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Abstract. Brain-computer interfaces (BCI) based on code-modulated
visual evoked potentials (c-VEP) have shown great potential for com-
munication and device control. These systems encode each command
using di�erent sequences of visual stimuli. Normally, the stimulation pat-
tern is binary (i.e., black and white), but non-binary stimuli sequences
with di�erent shades of gray could reduce eyestrain and improve user-
friendliness. This study introduces a novel approach to decode non-binary
visual stimuli patterns from electroencephalography (EEG) signals using
deep learning. The proposed method uses, for the �rst time, a bit-wise
reconstruction strategy for stimulation patterns encoded with 2, 3, 5, 7
and 11 levels of gray. The performance of the proposed approach was
evaluated on a dataset of 16 subjects, reaching an average command
decoding accuracy over 95% for all stimulation sequences. The high ac-
curacy and speed of the proposed method make it a promising alternative
for user-friendly, high-speed c-VEP-based BCIs.
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1 Introduction

Brain-Computer Interfaces (BCI) enable direct communication between the brain
and an external device, bypassing traditional motor pathways such as muscles
and nerves [14]. BCIs have the potential to transform the way we interact with
technology and the world around us, providing new possibilities for people with
disabilities to control their environment and enhancing the performance of able-
bodied individuals. In this regard, the �eld of non-invasive BCI research is rapidly
advancing, with new technologies and applications being developed and tested
in both clinical and non-clinical settings [14].
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The electroencephalography (EEG) is the most used technique to measure the
brain activity in BCIs due to its non-invasiveness and high temporal resolution,
providing a cost-e�ective option for real-time control of external devices in a
variety of settings [14]. On the other hand, this signal has low-spatial resolution
and is greatly a�ected by noisy artifacts, such as power line frequency, muscular
activity or eye blinks, among others. As a consequence of its low signal-to-noise
ratio (SNR), EEG cannot be used to decode �ne neural activity, such as inner
speech or activation of individual muscles [14].

In order to increase the SNR of EEG, BCIs use di�erent paradigms and
control signals to decode user's intentions from EEG. Non-invasive BCIs are
typically categorized as exogenous and endogenous [1]. Exogenous BCIs rely on
external stimuli, such as �ashing lights, sounds, or tactile sensations, to evoke
neural responses that encode user's intentions in the EEG. These BCIs allow to
select commands among a prede�ned set of options, being suitable for commu-
nication and control applications due to their greater accuracy and robustness
[1]. In contrast, endogenous BCIs rely on self-generated brain activity to control
the BCI system, being more adequate for clinical applications, such as neurore-
habilitation [1].

The most widespread exogenous paradigms are P300 evoked potentials and
steady-state visual evoked potentials (SSVEP). The P300 paradigm detects dif-
ferences in the neural response to target and non-target stimuli, showing to be
e�ective in a variety of BCI applications [11]. However, this paradigm has impor-
tant limitations in terms of accuracy and speed, needing long calibration sessions
to achieve peak performance [10]. The SSVEP paradigm solved some of these
drawbacks by encoding each command with visual stimuli that �icker at di�erent
frequencies, increasing the overall performance [5]. However, its susceptibility to
visual fatigue, and the low number of selectable commands that can be displayed
at the same time without a�ecting systems's accuracy, limit the use of SSVEP
BCIs for practical applications [5].

Code-modulated visual evoked potentials (c-VEPs) represent a promising al-
ternative to these paradigms, as they o�er several advantages, including higher
accuracy, selection speed and robustness to environmental factors [7]. C-VEP-
based BCIs present speci�c stimulation patterns for each command following
a prede�ned sequence. The most widely used technique is the circular shifting
paradigm [7]. This method uses shifted versions of maximal length sequences
(m-sequences), which present very low correlation between them, to encode the
commands [7]. Therefore, the di�erent options are encoded with the same stim-
ulation sequence, which is circularly shifted a certain number of bits. In the
calibration phase, the EEG response to this sequence is recorded, calculating
a subject-speci�c template. Then, the target command is decoded by correlat-
ing the EEG signal of each trial with the di�erent circularly-shifted versions
of the template. The main advantages of this paradigm are: (1) it reduces the
calibration time, as it only needs to record the EEG response to 1 stimulation
sequence; and (2) it ensures that the shifted versions of the m-sequence have very
low correlation, maximizing the performance of the system. However, as only 1
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stimulation sequence is used, the number of commands that can be encoded with
the circular shifting paradigm is limited. To solve this limitation, Nagel et al. [8]
introduced EEG2Code, a method that models the brain response to individual
stimulation events. Its main advantage is that it allows to decode commands by
predicting, bit by bit, the stimulation sequence. Thus, it allows the use of random
stimulation patterns to encode more commands than m-sequences. EEG2Code
showed high accuracy, which was later improved in more recent studies using
deep learning [9]. Despite these advances, which show the potential of c-VEPs
to signi�cantly enhance the usability and e�ectiveness of exogenous BCIs, there
is still room for improvement. For instance, as SSVEPs, c-VEPs also provoke vi-
sual fatigue and eyestrain to the user, which reduces the usability of the system
for practical applications. To alleviate this e�ect, Gembler et al. [4] recently pro-
posed low-contrast stimuli based on di�erent shades of gray as a mean to reduce
user discomfort. They applied the m-sequences with 5 levels of gray and canon-
ical correlation analysis (CCA) to classify between 8 di�erent commands with
accuracies above 95% [4]. Despite of the novelty of Gembler's study, their method
can only decode a limited number of commands due to the use of the circular
shifting paradigm. On the other hand, bit-wise reconstruction approaches, such
as EEG2Code, could cope with an unlimited number of commands [9]. However,
these techniques have not been applied to non-binary stimulation patterns yet.

In this study, we propose, for the �rst time, a novel classi�cation paradigm
based on bit-wise code reconstruction for non-binary stimulation patterns en-
coded with 2, 3, 5, 7 and 11 shades of gray. In our approach, the stimulation
code is reconstructed bit by bit, rather than use the whole trial to calculate
correlations, as in the circular shifting paradigm. Our method uses a �avored
version of EEG-Inception, a convolutional neural network (CNN) for EEG clas-
si�cation tasks, which has been speci�cally tailored to better �t the needs of the
bit-wise reconstruction approach [10].

2 Materials & Methods

2.1 Subjects and signals

In this study, 16 healthy participants (11 males, 5 females; 28.8±5.0 years old)
took part in the experiments [6]. EEG signals were recorded using a g.USBamp
ampli�er with 16 channels at F3, Fz, F4, C3, Cz, C4, CPz, P3, Pz, P4, PO7, PO7
and Oz, according to the International System 10-10. The reference was placed
at the right earlobe, whereas ground was placed at FPz. The sampling rate was

256 Hz. MEDUSA©, a novel Python-based BCI platform, was used to present
and process stimuli in real-time [12]. Concretely, we used the app �P-ary c-VEP
Speller�, which is publicly available at www.medusabci.com [6]. The experiment
was conducted on a computer with an Intel Core i7-7700 processor, 32 GB RAM,
and a LED FullHD screen with a refresh rate at 144 Hz [6].

www.medusabci.com
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Table 1. P -ary m-sequences used to generate the stimulation sequences

Base Order Length Cycle duration

GF (26) 2 6 63 bits 0.525 s
GF (34) 3 4 80 bits 0.667 s
GF (53) 5 3 124 bits 1.033 s
GF (72) 7 2 48 bits 0.408 s
GF (112) 11 2 120 bits 1.000 s
GF: Galois Field; Cycle duration: time of each stimulation cycle with an stimulus
presentation rate of 120 Hz.

2.2 System design

Stimulation patterns. The stimulation patterns of each command were de-
signed using m-sequences, which are pseudorandom periodic time series that
exhibit almost orthogonal behavior to circularly shifted versions of themselves
[7]. These sequences, which are widely used in c-VEP-based BCIs, are generated
through linear-feedback shift registers (LFSRs) that utilize a linear function of
the immediate previous state to compute new values. The base p, order r, and
arrangement of taps determine the LFSR, which is expressed as a polynomial
whose coe�cients are bounded on a Galois Field (GF). More information about
the generation of m-sequences is available in the study of Bura£as et al. [2]. In
our study, 5 di�erent p-ary m-sequences were used, as displayed in Table 1. Im-
portantly, an m-sequence cannot be of arbitrary length and instead consists of
exactly N = pr − 1 bits. The 16 commands of our BCI system are encoded with
shifted versions of the each m-sequence, which were selected to ensure near-to-
zero correlation to maximize the performance of the c-VEP-based BCI. See the
study of Martínez-Cagigal et al. [6] for more information about the design of the
m-sequences. The stimuli were presented with a refresh rate of 120 Hz.

Pre-processing. The preprocessing stage of the algorithm involves two main
steps: the application of a bandpass In�nite Impulse Response (IIR) Butterworth
�lter between 1 and 60 Hz, and a notch IIR Butterworth �lter between 49 and
51 Hz. Both �lters had order 7. The purpose of the band-pass �lter is to remove
waveforms outside of the desired range, which can include noise and artifacts
that can interfere with the analysis of the signal. The notch �lter is designed to
eliminate the powerline interference at 50 Hz.

Feature extraction. After pre-processing, the feature extraction stage deci-
mates the EEG signals to a sampling frequency of 200 Hz. Then, the system
extracts an EEG epoch for each stimulus, with a temporal window of 0 to 500
ms after the stimulus onset. This temporal window is designed to capture the
entire VEP response of the brain to each stimulus. Z-score baseline normaliza-
tion is applied by taking the 250 ms of signal before the stimulus onset. After
this process, each observation has a feature vector of 100 samples × 16 channels.
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Classi�cation. The classi�cation of EEG epochs is performed with a modi-
�ed version of EEG-Inception [10]. This CNN was speci�cally designed for P300
detection. Therefore, it has been adapted for its use in c-VEP-based BCIs. How-
ever, most of the architectural advantages, which proved to be e�ective for P300
detection, can be applied in this context as well. These include [10]: (1) e�cient
integration of depthwise convolutions, dropout regularization, batch normaliza-
tion, and average pooling; (2) inclusion of Inception modules speci�cally designed
for EEG processing to allow a multi-scale analysis in the temporal domain; (3)
special design to avoid over�tting, including an output block that synthesizes
the information extracted by Inception modules in very few, high-level features;
and (4) optimized hyperparameters (i.e., dropout rate, activation functions and
learning rate) for EEG classi�cation tasks. For this study, we the input layer
has been modi�ed to allow the new shape of input feature vectors, the temporal
scales of the 3 Inception branches, the number of �lters of each branch and the
dropout rate. Additionally, it must be noticed that the number of classes for each
m-sequence is di�erent, being equal to p, in accordance to the di�erent shades of
gray. Table 2 provides a detailed overview of the architecture and hyperparame-
ters of the model used in this study. The dropout rate is set to 0.15. The model
is trained using the calibration trials from the evaluation experiment (see section
2.3). In this study, we use subject-speci�c models, i.e., models that are trained
and tested with data from the same subject. Speci�cally, the training dataset
consisted of 30×Ls×10 observations, where Ls is the length of each m-sequence
with base p and order r, as described in Table 1. Then, the test trials are used
to evaluate the model. To decode the test trials, the epochs corresponding to
individual stimulation events are fed to each instance of EEG-Inception. Finally,
the model predicts the class (i.e., shade of gray) of each stimulus based on the
EEG data to reconstruct the m-sequence bit by bit.

Command decoding. Once the stimulation pattern has been reconstructed
with EEG-Inception, the system correlates the predicted stimulation sequence
with each one of the sequences of the 16 commands. The command with maxi-
mum Pearson correlation coe�cient is selected.

2.3 Experimental procedure

Participants performed a single evaluation session with the c-VEP speller. The
session had 5 blocks, one for each m-sequence, with calibration and test record-
ings. The graphical user interface of the speller, with the di�erent modes, is
displayed in Fig. 1. The stimulus presentation rate was 120 Hz. For each m-
sequence, participants performed 30 calibration trials focusing on the unshifted
version of the corresponding m-sequence using the calibration matrix. Then, the
test task consisted of selecting the 16 commands, 2 times each. Therefore, we
recorded 32 test trials with the test matrix for each m-sequence and participant.
In summary, the experiment had 5 blocks of 30 calibration trials and 32 test
trials per participant. Importantly, each trial consisted of 10 stimulation cycles
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Table 2. Details of the modi�ed version of EEG-Inception for c-VEP detection

Block Type Filt. Depth Kernel Padding Output Conn. to

IN Input � � � � 100×16×1 C1, C2, C3
C1 Conv2D 12 � 50× 1 Same 100 × 16 ×

12
CO1

C2 Conv2D 12 � 25× 1 Same 100 × 16 ×
12

CO1

C3 Conv2D 12 � 12× 1 Same 100 × 16 ×
12

CO1

CO1 Concatenate � � � � 100×1×36 A1
A1 AveragePooling2D � � 2× 1 � 50× 1× 36 D1
D1 DepthwiseConv2D � 2 1× 16 Valid 50× 1× 72 A1
A2 AveragePooling2D � � 2× 1 � 25× 1× 72 C4, C5, C6
C4 Conv2D 12 � 12× 1 Same 25× 1× 12 CO2
C5 Conv2D 12 � 6× 1 Same 25× 1× 12 CO2
C6 Conv2D 12 � 3× 1 Same 25× 1× 12 CO2
CO2 Concatenate � � � � 25× 1× 36 A3
A3 AveragePooling2D � � 2× 1 � 12× 1× 36 C7
C7 Conv2D 18 � 6× 1 Same 12× 1× 18 A4
A4 AveragePooling2D � � 2× 1 � 6× 1× 18 C8
C8 Conv2D 9 � 3× 1 Same 6× 1× 9 A5
A5 AveragePooling2D � � 2× 1 � 3× 1× 9 OUT
OUT Dense � � � � p �

The type speci�es the class of each block in Keras framework [3]. All convolutional
blocks (i.e., Conv2D and DethpwiseConv2D) include batch normalization, activation
and dropout regularization (dropout rate of 0.15). The model has 26948 parameters,
of which 26606 are �tted during training. The base of the m-sequence p is the number
of output classes of the model, one for each shade of gray.

(i.e., repetitions of the stimulation sequence). This allows to analyze the perfor-
mance of the system as a function of this parameter. More stimulation cycles
will increase the decoding accuracy of the system at the expense of reducing
the selection speed, as more stimulation time is needed. The order of the blocks
was randomized across participants to avoid bias. Users were not aware of which
speci�c p-ary m-sequence was used to avoid unintentional biases.

3 Results

The results of the experiments are presented in Tables 3, 4, 5, 6 and 7. Each of
these tables show the command decoding accuracy per participant and number of
cycles considered in the analysis for each m-sequence. The mean accuracy across
cycles for each subject is detailed at the left side of the tables, whereas the mean
accuracy across subjects for each number of cycles is reported at the bottom.
Moreover, the grand-average accuracy provided in the bottom-right corner gives
an overall picture of the system's performance in a single metric.
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Fig. 1. Screenshots of the �P-ary c-VEP Speller� app in MEDUSA©. (A) Calibration
matrix with 1 command that is highlighted following the original p-ary m-sequence.
(B) Test matrix with 16 commands that are highlighted following shifted versions of
the p-ary m-sequence. (C) Screenshot during the stimulation period for GF (112).

Table 3. Command decoding accuracy (%) for base p = 2.

Subj.
Cycles

Mean
1 2 3 4 5 6 7 8 9 10

1 87.5 96.9 100 100 100 100 100 100 100 100 98.4

2 96.9 100 100 100 100 100 100 100 100 100 99.7

3 93.8 100 100 100 100 100 100 100 100 100 99.4

4 96.9 100 100 100 100 100 100 100 100 100 99.7

5 75 93.8 100 100 100 100 100 100 100 100 96.9

6 100 100 100 100 100 100 100 100 100 100 100

7 96.9 100 100 100 100 100 100 100 100 100 99.7

8 87.5 96.9 100 100 100 100 100 100 100 100 98.4

9 93.8 100 100 100 100 100 100 100 100 100 99.4

10 93.8 100 100 100 100 100 100 100 100 100 99.4

11 75 87.5 90.6 93.8 93.8 93.8 93.8 93.8 96.9 100 91.9

12 53.1 84.4 93.8 96.9 96.9 96.9 96.9 96.9 96.9 96.9 90.9

13 90.6 96.9 96.9 100 100 100 100 100 100 100 98.4

14 50 71.9 84.4 84.4 96.9 93.8 96.9 100 100 100 87.8

15 93.8 100 100 100 100 100 100 100 100 100 99.4

16 81.2 96.9 100 100 100 100 100 100 100 100 97.8

Mean 85.4 95.3 97.9 98.4 99.2 99.0 99.2 99.4 99.6 99.8 97.3

The results show that the proposed approach achieved high command de-
coding accuracy for all m-sequences. Unsurprisingly, the number of cycles has
a positive impact in the systems' performance: more cycles, which imply longer
stimulation times, increase the command decoding accuracy. The results indicate
that binary m-sequences with high-contrast black and white stimulus achieved
the highest overall performance, reaching a grand-average accuracy of 97.3%.
Non-binary m-sequences achieved slightly lower performances in the range be-
tween 90.9% for base 3 and 93.7% for base 5.

4 Discussion

In this study, the feasibility of bit-wise reconstruction of non-binary stimulation
patterns from EEG data using deep learning has been tested. To this end, we
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Table 4. Command decoding accuracy (%) for base p = 3.

Subj.
Cycles

Mean
1 2 3 4 5 6 7 8 9 10

1 75 96.9 96.9 100 100 100 100 100 100 100 96.9

2 90.6 93.8 93.8 93.8 93.8 93.8 96.9 100 100 100 95.6

3 96.9 96.9 100 100 96.9 96.9 100 100 100 100 98.8

4 87.5 96.9 100 100 100 100 100 100 100 100 98.4

5 37.5 78.1 96.9 93.8 96.9 100 100 100 100 100 90.3

6 87.5 90.6 93.8 93.8 93.8 93.8 93.8 96.9 96.9 96.9 93.8

7 96.9 100 100 100 100 100 100 100 100 100 99.7

8 96.9 100 100 100 100 100 100 100 100 100 99.7

9 59.4 71.9 81.2 84.4 90.6 90.6 93.8 93.8 90.6 90.6 84.7

10 96.9 100 100 100 100 100 100 100 100 100 99.7

11 46.9 53.1 68.8 71.9 71.9 68.8 78.1 78.1 81.2 81.2 70

12 40.6 59.4 78.1 90.6 87.5 93.8 96.9 96.9 96.9 96.9 83.8

13 96.9 100 100 100 96.9 100 96.9 100 100 100 99.1

14 15.6 28.1 31.2 43.8 50 50 50 59.4 59.4 75 46.2

15 87.5 93.8 100 100 100 100 100 100 100 100 98.1

16 96.9 100 100 100 100 100 100 100 100 100 99.7

Mean 75.6 85.0 90.0 92.0 92.4 93.0 94.1 95.3 95.3 96.3 90.9

Table 5. Command decoding accuracy (%) for base p = 5.

Subj.
Cycles

Mean
1 2 3 4 5 6 7 8 9 10

1 87.5 100 100 100 100 100 100 100 100 100 98.8

2 90.6 96.9 96.9 100 100 100 100 100 100 100 98.4

3 100 100 100 100 100 100 100 100 100 100 100

4 90.6 93.8 93.8 93.8 93.8 93.8 93.8 96.9 96.9 96.9 94.4

5 31.2 75 90.6 84.4 93.8 96.9 96.9 100 100 100 86.9

6 100 96.9 100 100 100 100 100 100 100 100 99.7

7 93.8 93.8 100 100 100 100 100 100 100 100 98.8

8 93.8 96.9 100 100 100 100 100 100 100 100 99.1

9 87.5 96.9 96.9 96.9 96.9 100 100 100 100 100 97.5

10 84.4 100 100 100 100 100 100 100 100 100 98.4

11 56.2 68.8 75 78.1 78.1 75 75 75 78.1 78.1 73.8

12 34.4 59.4 68.8 81.2 84.4 90.6 96.9 100 100 100 81.6

13 87.5 100 100 100 100 100 100 100 100 100 98.8

14 53.1 65.6 71.9 75 81.2 81.2 87.5 87.5 87.5 90.6 78.1

15 78.1 96.9 100 100 100 100 100 100 100 100 97.5

16 90.6 96.9 96.9 96.9 100 100 100 100 100 100 98.1

Mean 78.7 89.8 93.2 94.1 95.5 96.1 96.9 97.5 97.7 97.9 93.7

adapted EEG-Inception for multi-class classi�cation of VEPs elicited by stimuli
with di�erent shades of gray. This approach was evaluated in a c-VEP-based
BCI, reaching high command decoding accuracy.
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Table 6. Command decoding accuracy (%) for base p = 7.

Subj.
Cycles

Mean
1 2 3 4 5 6 7 8 9 10

1 71.9 90.6 96.9 100 100 100 100 100 100 100 95.9

2 65.6 87.5 100 100 100 100 100 100 100 100 95.3

3 96.9 100 100 100 100 100 100 100 100 100 99.7

4 71.9 90.6 100 100 100 100 100 100 100 100 96.2

5 68.8 84.4 93.8 100 100 96.9 96.9 100 100 100 94.1

6 78.1 87.5 87.5 90.6 90.6 90.6 90.6 93.8 93.8 96.9 90

7 96.9 90.6 100 100 100 100 100 100 100 100 98.8

8 75 90.6 96.9 96.9 96.9 100 100 100 100 100 95.6

9 84.4 90.6 96.9 96.9 96.9 96.9 96.9 96.9 96.9 96.9 95

10 81.2 100 100 100 100 100 100 100 100 100 98.1

11 43.8 46.9 56.2 68.8 75 71.9 71.9 75 75 75 65.9

12 59.4 62.5 93.8 96.9 100 100 100 100 100 100 91.2

13 81.2 90.6 87.5 93.8 96.9 100 100 100 100 100 95

14 46.9 59.4 71.9 78.1 75 81.2 84.4 81.2 87.5 84.4 75

15 96.9 100 96.9 100 100 100 100 100 100 100 99.4

16 90.6 100 100 100 100 100 100 100 100 100 99.1

Mean 75.6 85.7 92.4 95.1 95.7 96.1 96.3 96.7 97.1 97.1 92.8

Table 7. Command decoding accuracy (%) for base p = 11.

Subj.
Cycles

Mean
1 2 3 4 5 6 7 8 9 10

1 96.9 100 100 100 100 100 100 100 100 100 99.7

2 87.5 93.8 100 100 100 100 100 100 100 100 98.1

3 96.9 100 100 100 100 100 100 100 100 100 99.7

4 100 100 100 100 100 100 100 100 100 100 100

5 75 96.9 96.9 96.9 96.9 100 100 100 100 100 96.2

6 100 100 100 100 100 100 100 100 100 100 100

7 96.9 100 100 100 100 100 100 100 100 100 99.7

8 96.9 100 100 100 100 100 100 100 100 100 99.7

9 46.9 53.1 50 53.1 56.2 56.2 53.1 53.1 53.1 53.1 52.8

10 93.8 93.8 100 100 100 100 100 100 100 100 98.8

11 50 59.4 68.8 84.4 75 81.2 78.1 84.4 81.2 81.2 74.4

12 75 90.6 100 100 100 100 100 100 100 100 96.6

13 100 100 100 100 100 100 100 100 100 100 100

14 37.5 50 65.6 81.2 81.2 87.5 87.5 90.6 96.9 93.8 77.2

15 90.6 96.9 100 100 100 100 100 100 100 100 98.8

16 78.1 93.8 96.9 100 100 100 100 100 100 100 96.9

Mean 82.6 89.3 92.4 94.7 94.3 95.3 94.9 95.5 95.7 95.5 93.0

The stimulation paradigm that has been used in this work has 2 key features
designed to improve user-friendliness of c-VEP-based BCIs. First, we used a pre-
sentation rate of 120 Hz, in contrast to 60 Hz as in the majority of c-VEP studies
[7]. In this respect, there is a consensus in the literature stating that higher pre-
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sentation rates result in less visual fatigue while reducing the selection time [4].
In addition, non-binary stimulation patterns, which present stimulus with lower
contrast due to the utilization of intermediate levels of gray, are presumably less
prone to provoke visual fatigue and eyestrain [9]. In this study, we have tested
stimulation patterns with 3, 5, 7 and 11 shades of gray, showing the feasibility of
these non-binary sequences [6]. Given the advantages of our system, it could sig-
ni�cantly enhance the user-friendliness of applications that demand continuous
control, such as assistive systems designed for severely disabled people.

The proposed method for bit-wise reconstruction of non-binary stimulation
patterns has the potential to enhance the development of c-VEP-based BCIs by
providing a more general classi�cation framework that can be used in a wide
range of applications. In contrast to more extended methods based on CCA,
which require EEG recordings for all the stimulation sequences used in the sys-
tem, bit-wise reconstruction methods showed that they are able to cope with
arbitrary binary stimulation patterns once calibrated [9]. The successful bit-wise
decoding of non-binary sequences achieved in this work, with up to 11 levels of
gray, is an indication of the potential for our strategy to handle more complex
and diverse patterns of neural activity. This can help to improve the usability
of c-VEP-based BCIs, making them more user-friendly while maintaining their
reliability and e�ciency. Additionally, this approach can provide new insights
into the neural mechanisms underlying visual perception, which can be further
explored in future studies. Overall, this study highlights the promising potential
of bit-wise reconstruction methods for advancing c-VEP-based BCIs and other
neurotechnologies.

Regarding the command decoding results of our evaluation experiments,
there are several points that are worth discussing. All the tested m-sequences
reached accuracies above 95% with high selection speed. However, there are
signi�cant di�erences between the command decoding accuracy achieved with
the binary m-sequence and the rest (p − value < 0.05, Wilcoxon Signed Rank
Test). In this regard, it would be desirable to reduce these di�erences as much as
possible. Further improvements in the architecture of EEG-Inception could en-
hance multi-class classi�cation. Interestingly, the system's performance did not
decrease more for the sequences with more classes (e.g., p = 7 or p = 11), despite
that these patterns provide less training examples per-class. Therefore, stimu-
lation sequences with more levels of gray, which could be more comfortable for
the user, would improve the system's usability without a�ecting performance.
Similarly, the length of the m-sequences (see Table 1) did not have as much
in�uence as it could be expected in advance, given that longer sequences have
more stimuli per cycle. Thus, the length of the stimulation sequences could be
reduced in future designs to increase selection speed. In this case, random stim-
ulation patterns, instead of m-sequences with prede�ned length, could be more
practical [2].

Despite the promising results of this work, we acknowledge several limita-
tions. We focused on the adaptation of our bit-wise reconstruction strategy for
non-binary sequences. Thus, we used well-tested stimulation patterns, such as
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the m-sequences, which show very low correlation between shifted versions [7].
Although this is a desirable characteristic to avoid selection errors, the use of
m-sequences limits the total number of commands that can be encoded in the
system. In future studies, our strategy should be tested with other types of
stimulation patterns to enable an arbitrary number of commands, making an
in-depth comparison with the circular shifting paradigm. The proposed deep
learning framework could also be enhanced by applying transfer learning to in-
crease the performance, robustness and calibration time of the system [13]. In
this regard, a pretraining stage with data from other subjects could be bene�cial
and should be tested in the future. Finally, the proposed system has been tested
with healthy subjects. Although this is an important step to show the feasibil-
ity of our approach, further validation in more practical settings with severely
disabled subjects must be addressed in future works.

5 Conclusion

This study evaluated for the �rst time the feasibility of a bit-wise reconstruction
approach of non-binary stimulation patterns for c-VEP-based BCIs using deep
learning. Non-binary sequences, which use low-contrast stimuli, could reduce vi-
sual fatigue and eyestrain in these systems. The results showed that the proposed
approach based on EEG-Inception achieved high command decoding accuracy
regardless of the number of levels of gray used to encode the di�erent commands.
Therefore, the stimulation paradigm used in this work, which combines a high
stimulus presentation rate at 120 Hz with non-binary sequences, together with
our bit-wise reconstruction method, increase the usability of c-VEP-based BCIs
while maintaining their characteristic reliability and e�ciency.
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