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Nanomedicina (CIBER-BBN), Spain
victor.martinez.cagigal@uva.es

Abstract. Code-modulated visual evoked potentials (c-VEPs) have po-
tential as a reliable and non-invasive control signal for brain-computer
interfaces (BCIs). However, these systems need to become more user-
friendly. Non-binary codes have been proposed to reduce visual fatigue,
but there is still a lack of adaptive methods to shorten trial durations.
To address this, we propose a nonparametric early stopping algorithm
for the non-binary circular shifting paradigm. The algorithm analyzes
the distribution of unattended commands’ correlations and stops stimu-
lation when the most probable correlation is considered an outlier. This
proposal was evaluated offline with 15 healthy participants using p-ary
maximal length sequences encoded with shades of gray. Results showed
that the algorithm could stop stimulation in under two seconds for all se-
quences, achieving mean accuracies over 95%. The highest performances
were achieved by bases p = 2 and p = 5, attaining 98.3% accuracy with
ITRs of 164.8 bpm and 121.7 bpm, respectively. The proposed algorithm
reduces required cycles without compromising accuracy for c-VEP-based
BCI systems.

Keywords: Early stopping · non-binary codes · code-modulated visual
evoked potential (c-VEP) · brain–computer interface (BCI) · electroen-
cephalography (EEG).

1 Introduction

Non-invasive brain-computer interface (BCI) systems have the capability of in-
terpreting users’ intentions directly from their electroencephalographic (EEG)
signals and converting them into commands for controlling external devices or
applications [13]. However, decoding such intentions is challenging and requires
the use of control signals that generate measurable responses in the EEG. These
control signals can be generated either by processing external stimuli (exoge-
nous approach) or by performing cognitive tasks (endogenous approach) [13].
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Among other exogenous signals, code-modulated visual evoked potentials (c-
VEPs) stand out as a promising strategy to develop non-invasive BCIs with
high accuracy and speed [7].

In the most common paradigm, known as circular shifting, selectable com-
mands flicker following uncorrelated shifted versions of a binary pseudorandom
sequence [7]. In real-time, the identification of the desired command is deter-
mined by analyzing the correlation between the EEG response and these shifted
templates [7]. Despite the excellent performances, several studies have reported
that the high-contrast changes produced by binary codes, which use black and
white flashes to encode commands, may cause visual fatigue for some users
[5,4,12]. In a previous study, we proposed the use of non-binary sequences en-
coded with different shades of gray to improve user friendliness [6]. The results
indicated that these non-binary codes are suitable for achieving high speed and
accuracy while reducing visual fatigue.

Although c-VEP-based BCIs have great potential, they need to be further
adapted to become more user-friendly technologies. Apart from addressing the
visual fatigue, the adoption of adaptive methods to reduce as much as possible
the trial decoding duration has been also identified as a current challenge in
the literature [7]. In this sense, early stopping techniques that adaptively stop
visual stimulation whenever the BCI is ready to deliver a command selection are
still limited. Many of the previous approaches are incompatible with the circular
shifting paradigm [9,11], require parameter optimization, or are dependent on
the classifier stage [2,3]. Furthermore, none of these methods have been applied
to non-binary stimulation.

The aim of this pilot study is to present a new nonparametric early stopping
technique that is applicable to non-binary c-VEP-based BCIs. The method was
offline tested with 5 different sequences of bases 2, 3, 5, 7 and 11; displayed
at a rate of 120 Hz. The base indicates the number of distinct events that are
encoded within the m-sequence, represented as a shades of gray. For instance, a
base of 2 (i.e., binary) is encoded using solely black and white; whereas a base of
11 uses black, white, and an additional nine intermediate shades of gray [6]. Our
algorithm is noteworthy due to its classifier-independence (filter-based), lack of
need for parameter training (nonparametric), and ability to be implemented in
real-time without being trained with additional EEG recordings. Moreover, to
the best of our knowledge, this is the first early stopping method for non-binary
visual stimulation based on the circular shifting paradigm.

2 Signals

We conducted our study using an offline database consisting of 15 healthy par-
ticipants (mean age: 28.80 ± 5.02 years, 10 males, 5 females), who performed
BCI spelling tasks using the “P-ary c-VEP Speller” application of MEDUSA©,
which is publicly available at www.medusabci.com [10]. Prior to their partic-
ipation, all users provided informed consent. EEG data was collected using a
g.USBamp device (g.Tec, Guger Technologies, Austria) and recorded from 16

https://www.medusabci.com/market/pary_cvep
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Table 1. Details regarding the generation of the p-ary m-sequences.

Base Order
Length
(bits)

Polynomial
Duration∗

(s/cycle)

GF(26) 2 6 63 x6 + x5 + 1 0.525
GF(34) 3 4 80 x4 + 2x3 + 1 0.667
GF(53) 5 3 124 3x3 + 2x2 + 1 1.033
GF(72) 7 2 48 4x2 + 1 0.400
GF(112) 11 2 120 3x2 + x+ 1 1.000
∗ Computed using a monitor refresh rate of 120 Hz.

active channels: F3, Fz, F4, C3, Cz, C4, CPz, P3, Pz, P4, PO7, POz, PO8, Oz,
I1 and I2. The EEG device was grounded at AFz and referenced to the right ear-
lobe. Visual stimuli were presented on a LED FullHD @ 144 Hz monitor (KEEP
OUT XGM24F+ 23.8”), with a refresh rate of 120 Hz. A computer with an Intel
Core i9-11900KF 3.5 GHz processor and 64 GB of RAM (Windows 10 OS) was
used to display the visual stimuli. For additional details, refer to [6].

3 Methods

3.1 Paradigm

The circular shifting paradigm relies on the use of shifted versions of a pseudo-
random sequence to encode individual commands. Therefore, it is crucial that
the sequence exhibits low autocorrelation to facilitate subsequent decoding [7].
Maximal length sequences (i.e., m-sequences) are pseudorandom time series that
demonstrate almost optimal autocorrelation properties, and can be generated by
linear-feedback shift registers (LFSR). M-sequences are determined by: (1) the
base p, i.e. the number of levels (e.g., p = 2 for binary m-sequences); (2) the or-
der r, i.e. the number of LFSR taps; and (3) the generator polynomial expressed
as a Galois Field of p elements, GF(pr), i.e. the arrangement of the LFSR taps
[1]. Apart from other mathematical constraints, the length of p-ary m-sequences
is exactly N = pr − 1 bits, and it is repeated cyclically [6]. Since commands
are encoded with shifted versions of the p-ary m-sequences, the length of the
sequence is directly related to the number of commands that can be encoded
with the same code.

In this study, we utilized five distinct p-ary m-sequences with different bases,
including binary GF(26) with base 2, GF(35) with base 3, GF(53) with base
5, GF(72) with base 7, and GF(112) with base 11. The detailed characteristics
of each code, such as their length and duration when presented at a 120 Hz
rate, are presented in Table 1. The paradigm consisted of a 16-command speller
with adequately spaced lags to prevent any misclassifications. It is worth noting
that a deterministic algorithm was utilized to avoid spurious correlations, as
non-binary (p > 2) m-sequences exhibit periodic phase shifts that lead to high
anti-/correlations. Additional information about this procedure can be found in
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Fig. 1. (A) Gray encoding of each p-ary m-sequence and associated lags for each com-
mand. From top to bottom: base 2, base 3, base 5, base 7, and base 11. (B) Calibration
stage, where a single command flashes according to the original p-ary m-sequence. (C)
Online stage, showing the alphabetical arrangement of the 16 commands. (D) Snapshot
of the binary m-sequence, GF(26). (E) Snapshot of the GF(112) m-sequence.

[6]. Figure 1 depicts the associated lags for each command, the arrangement of
commands, and the gray encoding of each p-ary m-sequence, as well as several
snapshots of the application [10].

3.2 Signal processing

In the calibration stage, the participant is instructed to focus on a single com-
mand encoded by the original p-ary m-sequence without lag, for a duration of k
cycles. First, the EEG signal is preprocessed by a filter bank of bandpass filters
(1-60 Hz, 12-60 Hz, and 30-60 Hz) and a notch filter at 50 Hz, generating three
filtered EEG signals. For each signal, two versions of the EEG response are com-
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puted: (1) the concatenated epochs, A ∈ R[kNs×Nc]; and (2) the epochs averaged
over the k cycles, B ∈ R[Ns×Nc]. Here, Ns represents the number of samples of
a cycle, and Nc represents the number of channels. Subsequently, a canonical
correlation analysis (CCA) is trained to find the spatial filter ωb that maximizes
the correlation between the projected versions of A and B. In this procedure,
B is replicated k times to match the dimensions of A. The main template (i.e.,
for the command without lag) is computed by projecting the averaged signal
with the spatial filter ωb, resulting in x0 = Bωb. Templates for the other com-
mands are calculated by circularly shifting this main template based on their
corresponding lags. After this process, 16 × 3 templates, each for a command
and filtered signal, are obtained. It is worth noting that calibration epochs with
a standard deviation that is three times greater than the average standard devi-
ation of all epochs were discarded before training the CCA [6]. A raster latency
correction was applied to the trained templates, following the recommendation
of Nagel et al. (2018) [8].

During online mode, a similar approach is applied to identify the command at
which the user is looking in real-time. EEG signal is preprocessed, and individual
epochs are averaged and projected using the spatial filter ωb. The correlation
between the resulting projection and all templates is then computed, yielding
ρ̂ ∈ R16×3. After averaging across the filtered signals, ρ ∈ R16×1 is obtained. The
index of the selected command corresponds to the one that yields the highest
correlation value, i.e., argmaxi(ρ) [7].

3.3 Proposed early stopping method

The purpose of an effective early stopping method is to select a command before
a fixed number of cycles have elapsed, enabling real-time adaptation of the signal
processing pipeline to the characteristics of the EEG signal. In a hypothetical
scenario, the selection of a command is expected to take more time when the user
is slightly distracted or when the EEG is contaminated with artifacts, and less
time under ideal conditions. Importantly, a trial is no longer composed of a fixed
number of cycles, but rather a variable number of cycles. Thus, the early stopping
algorithm must make a binary decision each time a cycle is fully displayed: (1)
select the most probable command; or (2) continue the visual stimulation for
one additional cycle.

As detailed in Section 3.2, the online signal processing pipeline calculates a
comparison between the EEG response from the start of the trial to the end of
the current cycle and the command templates, resulting in a correlation vector
ρ ∈ R16×1. After arranging this vector in descending order, ρ1 corresponds to
the most likely command as it represents the highest correlation. The remaining
correlations, ρ2, ρ3, . . . , ρ16, can be considered as spurious correlations associ-
ated with non-attended commands. Additionally, we can widen the number of
observations of spurious correlations by computing the correlation of the EEG
response with all possible shifted versions of the template, not just with those
lags associated to the selectable commands. We end up with a correlation vector
of length N , where N is the length of the p-ary m-sequence. Thus, ρ1 corresponds
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to the selected command, and ρspu = [ρ2, . . . , ρN ] constitutes the distribution
of spurious correlations. A reliable approach to determining whether ρ1 indeed
corresponds to the attended command would be to verify whether it is an outlier
from the distribution ρspu (i.e., its correlation is statistically higher than that
of the presumable non-attended commands).

Various techniques can be used to detect outliers from distributions, including
those based on hypothesis testing or on the interquartile range. In this study, we
suggest employing z-scores due to their simplicity. Assuming that the spurious
distribution is normal, i.e., ρspu ∼ N (µ, σ), we can identify ρ1 as an outlier if
ρ1 − µ > hσ, where h = 3. Thus, we can ascertain that ρ1 is an outlier if it
exceeds the 99.87% percentile of the spurious distribution. Consequently, if ρ1 is
an outlier, the command selection is delivered; otherwise, the visual stimulation
continues with the next cycle.

3.4 Evaluation protocol

This pilot study entailed an exploratory analysis of offline data gathered from
15 healthy participants who completed spelling tasks utilizing a 16-command
c-VEP speller, which was encoded with the p-ary m-sequences GF(26), GF(35),
GF(53), GF(72), GF(112). Specifically, a total of 300 calibration cycles (6 runs
× 5 trials × 10 cycles) and 320 test cycles (2 runs × 16 trials × 10 cycles)
per participant were acquired for each p-ary m-sequence. During the test cycles,
participants selected all commands in alphabetical order twice [6].

4 Results and discussion

4.1 Correlation distributions

Figure 2 depicts the correlations for the selected commands ρ1, as well as for the
non-attended ones ρspu. Results obtained from the Kolmogorov-Smirnov test
reveal that all distributions (ρ1 and ρspu for both calibration and test data) are
normal (p-value < 0.01). Given that the normality assumption is satisfied for the
z-score, the estimated value of 99.87% can be considered accurate. Moreover, a
significant similarity in the distributions between calibration and test data (p-
value < 0.01, Wilcoxon-signed rank test) indicates the potential for optimizing h
using only calibration data without acquiring additional recordings. It is worth
noting that an increase in the number of cycles results in a greater separation
between ρ1 and ρspu distributions. This phenomenon highlights the tradeoff
between speed and accuracy. For instance, stopping in the very early cycles
poses a higher risk of misclassification, but it allows for a faster selection speed.

4.2 Performance analysis

Table 2 displays the performance results, including accuracy and number of cy-
cles, of each participant and p-ary m-sequence. The theoretical maximum accu-
racy, i.e. the minimum number of cycles required to achieve the highest accuracy
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Fig. 2. Distribution of the correlations of the selected commands, ρ1; and the spurious
distributions ρspu for all p-ary m-sequences. Both calibration (blue and orange) and
test (green and red) distributions are shown, including the estimated 99.87% percentile
in test. Only cycles 1, 3, 5, 7 and 10 are depicted for visualization purposes.

(equivalent to 10 cycles in this database), is also included for comparison pur-
poses. As shown, the mean visual stimulation duration of all p-ary m-sequences
is below 2 seconds, with all sequences achieving accuracies exceeding 95%. The
top performances sorted by accuracy are as follows: 98.3% with 1.8 cycles for
GF(53), 98.3% with 2.6 cycles for GF(26), 98.1% with 2.4 cycles for GF(34),
98.1% with 1.8 cycles for GF(112), and 95.6% with 4.1 cycles for GF(72). Ad-
ditionally, the mean information transfer rates (ITR) range from 121.7 to 164.8
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Table 2. Offline results applying early stopping with all p-ary m-sequences
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E.S.: early stopping, T.M.: theoretical maximum (minimum number of cycles to attain
the accuracy that would have been obtained using 10 cycles), %: accuracy, Nc: number
of cycles, avg.: average, std.: standard deviation, ITR: mean information transfer rate
in bit per minute (bpm), dur.: mean duration of the visual stimulation in seconds.
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bpm. These findings suggest that the proposed early stopping algorithm can
deliver fluent command selection while achieving high accuracy.

As could be expected, the shortest m-sequence, GF(72), yielded the lowest
accuracy (95.6%). Figure 1 indicates that the ρ1 and ρspu distributions over-
lapped more in this m-sequence than in the others, especially in the first cycle.
While the average number of cycles for GF(72) is high relative to the others,
which does not necessarily imply a longer trial duration, it would have been
expected to be even higher to cope with this uncertainty. Therefore, individual
optimization of h for each p-ary m-sequence could potentially benefit the sys-
tem’s performance, though further analyses are necessary to gain insight into
this phenomenon.

The theoretical maximum accuracy suggests that trial duration could have
been reduced to between 0.7-1.3 s, with accuracy exceeding 99% achievable
through an ideal early stopping algorithm. This is equivalent to stopping be-
tween the first and second cycle. However, Figure 1 shows that the ρ1 and ρspu

distributions are difficult to separate in the first cycle, resulting in unreliable se-
lections using our method. It remains an open question whether other approaches
can reach this theoretical maximum. Interestingly, the increase in accuracy by
the theoretical maximum is not significant by all p-ary m-sequences (p-value >
0.05, Wilcoxon signed-rank test), except for the GF(72) m-sequence (p-value =
0.0036). Although we assert that our results demonstrate the usefulness of our
algorithm, this observation indicates that there is still room for improvement.

4.3 Limitations and future lines of research

Despite the success of the proposed early stopping algorithm, there are still op-
portunities for enhancing its reliability. To begin with, it is crucial to conduct
an online proof of concept and increase the sample size to improve the statis-
tical power of the results. Additionally, it would be desirable to evaluate the
algorithm’s efficacy with motor-disabled participants. A promising research di-
rection would be also to complement the algorithm with an asynchronous stage
to monitor users’ attention. Currently, the cumulative correlation across cycles
presents a challenge in detecting a change from non-control to control cycles,
as previous non-control epochs could negatively impact the correlation analysis.
Therefore, an asynchronous algorithm could be focused on detecting attention
in single cycles. Another possible avenue for investigation would be to explore
whether an optimization of h between users or p-ary m-sequences could enhance
the final classification.

5 Conclusions

This study introduces a novel early stopping algorithm for non-binary c-VEP-
based BCIs, which presents a promising alternative for minimizing visual fatigue
for end-users. The main strengths of this method are its classifier-independence,
the lack of need for parameter training, and its real-time application without
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requiring additional EEG recordings. In an offline analysis, the algorithm was
found to reduce trial duration to less than 2 seconds while achieving over 95%
accuracy for five different p-ary m-sequences, namely GF(26), GF(34), GF(53),
GF(72), and GF(112). Although the algorithm’s efficacy was demonstrated for
all the tested m-sequences, the highest accuracy was achieved with GF(26) and
GF(53), which attained 98.3% accuracy with 1.4 s and 1.9 s of stimulation,
equivalent to ITRs of 164.8 bpm and 121.7 bpm, respectively. In conclusion, the
proposed early stopping algorithm represents a valuable metric for significantly
reducing the required number of cycles without compromising the system’s ac-
curacy in the circular shifting paradigm.
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sain, P., Hornero, R.: Brain-computer interfaces based on code-modulated visual

https://doi.org/10.1006/nimg.2002.1116
https://doi.org/10.1006/nimg.2002.1116
https://doi.org/10.1006/nimg.2002.1116
https://doi.org/10.1006/nimg.2002.1116
https://doi.org/10.1109/SMC.2018.00114
https://doi.org/10.1109/SMC.2018.00114
https://doi.org/10.3390/computers8020033
https://doi.org/10.3390/computers8020033
https://doi.org/10.3390/computers8020033
https://doi.org/10.3390/computers8020033
https://doi.org/10.1155/2020/7985010
https://doi.org/10.1155/2020/7985010
https://doi.org/10.1155/2020/7985010
https://doi.org/10.1155/2020/7985010
https://doi.org/10.1038/s41598-022-12733-0
https://doi.org/10.1038/s41598-022-12733-0
https://doi.org/10.1038/s41598-022-12733-0
https://doi.org/10.1038/s41598-022-12733-0
https://doi.org/10.1016/j.eswa.2023.120815
https://doi.org/10.1016/j.eswa.2023.120815


Toward Early Stopping Detection for Non-Binary c-VEP-based BCIs 11

evoked potentials (c-VEP): a literature review. Journal of Neural Engineering
18(6), 061002 (2021). https://doi.org/10.1088/1741-2552/ac38cf

8. Nagel, S., Dreher, W., Rosenstiel, W., Spüler, M.: The effect of monitor raster la-
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