended in COPD patients. In the same regard, 
spirometry is not routinely performed in clinical 
practice in patients with OSA.

As in the rest of the comorbidities, the diagno-
sis of OSA is often underestimated even though 
these patients often present symptomatology in 
relation to sleep quality. Gunduz found in his 
study that 58% of patients with COPD and no 
symptoms had OSA (Gunduz et al., 2018).

Nocturnal polysomnography would be indi-
cated in patients with COPD in the presence of 
excessive daytime sleepiness, observed nocturnal 
apneas, morning headache as well as if cor pul-
monale or polycythemia is present (McNicholas, 
2017). Similarly, the presence of clinical deterio-
ration disproportionate to pulmonary function, 
with the presence of excessive daytime sleepi-
ness, polycythemia, or pulmonary hypertension 
with a baseline PaO2 greater than 60 mmHg point 
to the diagnosis of OSA. Recently, the American 
Thoracic Society in its clinical guidelines on 
non-invasive ventilation in patients with COPD 
and chronic hypercapnic respiratory failure rec-
ommends that before starting ventilation it is nec-
essary to perform an OSA screening using the 
STOP-BANG questionnaire (Macrea et  al., 
2020).

The most optimal method of diagnosing OSA 
in these patients is not determined (Malhotra 
et  al., 2018). Very different clinical question-
naires have been used for the prediction of OSA 
in COPD patients: Epworth, STOP-BANG, 
Berlin Questionnaire, and Sleep Apnea Clinical 
Score. Most of them include small population 
sizes, presenting poor performance with high 
sensitivity and moderate specificity.

Thus, in a study carried out in a Chinese popu-
lation using the Berlin and STOP-BANG ques-
tionnaires, the sensitivity and specificity achieved 
was similar to that obtained in patients without 
COPD (Wu et al., 2020), although greater diag-
nostic accuracy was obtained in patients with less 
pulmonary involvement measured in terms of 
forced expiratory volume in 1 second (FEV1) or 
forced vital capacity (FVC). Xiong et  al., com-
pared the diagnostic performance of various 

questionnaires in 335 patients with COPD and 
OSA, finding that the questionnaire with the best 
performance was the Berlin questionnaire (Xiong 
et  al., 2019). Particularly, for an AHI >15 
events/h, they obtained a sensitivity of 77.6%, 
and a specificity of 55% and an area under the 
receiver operating characteristics curve (AUC) 
equal to 0.737. The specificity was higher in 
patients with severe OSA.

Arsian et  al., in a comparative study of the 
usefulness of various questionnaires (Berlin, 
STOP-BANG and Epworth) in patients with sus-
pected OSA, evaluated the impact of various 
comorbidities in 1003 patients, finding that the 
STOP-BANG showed the highest sensitivity and 
the highest PPV (97% and 91.4%, respectively) 
(Arsian et al., 2020). The STOP-BANG showed 
high sensitivity in the group of patients with 
comorbidities (hypertension, diabetes mellitus, 
coronary artery disease, COPD, asthma), while 
notably lower values of specificity were reached 
with respect to the group without comorbidity 
(Arsian et al., 2020).

Other authors have evaluated the symptoms of 
OSA themselves in the development of other pre-
dictive models. Thus, the study by Soler et  al. 
does not show that clinical features such as male 
sex, body mass index (BMI), or neck circumfer-
ence are relevant in the prediction of OSA in 
these patients (Soler et al., 2017) Other authors, 
such as Faria et al., were interested in a new pre-
dictive model called Sleep Apnea Clinical Score 
and randomly applied it to 24 patients with 
COPD referred to PSG, in order to assess both 
the BQ and the Epworth sleepiness scale. They 
reported that their predictive model had a better 
diagnostic performance, with an AUC of 0.82, 
higher than that obtained by the other question-
naires. In addition, a sensitivity close to 60% was 
obtained, although in this study the STOP-BANG 
was not included (Faria et al., 2015).

There are very few studies that evaluated the 
usefulness of respiratory polygraphy in patients 
with COPD.  Oliveira et  al., in one of the first 
studies in this regard, evaluated the usefulness of 
a respiratory polygraphy (Stardust) in patients 
with COPD (Oliveira et al., 2012). The study was 
initially performed in 72 patients, in GOLD 
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stages II and III, but due to difficulties during 
enrollment, finally only 26 patients were 
included, which implied the presence of a high 
failure rate. The intra-class correlation coefficient 
(ICC) between the AHI derived from the respira-
tory polygraphy and that from standard PSG was 
0.61 (0.28–0.8) in the hospital setting and 0.47 
(0.11–0.72) at the patient’s home. Graphical 
analysis showed a tendency to overestimate the 
AHI in mild cases and underestimate it in the 
more severe ones. The authors conclude that 
there is insufficient significant evidence to sup-
port the use of this diagnostic procedure in these 
subgroups of patients.

For the same aim, Chang et al. evaluated 90 
patients diagnosed with COPD with a high prob-
ability of OSA who underwent home polygraphy 
(NoxT3) followed by a one-week in-hospital 
polysomnographic and polygraphic recording 
(Chang et  al., 2019). The home study showed 
good agreement with the AHI and the rest of the 
studies, especially in the most severe cases. The 
authors reported 95% sensitivity, 78% specificity, 
88% positive predictive value (PPV), and 89% 
negative predictive value (NPV) compared to 
PSG, with a kappa coefficient of 0.746 for an 
AHI >5 events/h. The failure rate was 5.6%. The 
CT90 obtained was higher in polygraphic record-
ings, both at home and in the hospital. The 
authors highlight the usefulness of these systems 
in patients with COPD, whose results are similar 
to those obtained in patients without comorbidity. 
Additionally, they reported similar results 
between manual and automatic analyses. The 
same equipment has been used for this purpose in 
the presence of various comorbidities:  psychiatric 
diseases, stroke, ischemic heart disease, chronic 
kidney disease, and others, obtaining an underes-
timation of severity in each of the groups of dis-
eases, finding a greater dispersion in relation to 
the concordance of NOX-T3 and polysomnogra-
phy (To et al., 2021).

The usefulness of peripheral arterial tonome-
try in patients with COPD versus polysomnogra-
phy was evaluated by Holmedahl et  al. in 16 
patients with COPD (Holmedahl et  al., 2019). 
Concerning sleep staging, they obtained an accu-
racy of 63% and an agreement of 0.418 kappa, 

while an ICC of 0.957 (CI95% 0.878–0.985) was 
reached for the AHI estimation task. It is notice-
able that the concordance was lower than that 
previously obtained in control patients and OSA 
(lower specificity). However, the accuracy for 
AHI was adequate. One of the limitations of the 
study was the small sample size, as well as its 
inability to differentiate between central and 
obstructive apneas.

Jen et  al. evaluated the usefulness of the 
WatchPAT system with respect to polysomnogra-
phy in 33 patients diagnosed with COPD (Jen 
et  al., 2020). WatchPAT is a new device that 
records the peripheral arterial tone (PAT), heart 
rate, oximetry, actigraphy, position, snoring, and 
chest movements. It shows good agreement with 
the AHI, unaffected by the severity of lung func-
tion. The WatchPAT system overestimated total 
sleep and REM sleep time. The agreement with 
polysomnography was 78.8%, with an overesti-
mation of the AHI in 18.2% of the cases, con-
cluding that the WatchPAT is a good alternative 
test in patients with COPD for a severe-to- 
moderate degree of OSA. In patients with an AHI 
>15 events/h, they obtained a sensitivity of 92.3% 
and a specificity of 65%. A cut-off point of 20 
events/h allowed for the same degree of severity, 
a sensitivity of 76.9%, and a specificity of 90%. 
Its main difficulty lies when the events are very 
close in time.

The role of nocturnal oximetry as an aid in the 
diagnosis of OSA in patients with COPD pres-
ents important limitations, because of the desatu-
rations linked to COPD that these patients present 
during sleep. However, it has the advantage of 
being easy to access, being one of the tools most 
widely used as a screening test in patients with 
suspected of OSA. (Del Campo et  al., 2018). 
Therefore, the design and validation of auto-
mated techniques for OSA detection based on 
unsupervised oximetry at home is justified in the 
context of COPD patients, which can benefit 
from an early therapy by means of CPAP.

One of the first approaches to the diagnostic 
utility of nocturnal oximetry in the diagnosis of 
OSA in patients with respiratory diseases was 
performed by Pépin et al. (1991). These authors 
attempted to evaluate the diagnostic behavior of 

F. del Campo et al.



49

the delta index in different respiratory diseases. 
The number of COPD patients included in the 
study was notably small (only eight subjects), 
which significantly limits the generalizability of 
their results. The value of the delta index obtained 
in patients with COPD was very low compared to 
other respiratory diseases also analyzed in the 
study, although they obtained a high and more 
balanced sensitivity-specificity pair.

Scott et  al. sought to develop a strategy to 
interpret nocturnal pulse oximetry and evaluate 
its ability to detect OSA in patients with stage 3 
and 4 COPD (Scott et  al., 2014). Consecutive 
COPD patients referred for simultaneous oxime-
try and polysomnography were studied. Patients 
were diagnosed with OSA if the polysomno-
graphic AHI was >15 events/h. These criteria 
consisted of visually identifying oximetry 
“events” (sustained desaturation ≥4% in 1 hour 
time scale), “patterns” (≥ 3 similar desaturation 
cycles/15 minutes time scale), and the automated 
oxygen desaturation index (ODI). AUC, sensitiv-
ity, specificity, and accuracy were computed. Of 
the 59 patients (27 males), 31 had OSA (53%). 
Among these 59 patients, 35 were correctly iden-
tified as having OSA corresponding to an accu-
racy of 59%, with a sensitivity and specificity of 
59% and 60%, respectively. The AUC was 0.57 
(CI95%: 0.55 to 0.59). Using a computerized 
software for scoring desaturation events (hypox-
emia ≥4% for ≥10 s) and using a cutoff of ≥15 
events/h (of sleep time) for diagnostic criteria, 
the sensitivity was 60%, the specificity 63%, and 
the AUC was 0.64 (CI95% 0.62–0.66) (Scott 
et  al., 2014). Interpretation of pulse oximetry 
tracing was of modest diagnostic value in 
 identifying OSA in patients with moderate to 
severe COPD.

Lajoie et  al., within the INOX clinical trial 
(multicenter, randomized, double-blind, placebo- 
controlled trial of nocturnal oxygen therapy in 
patients with COPD and nocturnal oxygen desat-
uration), performed a polysomnography on those 
desaturating patients who presented a cyclic 
desaturation pattern suggestive of OSA, confirm-
ing the existence of OSA in 50% of the patients 
and concluding that the oximetry tracing is not 
useful (Lajoie et al., 2020). However, the study 

was performed in a small sample population and 
with particular constraints.

In one of the few existing studies applying 
machine learning techniques, Andrés et al. evalu-
ated the usefulness of an automated diagnostic 
algorithm for OSA diagnosis in COPD patients 
based on nocturnal oximetry. They extracted sta-
tistical, spectral, and nonlinear characteristics 
from the oximetry signal, which fed a regression 
multilayer perceptron (MLP) artificial neural net-
work aimed at estimating the AHI, both in the 
hospital and at home (Andrés-Blanco et al.,  
2017). The algorithm was validated in patients 
with and without COPD. A high ICC was obtained 
both in the hospital (0.937 vs. 0.936) and at the 
patient’s home (0.731 vs. 0.788). For an AHI >15 
events/h, the algorithm reached 87.3% and 86.8% 
accuracy in patients with and without COPD in 
the supervised hospital setting, respectively, while 
it reached 78.2% and 75% at home. It is con-
cluded that an algorithm based on a MLP neural 
network model can be a good, simplified test in 
patients with moderate-to-severe OSA regardless 
of the presence of associated COPD.

Another area of interest, given the implica-
tions between OSA and the different comorbidi-
ties, is the diagnosis of these conditions in 
patients referred for OSA (Bar et al., 2021). This 
is the case of Levy et al., who tried to identify the 
presence of COPD using nocturnal oximetry in 
patients undergoing diagnostic PSG due to clini-
cal suspicion of OSA on the basis that very often 
these patients are underdiagnosed (Levy et  al., 
2021). The study was performed in 350 patients, 
70 of whom had COPD. Clinical and oximetric 
characteristics were used as input to the auto-
mated algorithm. Both logistic regression and 
random forest were assessed for this task. The 
random forest model obtained an AUC of 0.94 
and a F1 score of 0.89.

COPD, like other respiratory comorbidities, 
may need continuous monitoring of CO2. Often 
the presence of hypoventilation is not easily evi-
denced in these patients. The measurement of 
CO2 in exhaled air (end-tidal CO2) has become a 
reliable diagnostic method to assess the presence 
of hypoventilation during sleep in these patients 
(Mayer et al., 2017).
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4.3  Cardiovascular Diseases

Several studies have shown the existence of a 
high prevalence of OSA in patients with cardio-
vascular disease, estimated at 40–60%, although 
the prevalence varies depending on the type of 
cardiovascular disease. Despite this, as in the rest 
of the comorbidities, OSA is very often underdi-
agnosed (Costa et al., 2015), mainly because 
these patients do not present the usual symptoms. 
Given the high prevalence of OSA in cardiovas-
cular diseases together with the benefits of treat-
ment, it is useful to design and assess abbreviated 
tests for these patients (McEvoy et al., 2016).

A recent scientific statement by the American 
Heart Association regarding OSA and cardiovas-
cular disease (Yeghiazarians et al., 2021) recom-
mends the following indications for screening for 
OSA: resistant/poorly controlled hypertension, 
pulmonary hypertension, and recurrent atrial 
fibrillation after cardioversion or ablation. 
Screening for the presence of symptoms was rec-
ommended as well in the following situations: 
heart failure, tachy-brady syndrome, sick sinus 
syndrome, ventricular tachycardia, survivors of 
sudden cardiac death, and stroke. Likewise, as 
future research directions and areas of research, it 
should be highlighted the use of artificial intelli-
gence and machine learning for the processing 
and identification of actionable data in OSA 
patients and the development of personalized 
therapies (Gutierrez-Tobal et al., 2019).

4.3.1  Atrial Fibrillation

Atrial fibrillation is one of the most prevalent 
arrhythmias in the general population. It is highly 
frequent in patients with OSA (Traaen et  al., 
2020), both in men and women, with a preva-
lence ranging from 49% to 62%. Both entities 
share common pathophysiological mechanisms 
of a complex nature. It is accepted that treatment 
with CPAP can reduce recurrences of these epi-
sodes, especially in patients with episodes of par-
oxysmal atrial fibrillation, although most of these 
studies are observational (Youssef et al., 2018). It 
is important to know that atrial fibrillation is cur-

rently a common reason for consultation in sleep 
units, which demands further analysis.

OSA is considered a modifiable risk factor by 
most clinical guidelines, recommending its 
screening in a broad sense (Calkins et al., 2017), 
although it is not clearly specified how and when 
the sleep study should be indicated. The European 
Cardiology Society recommends screening for 
OSA in patients with asymptomatic AF before 
initiating rhythm control treatment such as cath-
eter ablation (Hindricks et al., 2021), although its 
implementation in clinical practice is not estab-
lished. For other authors, screening would be jus-
tified in patients with AF if the patient had an 
episode of stroke or suffer from recurrent arrhyth-
mias (Marulanda-Londoño & Chaturvedi, 2017). 
In this regard, there is great interest in determin-
ing the most optimal option for diagnosing these 
patients (Kadhim et  al., 2020), as well as opti-
mizing their diagnosis and treatment, given that 
very often there is a lack of coordination between 
cardiologists and sleep units (Desteghe et  al., 
2021).

OSA is frequently underdiagnosed in patients 
with AF. As with other comorbidities, it is always 
necessary to ask patients about symptoms related 
to sleep-disordered breathing. Several question-
naires have been used for screening (BQ, STOP- 
BANG, Non-OSA), although these questionnaires 
have not been validated in this population (Genta 
et  al., 2017; Mohammadieh et  al., 2021), being 
considered of little value as a screening method 
as they have a low negative predictive value and a 
low specificity (Ranjan, 2020). A main limitation 
is the absence of somnolence in these patients, so 
that the application of the Epworth test will pro-
vide a low sensitivity. The Berlin questionnaire 
shows high sensitivity (86–100%) but lower 
specificity (30–89%). In 579 patients with AF, 
Traaen et  al. reported a sensitivity of 84% and 
specificity of 45% using the STOP-BANG, with 
respiratory polygraphy as a diagnostic method 
(Traaen, 2020). The authors attributed the lower 
performance to the lack of drowsiness reported 
by these patients.

In one of the few comparative studies, May 
et  al. evaluated the efficacy of these question-
naires in patients with atrial fibrillation with 
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respect to a control group, with polysomnogra-
phy being the reference method (May et  al., 
2020). They included 150 patients in each of the 
groups. The authors assessed the Epworth, 
STOP-BANG, BQ, and NoSAS questionnaires, 
as well as a new model based on snoring, age, 
neck circumference, and BMI.  In both groups, 
the clinical questionnaires showed worse perfor-
mance in patients with AF, except for the STOP- 
BANG. Thus, in the presence of AF they obtained 
an AUC of 0.75 (CI95% 0.66–0.86) and 0.79 
using the NoSAS, for an AHI> 15 events/h as 
cutoff for clinical diagnosis. The inclusion in the 
model of clinical variables such as neck circum-
ference, BMI, snoring, and age improves the 
results obtained by the STOP-BANG. The model 
reached a sensitivity of 45% and a specificity of 
97% for an AHI> 15 events/h. The inclusion of 
physiological variables such as heart rate or left 
atrial volume did not improve the performance of 
model.

Starkey et al. tried to evaluate the usefulness 
of the Berlin and NoSAS questionnaires, as well 
as a technique called acoustic pharyngometry, in 
188 patients using the ApneaLink as a diagnostic 
method (Starkey et  al., 2021). They concluded 
that the questionnaires were not useful to predict 
OSA in these patients. With the same purpose, 
Delesie et  al. evaluated the usefulness of these 
questionnaires in 100 patients referred to study 
for atrial fibrillation, to whom a polysomno-
graphic study was performed (Delesie et  al., 
2021). None of them showed sufficient discrimi-
native ability (OSA50, BQ, STOP-BANG, 
MOODS, SACS, and Epworth), with an AUC 
<0.70  in the detection of severe OSA. In these 
patients, Abumuamar et al. also found that these 
questionnaires present low specificity 
(Abumuamar et al., 2018).

With respect to the use of respiratory polygra-
phy, its diagnostic accuracy is not as clearly 
established as in studies performed with oxime-
try, which makes it necessary to search for accu-
rate and validated techniques (Hendricks, 2020). 
Thus, Linz et al. performed in-hospital polysom-
nography independent of clinical suspicion in 
439 patients, subsequently obtaining the oxime-
try signal from the PSG (Linz et al., 2018). The 

prevalence of severe-to-moderate OSA was 
33.9%. The authors evaluated the performance of 
the desaturation index using a new automatic 
algorithm that takes into account resaturation 
after desaturation in order to increase specificity. 
For AHI >15 events/h, they found an AUC of 
0.951(0.929–0.972), while 0.932 was reached for 
an AHI >30 events/h. With a desaturation index 
cutoff point of 4.1, they obtained a sensitivity of 
91% and a specificity of 83% for an AHI >15 
events/h, thus being useful to rule out the disease, 
showing a negative predictive value of 95%.

Mohammadieh et al. evaluated the usefulness 
of various clinical questionnaires and the value of 
the oximetry tracing extracted from a respiratory 
polygraph (apnea-link) performed at the patient’s 
home in a series of 98 patients referred for AF 
(Mohammadieh et  al., 2021). In this study, the 
ODI showed excellent diagnostic accuracy for an 
AHI >5 events/h, with an AUC of 0.874. 
Similarly, using the automated scoring tool, the 
ApneaLink reached 0.925 AUC for moderate and 
0.925 AUC for severe OSA.

In a multicenter study, Tauman et al. evaluated 
the usefulness of automatic analysis with 
WatchPAT versus PSG in 101 patients with AF 
(Tauman et al., 2020). He obtained a good corre-
lation, as well as 88% sensitivity and 63% speci-
ficity, with 0.89 PPV and an AUC of 0.85 for a 
cutoff of AHI >15 events/h. A kappa agreement 
of 0.42 was obtained with respect to sleep phases, 
being higher in the absence of AF episodes dur-
ing the night. There were no significant differ-
ences neither in relation to the persistence or not 
of episodes of AF during the night nor concern-
ing medication.

In these patients, the use of new generation 
implanted pacemakers has been used to assess 
the presence of OSA by incorporating a respira-
tory monitoring algorithm, although one of its 
drawbacks is the inability to assess the duration 
of apneas. A recent meta-analysis evaluated 5 
cohort studies using the measurement derived 
from transthoracic impedance provided by vari-
ous electronic devices and Holters, in order to 
assess its usefulness in screening for OSA 
(Wyckmans et  al., 2021), being of particular 
interest in patients with severe OSA. In the same 
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regard, Gonçalves et al. achieved a diagnosis of 
62% in 81 patients who underwent pacemaker 
implantation, reporting an AUC 0.76 and a sensi-
tivity of 78% (Gonçalves et al., 2019). Algorithms 
implemented in implanted defibrillators (apnea 
scan system) have also been used for this aim. 
Thus, in 25 patients with AF, Defaye et  al. 
obtained an ICC of 0.67 (CI 95% 0.39–0.84) with 
respect to polysomnography. For a cut-off point 
of 30 events/h, they obtained a sensitivity of 
100% and a specificity of 80% (Defaye et  al., 
2019).

This type of device has also proven usefulness 
in monitoring AF patients, especially those for 
whom OSA is not evident in the first study. An 
example of monitoring is the non-contact biomo-
tion radar sensor (SleepMinder™; ResMed) that 
allows monitoring over long periods of time and 
has been used in the evaluation of patients with 
atrial fibrillation or in patients with heart failure.

4.3.2  Chronic Ischemic Heart 
Disease

In chronic ischemic heart disease, clinical ques-
tionnaires do not accurately predict the presence 
of OSA in the patients. Szymanski et al. used a 
model for the identification of risk factors in the 
development of OSA based on clinical parame-
ters. In their model, they use logistic regression 
based on clinical and echocardiographic data 
from patients who have suffered an acute myo-
cardial infarction (Szymanski et al., 2015). Their 
model takes into account left ventricular diastolic 
diameter, interventricular septal thickness, diag-
nosis of hypertension, BMI, and diastolic pres-
sure, all of which are independent risk factors for 
a high risk of OSA, reaching 0.87 AUC.

4.3.3  Chronic Heart Failure

OSA is highly prevalent in patients with heart 
failure, estimated at 47–76%. It is accepted that 
the association between OSA and heart failure 
has implications in the prognosis of the disease 
(Valika & Costanzo 2017), being frequent in the 

presence of both central and obstructive apneas. 
Various societies such as the American College 
of Cardiology (ACC), the American Heart 
Association (AHA), and the Heart Failure Society 
of America have pointed out in their respective 
guidelines the importance of diagnosing the exis-
tence of a sleep-disordered breathing and initiat-
ing the correct treatment in these patients (Yancy 
et al., 2017). Screening in these types of patients 
has been performed in two contexts: in the stable 
phase or during hospital admission because of an 
exacerbation, the latter being considered a good 
opportunity, although the performance of screen-
ing methods in these patients is widely debated 
(Series, 2015).

The Epworth sleepiness scale, Stop-Bang, and 
the Berlin questionnaire have been used as the 
main screening questionnaires. Parisot et al. pro-
posed a clinical scale in which age, BMI, the 
New York Heart Association (NYHA) scale, and 
sex are combined to help identify OSA in patients 
with heart failure using multivariate logistic 
regression (Parisot et al., 2015). For an AHI ≥ 5 
events/h, they obtained 78.9% sensitivity, 61.5% 
specificity, and an AUC of 0.73.

Type III polygraphs have been shown to be 
useful in these subjects, both in patients hospital-
ized for exacerbation and in chronic forms. In 
one of the first studies, Quintana-Gallego et  al. 
evaluated the usefulness of home polygraphy in 
75 patients with heart failure who underwent hos-
pital polysomnography and respiratory polygra-
phy in a randomized way over a period of 30 days 
(Quintana-Gallego et al., 2004). For an AHI cut-
off point >5 events/h, the diagnostic accuracy 
was 78.6%, while for an AHI>15 events/h the 
sensitivity was 68.4% and the specificity 94.6%. 
On the other hand, respiratory polygraphy was 
able to detect the presence of both central and 
obstructive apneas (Quintana-Gallego et  al., 
2004).

De Vries et al. used the ApneaLink device in 
90 patients with stable chronic heart failure, 
using home polysomnography as a reference (De 
Vries et  al., 2015). These authors obtained an 
ICC of 0.85 (0.78–0.90) with a kappa coefficient 
of 0.59 for classification into the common degrees 
of OSA severity using automated scoring with 
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ApneLink. For an AHI >15 events/h, the sensitiv-
ity obtained was 92.9% and the specificity 91.9%. 
In this study, the AHI was overestimated in more 
than two-thirds by the portable device, consider-
ing its usefulness just to rule out the disease (De 
Vries et al., 2015).

Araujo et al. used the ApneaLink in 35 patients 
with heart failure, simultaneously performing a 
PSG as reference (Araujo et al., 2018). Using a 
cutoff of AHI >15 events/h, they obtained a sen-
sitivity of 83.3%, specificity of 91.3%, accuracy 
of 88.6%, and 0.93 AUC. For values above AHI 
>20 events/h, automated scoring with the 
ApneaLink showed a trend towards underesti-
mate. The authors found greater efficacy in 
patients with more severe OSA (Araujo et  al., 
2018).

Similarly, Aurora et  al. evaluated the useful-
ness of this portable sleep monitoring in 57 
patients admitted for heart failure. They reported 
a significant performance, with 95.8% sensitivity 
and 80% specificity, obtaining better results in 
relation to central apneas (Aurora et al., 2018).

Li et al. used a type 3 equipment to identify 
the different respiratory events in 84 patients 
admitted for exacerbation of heart failure. For an 
AHI >5 events/h, they reported a sensitivity of 
86.7%, specificity of 76.5%, and a PPV of 92.9%. 
The equipment used was able to identify both 
obstructive and central apneas, as well as Cheyne- 
Stokes respiration (Li et al., 2021).

Sharma et al. performed a prospective study in 
a population composed of 105 patients admitted 
for heart failure who underwent simultaneous 
high-resolution oximetry and respiratory polyg-
raphy (ApneaLink) as a reference method 
(Sharma et al., 2017). The presence of OSA was 
confirmed in 87% of the sample. For an ODI of 5 
events/h, the sensitivity was 89.8%, specificity 
50%, and accuracy 83%. In patients with an AHI 
>30 events/h, sensitivity remained high and spec-
ificity increased to 87.6%. However, saturation 
values differed between methods, probably due 
to the use of different oximeters (Sharma et al., 
2017).

Central sleep apneas are frequent in patients 
with heart failure, and there are hardly any 

studies that evaluate the usefulness of simpli-
fied diagnostic approaches in this type of 
apneas. Thus, polysomnography continues to 
be the reference diagnostic method in this con-
text. However, it is advisable for this type of 
equipment to use inductive plethysmography 
bands for the detection of respiratory effort. 
Within the simplified procedures, such as 
ApneaLink, an algorithm for Cheyne-Stokes 
breathing detection using the flow cannula is 
available. Using this algorithm, the recognition 
of this respiratory pattern achieved a sensitiv-
ity of 87% and a specificity of 94% (Weinreich 
et al., 2009). These same authors used spectral 
entropy to automatically detect this pattern 
(Weinreich et al., 2008). Similarly, the useful-
ness of detecting the presence of Cheyne-
Stokes respiration by means of neural networks 
based on the spectral analysis of oximetry has 
been described, obtaining also a high perfor-
mance. Using respiratory polygraphy, Li et al. 
obtained a sensitivity of 94.6% for the detec-
tion of Cheyne-Stokes respiration (Li et  al., 
2021).

In its initial design, the WatchPAT system did 
not have the possibility of identifying the pres-
ence of central apneas, an aspect of particular 
importance in diseases such as heart failure, 
where patients may present central sleep apnea. 
This device currently has a specific module for 
the identification of central apneas. Accordingly, 
in a recent multicenter study performed in 11 
centers that included 84 patients with heart fail-
ure and/or atrial fibrillation, correlations higher 
than 0.8 were reached for both AHI and central 
AHI, obtaining in the latter case 67% sensitivity, 
100% specificity, 100% PPV, and 94.7% NPV for 
an AHI >15 events/h, with a kappa index of 0.77 
(Pillar et al., 2020).

Concerning the use of machine learning 
approaches, artificial neural networks have been 
applied to identify certain respiratory patterns, 
such as the presence of Cheyne-Stokes respira-
tion, using a probabilistic neural network based 
on spectral analysis, oximetric indices, and the 
delta index (El-Solh et al., 2003; Weinreich et al., 
2008).
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4.4  Cerebrovascular Diseases

In a systematic review by Dong et al., an overall 
prevalence of OSA in patients with cerebrovascu-
lar disease was found to be 61.9% (Dong et al., 
2018). In this framework, OSA is considered an 
independent risk factor for stroke. Treatment 
with CPAP reduces the risk of suffering a stroke 
episode, as well as having a beneficial effect on 
sleepiness, quality of life, and blood pressure 
control. However, its efficacy on the occurrence 
of new events is in doubt, as the researchers of 
the SAVE study found no evidence of a reduction 
in events including stroke episodes (McEvoy 
et al., 2016).

The high prevalence and possible treatment 
implications in these patients (Seiler et al., 2019) 
have led various scientific societies, such as the 
American Heart Association-American Stroke 
Association, to publish secondary stroke preven-
tion guidelines in order to recommend that 
patients with ischemic stroke or transient isch-
emic attack (TIA) should consider an OSA 
assessment for diagnosis (Kleindorfer et  al., 
2021). However, these recommendations have 
hardly been implemented in clinical practice or 
accepted by all societies (Warner et al., 2019). In 
a study involving a total of 1000 patients, only 
17% were offered a sleep test (Brown et  al., 
2020) and were hardly asked about symptoms 
related to OSA within the first 3 months. 
Unfortunately, the guidelines on this subject have 
not changed significantly. This emphasizes the 
need for randomized studies to ascertain the ben-
efits of CPAP in these types of patients.

The study of the association between sleep 
apnea and stroke has been carried out both at the 
hospital level in the acute phase (Huhtakangas 
et al., 2019) and in the follow-up of these patients, 
although in the latter case the prevalence of OSA 
may be overestimated.

Clinical questionnaires have not been shown 
to be useful as screening methods in patients who 
have had a stroke (Sico et al., 2017; Takala et al., 
2018), since they have moderate sensitivity and 
low specificity. Other authors even question the 
need for a pretest questionnaire given the high 

pretest probability of OSA in patients with cere-
brovascular disease.

Several questionnaires have been used in these 
types of patients, mainly the Berlin and the Stop- 
Bang questionnaires (Boulos et  al., 2016; 
Senaratna et al., 2017). Some authors have pro-
posed modifications to the Stop-Bang question-
naire (Boulos et  al., 2019) to increase its 
diagnostic performance, removing the neck cir-
cumference item due to its low impact in these 
patients, and incorporating oxygen saturation 
values, either ODI4% or presenting an oxyhemo-
globin saturation < 88%, which added one point 
to the questionnaire. For their study, Boulos et al. 
used either polysomnography or the ApneaLink 
at home in 231 patients. For an AHI >15 events/h 
and a cutoff point of 3 desaturations, they 
obtained a sensitivity of 98.5%, but a very low 
specificity of 23%, although the diagnostic per-
formance was superior to that of the question-
naire. This is a consequence of the absence of 
somnolence and obesity in these patients.

Katzan et al. retrospectively assessed a modi-
fication of the Stop-Bang questionnaire in 
patients who had previously undergone the ques-
tionnaire and polysomnography (Katzan et  al., 
2016). In 208 patients, they created six logistic 
regression-based predictive models, obtaining 
better results with the use of continuous variables 
than with dichotomous variables as in the STOP- 
BANG. The authors found high sensitivity in all 
the automated models, while low specificity. The 
proposed model was able to detect 14% more 
patients with OSA.

Similarly, the development of predictive mod-
els based on logistic regression has been 
attempted by other authors (Siarnick et al., 2021). 
Thus, Siarnik et al. included clinical and echocar-
diographic characteristics, such as BMI, diastolic 
dysfunction, and history of wake-up stroke onset, 
as input variables to a model, which was applied 
to 120 stroke patients. The proposed model 
reached a sensitivity of 82.9%, a specificity of 
71.9%, and an AUC of 0.81  in patients with 
severe-to-moderate OSA. The performance was 
lower for central apneas (Siarnick et al., 2021).

Sico et  al. developed a new model (sleep 
inventory) based on symptoms and anthropomet-
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ric measurements, using home polysomnography 
as a reference (Sico et  al., 2017). This model 
achieved an AUC of 0.73, failing to classify 25% 
of patients. It reached high sensitivity and very 
low specificity both in development and valida-
tion stages.

Respiratory polygraphy is a good alternative 
to polysomnography in these patients (Boulos 
et  al., 2021; Bravata et  al., 2017; Saletu et  al., 
2018), although it is necessary to select the 
appropriate diagnostic procedure. Using the 
SOMNOcheck polygraph for detecting moderate- 
to- severe OSA, Kepplinger et al. found a sensi-
tivity of 94.7% in 61 patients with mild ischemic 
accidents (Kepplinger et al., 2013). Similarly, in 
the context of a rehabilitation unit, Saletu et al. 
only studied those patients who presented a posi-
tive result in the polygraphy, so he eventually 
assessed 33 patients, reporting a good concor-
dance in the Bland-Altman plot (Saletu et  al., 
2018).

Boulos et al. conducted a comparative study in 
250 post-stroke patients randomized to home 
study versus PSG (Boulos et al., 2021), although 
94 patients were included in the group of home 
sleep apnea test and 71 in the polysomnography 
group. They found a higher prevalence of OSA in 
the group of patients who underwent a home 
study, with a higher proportion of patients with 
CPAP being more cost-effective.

Huhtakangas et al. assessed the feasibility of 
OSA screening in the acute phase of ischemic 
stroke using automatically and manually scored 
cardiorespiratory polygraphy (Huhtakangas 
et al., 2019). A diagnosis of OSA was confirmed 
in 111 (59.3%) out of 187 subjects. Automated 
scoring properly identified respiratory events. A 
high agreement was obtained (ICC  =  0.869), 
being inferior for central and mixed apneas.

In a multicenter, prospective study conducted 
in 1330 patients who presented an ischemic 
stroke, Brown et al. found a prevalence of 67%. 
They used machine learning algorithms to build 
different models for automated diagnosis 
(Random Forests, Boosted Regression Models, 
XGBoost, Deep Learning and Stacked 
Ensembles) (Brown et al., 2019). One of the limi-
tations of the study is that the reference test is the 

ApneaLink. For an AHI >10 events/h and by 
means of a Random Forest approach, they 
reached an AUC of 0.75, correctly classifying 
72.5% of the validation samples. Superior perfor-
mance was achieved compared to that obtained 
with a logistic regression and the rest of the algo-
rithms assessed, but the gain was small, showing 
AUC ranging 0.68–0.73. The most important 
variables in the model were neck circumference, 
BMI, waist circumference, age, NIHSS, and pre- 
stroke daytime sleepiness (Brown et al., 2019).

Oximetry has been widely used in these 
patients. In patients recovering from stroke, 
ODI4% provided a sensitivity of 77% and a spec-
ificity of 100% in patients with moderate-to- 
severe OSA (Aaronson et al., 2012). In the same 
regard, Lin et al. studied 254 patients undergoing 
an ApneaLink study, showing that an ODI <5 
ruled out the disease and an ODI >5 confirmed 
moderate-to-severe OSA for an RDI >15 
events/h, with a specificity of 96.4% (Lin et al., 
2018). However, they did not perform polysom-
nography as reference standard.

Siarnick et  al. evaluated the usefulness of 
pulse oximetry in 420 patients with acute stroke 
(Siarnik et  al., 2020). A control polysomnogra-
phy was conducted, although the proportion of 
patients performing both tests was low. With an 
ODI-based cutoff point of 15.3, the authors found 
a sensitivity of 90.5%, specificity of 75% for 
moderate-to-severe OSA, correctly classifying 
81.6% with an AUC of 0.86 (CI95% 0.76–0.97) 
(Siarnik et al., 2020).

Boulos et  al. extracted the oximetry from 
either the PSG or the ApneaLink in 231 patients 
who had a stroke in the previous year (Boulos 
et  al., 2016). The STOP-BANG was performed 
as abbreviated test as well. A score < 3 achieved 
the highest sensitivity, while 4 led to the highest 
specificity. They included in the STOP-BANG 
questionnaire certain oximetric values, improv-
ing the performance of this tool, being capable of 
identifying both high- and low-risk patients. It is 
important to note that the authors removed the 
neck circumference item from the questionnaire 
(Boulos et al., 2016).

Although deep learning techniques have been 
applied in the field of sleep-disordered breathing 
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(Vaquerizo-Villar et  al., 2021), they have been 
scarcely used in patients with additional comor-
bidities. Bernardini et al. proposed an algorithm 
based on ECG and saturation monitoring obtained 
from unselected patients, to which they applied a 
convolutional-based deep-learning framework to 
detect apneas events (Bernardini et  al., 2021). 
The authors validated their algorithm in 30 
patients using in-laboratory polysomnograpy as 
reference.

Leino et  al. used the oximetric recording as 
input to an algorithm also based on a convolu-
tional neural network and they assessed its use-
fulness as a screening test for OSA in patients 
with cerebrovascular disease (Leino et al., 2021). 
The algorithm was previously developed in 
patients without cerebrovascular disease, while 
the authors proposed to assess its generalizability 
in these types of patients. The design group was 
composed of 1379 oximetry recordings obtained 
by means of a home polygraph (Embletta) and 
validated in 77 patients admitted for ischemic 
stroke or TIA who underwent a polygraph study, 
as well as in 394 patients with suspected OSA. A 
4% drop in hypopneas was used instead of the 
common 3% decrease. The deep-learning model 
was trained to estimate the respiratory event 
index (REI). The agreement was close to 80% in 
the classification by degree of severity, although 
it was higher in the suspected OSA group. Errors 
in REI estimation appeared in apneas without 
desaturation. The main inconvenience is that cen-
tral apneas, which are frequent in these patients, 
are not estimated. The ICC was 0.982 in patients 
with OSA and 0.972  in cerebrovascular disease 
patients, being the sensitivity and specificity high 
in both groups and in all degrees of severity. A 
correct classification of the categories was 
obtained in 88.3% and 77.9%, although the accu-
racy was better in the OSA suspicion group for a 
cutoff point of AHI >15 events/h. The sensitivity 
was 97.3% and the specificity 98.6% in the first 
group, while 92.3% sensitivity and 96.1% speci-
ficity were achieved in the second group.

Capnography monitoring has been used as a 
screening method for OSA in stroke patients. 
Dziewas et al. (2005) found a significant correla-
tion between the AHI estimated from capnogra-

phy and that derived from respiratory polygraphy. 
Assessing a population composed of patients 
with an AHI >15 events/h and using a cutoff 
point of 5 events/h for the estimated AHI from 
capnography, they achieved 100% positive pre-
dictive value, 86% negative predictive value, 
87% sensitivity, and 100% specificity. 
Nevertheless, a trend to overestimation was 
observed.

All these studies have great heterogeneity in 
terms of design and timing of the disease, while 
the post-stroke data underestimate the true 
prevalence.

4.5  Diabetes

OSA is frequently associated with type 2 diabe-
tes mellitus. It is estimated that 55%–85% of 
patients with this type of diabetes have also con-
comitant OSA (Tahrani et  al., 2015). Several 
studies have shown that OSA contributes to the 
presence of glucose intolerance and the develop-
ment of insulin resistance, hindering its control 
and leading to the appearance of vascular compli-
cations (Lindberg et al., 2012). The influence of 
CPAP treatment on glucose metabolism is not 
well known. The studies found in the literature 
report contradictory findings, although better 
results are linked with long-term therapy. 
Currently, there is a lack of evidence concerning 
the potential benefit of screening for OSA in 
these patients. Nevertheless, it is accepted to per-
form a diagnostic test in those patients showing 
symptoms (Donovan et  al., 2017), although the 
most appropriate diagnosis method is not clearly 
established. In one of the few studies in this con-
text, Chen et al. analyze the diagnostic ability of 
nocturnal oximetry derived from standard PSG 
along with other clinical variables in 440 patients 
with diabetes. The authors report a high diagnos-
tic accuracy (AUC 0.94) for an ODI >5 events/h, 
with a sensitivity of 92% and a specificity of 
73%, while for an ODI >25 events/h the sensitiv-
ity was 93% and the specificity 85% (Chen et al., 
2021). Kurinami et al. (2018) analyze body com-
position data obtained via electrical bioimped-
ance of 186 patients with decompensated type 2 
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diabetes mellitus who required admission. They 
obtained an AUC of 0.70, with a great imbalance 
in the sensitivity-specificity pair (27.1% vs. 
90.5%). In addition, the presence of OSAS was 
confirmed using a conservative diagnostic thresh-
old (RDI >19 events/h). The use of clinical ques-
tionnaires (STOP-BANG, Berlin) shows no 
difference among them in terms of performance, 
being their overall diagnostic capacity 
suboptimal.
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