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Abstract—In this study, we present a new Deep Learning
(DL) architecture for Motor Imagery (MI) based Brain Com-
puter Interfaces (BCls) called EEGSym. Our implementation
aims to improve previous state-of-the-art performances on
MiI classification by overcoming inter-subject variability and
reducing BCI inefficiency, which has been estimated to
affect 10-50% of the population. This convolutional neural
network includes the use of inception modules, residual
connections and a design that introduces the symmetry
of the brain through the mid-sagittal plane into the net-
work architecture. It is complemented with a data aug-
mentation technique that improves the generalization of
the model and with the use of transfer learning across
different datasets. We compare EEGSym’s performance on
inter-subject MI classification with ShallowConvNet, Deep-
ConvNet, EEGNet and EEG-Inception. This comparison is
performed on 5 publicly available datasets that include left
or right hand motor imagery of 280 subjects. This popula-
tion is the largest that has been evaluated in similar stud-
ies to date. EEGSym significantly outperforms the base-
line models reaching accuracies of 88.619.0 on Physionet,
83.3+9.3 on OpenBMI, 85.1+9.5 on Kaya2018, 87.418.0 on
Meng2019 and 90.2+6.5 on Stieger2021. At the same time,
it allows 95.7% of the tested population (268 out of 280
users) to reach BCI control (>70% accuracy). Furthermore,
these results are achieved using only 16 electrodes of the
more than 60 available on some datasets. Our implemen-
tation of EEGSym, which includes new advances for EEG
processing with DL, outperforms previous state-of-the-art
approaches on inter-subject Ml classification.

Index Terms—Brain Computer Interface (BCI), Deep
Learning (DL), Motor Imagery, Transfer Learning, Inter-
subject
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. INTRODUCTION

Electrical brain activity can be registered through elec-
troencephalography (EEG), which consists of non-invasive
recordings from electrodes placed on the user’s scalp. EEG
is characterized by its relative low cost, ease of use, high tem-
poral resolution and portability, but also for the drawbacks of
a poor spatial resolution and low signal-to-noise-ratio (SNR)
[1]. Non-invasive brain-computer interface (BCI) applications
make use of the EEG to enable an alternative path for the
brain to communicate with the environment [2], [3]. These
applications range from moving a mouse cursor through a
screen [4] or command selection, [5], [6] to commanding
prosthetic limbs, which are ultimately developed to assist
people with severe motor disabilities [7].

In order to decode the user’s intentions from the EEG, BCIs
usually rely on control signals triggered through strategies
known as BCI paradigms. In this work, we will focus on de-
coding the user’s intention through their Motor Imagery (MI).
For MI, the most extended protocol is to use left or right hand
movement imagination. Each instance of MI is considered a
trial, and the type of imagination performed can be decoded
through the sensorimotor rhythms (SMR). SMR are oscilla-
tions in the electric field detected in the sensorimotor cortex of
the brain. These areas are related with the preparation, control
and production of voluntary movements including imaginary
ones [8]. Additionally, there are other control signals related
with MI like Movement Related Cortical Potentials (MRCP)
[8] and Lateralized Readiness Potentials (LRP) [9]. MI is
of great interest due to its great potential for rehabilitation.
The use of a MI-based BCI on twelve participants has been
reported to induce plasticity at the cortical level [10]. A
correlation between the classification accuracy of the MI-
based BCI rehabilitation and the improvement of the upper
limb function was found on a population of 74 stroke patients
with severe upper limb paralysis [11]. Other works studied
the effect of different ways of presenting the feedback, like
sensory threshold neuromuscular electrical stimulation [12]
or through virtual reality [13]. The evidence found in these
works has led to MI-based BCI rehabilitation to be exploited
by commercial applications [14]-[16].

Nonetheless, one major drawback of BClIs is the decoding
accuracy of EEG. Classical approaches of machine learning
(ML) for BClIs, like common spatial patterns (CSP) with some
improvements [17], [18], filter bank common spatial patterns
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(FBCSP) [19], and Riemannian geometry [20] in combination
with linear discriminant analysis (LDA) or support vector
machines (SVM), need a tiresome calibration run from each
user. This calibration run would not be a clear disadvantage
if not for the intersession and inter-subject variability [21].
On one hand, the inter-subject variability does not allow a
model trained in one subject to be used on another one
with acceptable performance. And on the other hand, the
intersession variability does not allow trials from previous
sessions of the same subject to train a good performing
model for the next session. Due to the combination of both,
classic ML for BCIs often require a calibration run for each
session, and in turn obtain not very good performances overall.
However, Deep Learning (DL) models outperformed classical
ML approaches, and at the same time reduced the impact of
inter-subject and intersession variability due to the ability that
DL has for transfer learning [22], [23].

Schirrmeister et al. [22] and Lawhern et al. [23] proved the
ability of Convolutional Neural Networks (CNN) architectures
for EEG decodification across different paradigms. Dose et. al
[24] and Zhang et al. [25] implemented an adaptation of the
CNN proposed by Schirrmeister et al. [22] to Physionet [26]
and OpenBMI [27] datasets, respectively. These two works
tried to reach higher accuracies in MI-based BClIs by providing
an increase of training trials compared to the dataset used in
the original work for MI [22]. There have been works that have
tried to improve these performances with new DL techniques
from the computer vision field. Santamaria-Vazquez et al. [5]
already proved the improvement that inception modules [28]
have on CNNs accuracy for EEG decoding in an event related
potentials (ERP) based speller. Fan er al. [29] tackled inter-
subject variability in MI with an improved CNN that included
residual connections [30] and an attention mechanism [31].
Kostas et al. [32] adapted the DenseNet DL Network [33]
from the field of computer vision to EEG decoding of MI,
and Kwon et al. [34] applied feature engineering to the input
of their proposed CNN by creating a spectro-spatial feature
representation from the EEG.

Despite the advances of DL in the field of BClIs, there are
several limitations that have not been addressed. Firstly, in
spite of the success of Lawhern ef al. [23] and Schirrmeister
et al. [22] on EEG decodification at the time, there has
been a surge of improved DL techniques in the field of
computer vision that had yet to be adapted for EEG decoding
networks. Secondly, previous CNNs extract spatial features
with a single convolution along the spatial dimension in the
first layers of the network [5], [22]-[24], [32], which limits the
spatial relationships discovered to this first convolution. The
extraction of spatial features could be enhanced by introducing
the known structure of the brain into the CNN architecture or
by using residual connections [30] to maintain the structure of
the EEG data. Thirdly, the studies in the area of MI decoding
did not fully take advantage of the power that DL has for
transfer learning. They validated the results on datasets with
a large amount of subjects and trials but did not try to extend
its procedures on more than one dataset. At the same time,
they lost the opportunity to improve their models’ performance
with the increased training data that including other datasets

offer. Fourthly, a reduced number of electrodes facilitates real
world applications by reducing the set up duration, and by
decreasing the cost of the EEG recording system needed. For
reference, placing an EEG cap of 64 electrodes can take up
to 1 hour [35], but only Dose et al. [24] and Fan et al
[29] studied the effect that reducing the number of electrodes
had on their DL model’s performance for inter-subject MI
classification. Finally, despite using all available electrodes and
having calibration runs, current approaches still suffer from
BCI inefficiency (also known as BCI illiteracy). This is the
inability of BCI applications to extract discernible features
from an user, which is estimated to affect 10-50% of potential
users [36] in MI-based BCIs. Previous studies consider that a
user attains BCI control if he reaches accuracies higher than
70% in MI binary classification [27], [37].

To overcome the above limitations, this study aims to design
a novel CNN called EEGSym outperforming previous state-of-
the-art DL architectures. To this end, we compare our model
on 280 subjects from 5 different datasets against 4 state-of-
the-art CNN based models. To the best of our knowledge, this
population is the largest used in compared studies to date.
Our approach takes advantage of transfer learning through
several datasets to overcome inter-subject variability with only
8 or 16 electrodes. The novelties that this study introduces are
summarized in the following points:

o A data augmentation (DA) technique that includes patch
perturbation, hemisphere perturbation, and a random shift
of the onset.

o An improved extraction of features through residual con-
nections that tries to keep the spatio-temporal structure
of the signal through several layers of the network.

o A siamese-network approach to exploit the symmetry of
the brain along the mid-sagittal plane.

An open source implementation of the architecture and DA
can be found in https://github.com/Serpeve/EEGSym

[I. METHODS
A. Datasets

Five datasets were used to evaluate the baseline models
and EEGSym: Physionet [26], OpenBMI [27], Kaya2018 [38],
Meng2019 [37], and Stieger2021 [39]. We selected these
datasets due to the amount of subjects they include (i.e., 109,
54, 13, 42, and 62, respectively), the amount of trials, and
for their shared type of movement imagined. The imagination
consisted of opening/closing either the left or right hand. The
shared imagination paradigm should be key for the transfer
learning between datasets and subjects. All datasets except
Physionet include sessions where feedback of their EEG
was presented to the participants. Furthermore, Kaya2018,
Meng2019 and Stieger2021 only consist of trials from feed-
back sessions [37]-[39]. MI duration of Stieger2021’s trials
vary due to the subjects reaching the target presented [39].
The summarized characteristics of each dataset are detailed
on table

The experimental protocol share the same structure for every
dataset. Starts with a resting period from 1 to 4 seconds where
a fixation cue is presented to prepare the subjects for the
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TABLE |
DETAILS OF THE DATASETS
MI . Sampling
Dataset Subjects # duration Tm}ls/ Sessions Frequency
session
(s) (Hz)
Physionet [26] 109 64 3 45 1 128/160
OpenBMI [27] 54 62 4 100 4 1000
Kaya2018 [38] 13 38 1 900 5 200
Meng2019 [37] 42 64 6 250 3 1000/1024

Stieger2021 [39] 62 62 2-8 450 7-11 1000

Subjects: number of healthy subjects. #: number of electrodes. MI: motor imagery.

imagination period. It is followed by a MI period of different
duration where a cue is presented to perform either left or
right hand MI. This varying MI duration implies that when
extracting the same time window length, some trials will
include only part of the imagination period while others will
also include the following resting period or even the start of
the following trial on Kaya2018 [38]. Ends with a final resting
period of 2-6 seconds of relaxation previous to the next trial.

B. Preprocessing

The raw signal of each dataset was processed as follows:

1) Extraction of channels ‘F3’, ‘C3’, ‘P3’, ‘Cz’, ‘Pz’,
‘F4’, ‘C4’, and ‘P4’ from the available channels in
each dataset for the 8 electrodes configuration. The 16
electrodes configuration includes also the ‘F7°, ‘T7’,
‘P7°, ‘O1’, ‘F8, ‘T8, ‘P8’, and ‘O2’ channels from
the 10/20 system. The amount of electrodes in these
two configurations are widely used in relatively low-cost
EEG-caps, and provide a reduced set-up duration.

2) Application of a fourth-order infinite impulse response
(ITR) notch filter to eliminate power line signal at 50/60
Hz of each dataset that did not have it removed by
hardware [26], [27].

3) Application of common average reference (CAR) spatial
filtering to these 8/16 channels.

4) Resampling to 128 Hz to homogenize the datasets.

5) Extraction of the trials with a time window length of
3 seconds after the onset. This 3 second time window
was the largest possible to extract over all datasets
without having to discard trials without enough samples
or having to artificially pad the signal.

6) Application to each trial of a channel-wise z-score
standardization. Each channel signal in a trial ends with
zero mean and unit variance. This operation removes the
continuous component of the signal and accommodates
the data to be fed to a DL neural network.

C. Data Augmentation

DA is applied to generate new training examples from
existing data. This technique reduces over-fitting and enables
the training of bigger models that offer better generalization on
new data [40]. When applying DA, a uniform random selection
between the following four options was applied for each
trial differently in each pass through the whole training data:
patch perturbation, hemisphere perturbation, random shift or

no augmentation. Therefore, the training set would be unique
for each training epoch and it would be very unlikely for a
model to be trained on the same composition of trials twice.

The DA in this work was composed of 3 different ideas:

1) Patch perturbation. We adapted a DA technique from
computer vision called random erasing [41] because its
principles could be extrapolated to EEG data. First, we
select a time window duration to be modified. Similar
to random erasing, the aim of patch perturbation is to
make the model robust to the presence of noise on the
EEG data. Like dropout, randomly perturbing different
time sections or channels of the signal will force the
model to learn relations from non perturbed sections of
EEG to make up for the perturbed data. At the same
time, it will make the model less reliant on specific time
segments or channels and generalize better. The duration
is selected from an uniform distribution between 0.6 to
all 3 seconds of each trial to be distorted. Secondly, a
position where to place this time window is randomly
selected. Thirdly, a number of channels in which this
time window will be distorted is randomly selected.
Always at least one channel will be left unmodified to
preserve the information of that time window. Finally,
the distortion consists of either changing the affected
patch by Os (erased) or by adding noise. The added noise
follows a Gaussian distribution with 0 mean and with a
standard deviation that varies uniformly from 0.01 up to
2 times the standard deviation of the signal.

2) Hemisphere perturbation. We hypothesize that the differ-
ence between the control signals (i.e., SMR, LRP, MCP)
of left/right hand MI can be decoded from EEG changes
in one hemisphere. With this in mind, the electrodes
corresponding either to the left or right hemisphere are
perturbed. This perturbation consist of either altering its
positions in a random order or replacing all hemisphere
data by Gaussian noise with 0 mean and 1 standard
deviation. This technique aims for the model to learn a
clear and discernible pattern of MI in either hemisphere.
This perturbation also has a regularization effect, but in
this case it is restricted to the spatial dimension of the
signal.

3) Random shift. In MI, we know the exact time when the
onset cue is presented to the users, but not the reaction
time that they have for each trial. The reaction time
varies its distribution for each user. We also want to
consider distracted or tired subjects which will exhibit
a slower reaction time in some trials. To account for
this variability, the data is also augmented by shifting
forward the trials onset as much as half a second. This
value was set to consider the slowest tail of the two-
choice reaction time distribution in humans [42]. The
exact amount of time is extracted from an uniform
distribution from 1 to 64 samples (corresponding to half
a second with a sampling frequency of 128 Hz).

D. EEGSym

EEGSym includes previous techniques that have been
proven to work for EEG decodification. One of them is the
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Fig. 1. Overview of EEGSym architecture. (a) Schematic of the division of input electrodes for an 8 electrode configuration Z: hemispheres (i.e., 2),
S: samples (i.e., 384), C: electrodes per hemisphere (i.e., 5), F': number of filters. (b) Legend of the architecture overview. (c) Inception block. (d)
Residual block. () EEGSym architecture. All convolution and grouped convolution operations are followed by batch normalization, ‘elu’ activation
and dropout regularization in this order. The output sizes of each operation are indicated in gray, whereas the dimension that is affected after each
stage is indicated in red. Detailed tables of 8 and 16 electrode configurations that include the details (i.e. kernel sizes, number of filters, etc.) of each
operation are present in the supplementary material, and in the open implementation that can be found in https://github.com/Serpeve/EEGSym.

use of inception modules [28] in the first operations of the
architecture as in EEG-Inception [5]. Another one is the use
of grouped convolutions [43] to emulate the success that
EEGNet [23] and EEG-Inception [5] had applying depthwise
convolutions. Depthwise convolutions are a particular case
of grouped convolutions when the number of groups is the
same as the number of filters. Every convolution operation is
followed by batch normalization, ‘elu’ activation and dropout
regularization. The dropout rate (dr), number of filters in
inception modules (/V) and learning rate (Ir), were determined
through grid search on the validation set. The search spaces
for these hypeparameters were: dr [0.2 : 0.1 : 0.5];
N = [8:8:32]; and Ir = [0.01,0.001,0.0001]. The values
selected were 0.4, 24, and 0.001, respectively.

An overview of EEGSym’s architecture is presented in Fig.
[[} Detailed tables of 8 and 16 electrode configurations that
include the details (i.e. kernel sizes, number of filters, etc.) of
each operation are available in the open implementation, and
in the supplementary material. The architecture of EEGSym
can be separated in 5 stages:

1) Symmetric division. Symmetric division. It creates the
virtual division represented in Fig. [T]a that is performed
inside the model. Hence, no redundant information is fed
into the DL arquitecture. The symmetric division of the

2)

electrodes also helps to reduce the number of parameters
in the spatial filters present in the following tempospatial
analysis stage.

Tempospatial analysis. It captures the most detailed
temporal relationships in the architecture. It is composed
of two instances of inception blocks and three of residual
blocks. The number and kernel sizes of the inception
modules in the first inception block (i.e., 3 modules of
size 64, 32, and 16) was selected to replicate the ones
chosen in EEG-Inception [5]. These sizes correspond
to temporal windows of duration 500 ms, 250 ms and
125 ms. The result of the signal processed by each
convolution in the inception module is concatenated and
added to the input through residual connections [30].
Afterwards, an average pooling layer reduces dimen-
sionality in the temporal (i.e., S) dimension to prevent
overfitting and reduce computation time. Finally the
spatial extraction is designed with a grouped convolution
that spans all hemisphere’s channels (i.e., C), reducing
its channels dimension to 1, and then adds the result to
every channel with residual connections. These grouped
convolutions are designed with the same number of
groups and input filters to reproduce the function of
depthwise convolutions. The residual block has as well a
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temporal analysis followed by dimensionality reduction
through an average pooling operation and a spatial anal-
ysis performed this time with a convolution instead of
a grouped convolution, which will mix the information
of all previous temporal filters extracted. After leaving
the last residual block, there is a convolution with
residual connections to capture temporal relations after
the last spatial operation followed by an average pooling
operation.

3) Channel merging. In this stage, the signal’s spatial
dimensionality is reduced to 1 (i.e., Z and C). It is com-
posed of two convolutions with residual connections in
the spatial dimension to capture the last distinguishable
spatial features extracted. The merging of the channels
dimension is performed by a grouped convolution. All
convolutions and gropued convolutions in this stage are
performed on both hemispheres and all channels at the
same time (i.e., kernel size of 2x1x5).

4) Temporal merging. After this stage, the temporal dimen-
sionality is reduced to 1 (i.e., S). It has a convolution
with residual connections followed by a grouped con-
volution. Both operations has a kernel size the same as
the temporal dimension that enters this stage.

5) Output module. After the temporal merging, we only
remain with a number of features that depends on the
number of filters per branch in the inception modules
(i.e., for 24 filters per branch 36 features enter this
stage). This stage performs 4 convolutions with residual
connections, flatten the features, and perform a softmax
classification over the two classes of ML

Furthermore, EEGSym includes 2 novel ideas that take
advantage of the spatial characteristics of the brain and the
EEG:

1) Residual connections. Our network includes an extrac-
tion of spatial features, spatial correlations between the
signal of different electrodes, with residual connections
that are present at every instance of the tempospa-
tial analysis until the channel merging stage. Residual
connections are a solution that allows training deeper
models without reducing performance [30]. It creates
shortcuts for the information leaving the previous layer
to skip the transformation of the current layer. The
inclusion of residual connections also allows for some
layers to be skipped by pushing the weight values of
a residual layer to 0. Meanwhile, the information will
travel to the next layer through the shortcut. This way, it
is easier for the input information to travel unmodified
through the whole architecture. The reasoning behind
this design is that the spatial correlations of the signal
would be different in further stages of the temporal
processing of the signal.

2) Symmetry. The symmetry of the brain through the
mid-sagittal plane is implicitly introduced in EEGSym
architecture. This idea takes inspiration from a paper
about gaze recognition in which the authors take into
account the symmetry of both eyes in the first layers
of the network [44]. In a similar fashion, EEGSym

first extracts common spatial characteristics from both
hemispheres in the tempospatial analysis stage. In the
channel merging stage, it extracts complex relationships
between channels of both hemispheres. An scheme of
the division of the input for an 8 electrode configuration
can be found in Fig. [T]a.

The contribution of the two novelties introduced in EEGSym
architecture is evaluated with an ablation study presented in
11I-B

E. Baseline models

For comparison purposes, we used ShallowConvNet and
DeepConvNet [22], EEGNet [23], and EEG-Inception [5]
applying the hyperparameters described in their original pub-
lications.

1) ShallowConvNet/DeepConvNet: The work of Schirrmeis-
ter et al. [22] focused on showing how to design and train
CNNs to decode task-related information from the raw EEG
without handcrafted features [22]. They proposed two CNN
architectures, ShallowConvNet and DeepConvNet, which were
compared with FBCSP showing similar and even better per-
formance in some cases. Here, we use the reproduction of
the models made by Lawhern et al. [23] on TensorFlow. The
details of its implementation can be found in [22].

2) EEGNet: Lawhern et al. [23] introduced EEGNet, a
compact CNN for EEG-based BCls, and compared its perfor-
mance for intra-subject and inter-subject classification. They
showed that it generalized across different BCI paradigms, and
achieving comparably higher performances than other state-of-
the-art algorithms when limited training data is available. We
used the implementation released by the author whose details
can be found in [23].

3) EEG-Inception: Santamaria-Vazquez et al. [5] were the
firsts to introduce a CNN model for EEG decodification
that integrated inception modules. This network improved
the performance of EEGNet and DeepConvNet, as well as
other traditional approaches in ERP detection. The model in
TensorFlow and their specific architecture details can be found
in [5].

F. Cross-validation analysis

All models were trained on a NVIDIA 3080Ti GPU, with
CUDA 11.2 and cuDNN 8.1.0, in Tensorflow 2.5. An scheme
of the cross-validation analysis is presented in Fig. 2] The trials
are splitted into pre-training, fine-tuning and test:

1) We select a target dataset for which we are going to
obtain the inter-subject MI prediction accuracy, and use
every other dataset as pre-training (Fig. 2]b). From the
pre-training operation we obtain an initialization of the
weights’ values that will be the same for every following
fine-tuning operation on the target dataset. From each
subject of the pre-training datasets, 10 trials of each class
are selected to be part of the validation split, and the rest
will be part of the training split.

2) Every subjects’ trials present in the target dataset except
for the one we will user for testing (Fig. [2]c) will be part
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DB: dataset in which leave one subject out (LOSO) is performed, testing on one subject and fine-tuning the model on the remaining subjects. (a)
Scheme of the cross-validation analysis. (b) Pre-training dataset. (c) Fine-tuning dataset and testing subject.

of the fine-tuning. Each fine-tuning subject’s trials are
splitted into training and validation with a 9 to 1 ratio,
respectively.

3) After the fine-tuning operation, we use the trials of
each independent subject as test following a leave one
subject out (LOSO) scheme (Fig. Qc). This means that,
for each dataset, the fine-tuning and testing operation
is performed as many times as independent subjects
are in the target dataset to obtain the inter-subject MI
prediction accuracy.

For each CNN, we performed the preprocessing as described
in subsection [[I-B] and implemented the following DL tech-
niques:

o Early stopping on pre-training and fine-tuning that halts
the training when validation loss does not improve for 25
consecutive iterations.

o Pre-training of the models on all datasets excluding the
target dataset. The DA described in subsection [[I-C| was
only applied in this stage of the process. The learning
rate used is the same for all models (i.e., le-2). This
value is the one present in the open implementation of
Lawhern et al. [23] for ShallowConvNet, DeepConvNet
and EEGNet, and also in the open implementation of
Santamaria-Vazquez et al. [5] for EEG-Inception.

o Fine-tuning on the target dataset without DA. The full
architecture is freezed (its parameters will not be updated
during training) apart from the last softmax layer. It is
trained with a very low learning rate (i.e., le-4) until the
early stopping is triggered. Finally, the full architecture is
allowed to update all of its parameters with this low learn-
ing rate, until the early stopping activates. The first fine-
tuning process aims to maintain the knowledge extracted
in the pre-training by only adjusting the importance of the
features in the softmax classification layer. On the other
hand, the second fine-tuning process will further adapt
the feature extraction process when the target dataset is
very diffferent to the ones present in the pretraining. This
procedure is adapted from the indications for fine-tuning
a model present in [45].

[1l. RESULTS
A. Comparison with baseline models

Following the preprocessing and cross-validation analysis
described before, we tested the 8 and 16 electrode configu-
rations with the new EEGSym and the baseline models. The

mean accuracy obtained between all subjects with its standard
deviation (o), and the number of users that achieve BCI control
(users that reach 70% accuracy) for each dataset evaluated are
presented in Table [[I}

As can be seen in Table [lIf EEGSym always obtains sig-
nificantly (p-value < 0.05) higher mean accuracies than the
baseline models according to Wilcoxon signed rank test [46],
with the false discovery rate (FDR) corrected with Benjamini-
Hochberg approach [47]. This occurs for both electrode con-
figurations and all datasets.

EEGSym enabled 268 users out of 280 tested users to
achieve BCI control. EEG-Inception follows with 264 users,
next is DeepConvNet with 260, ShallowConvNet with 258
and last is EEGNet with 252. Regardless of the architecture,
it is worth noting that with our pre-training pipeline every
architecture achieves >90% users with BCI control with only
16 electrodes in a calibrationless application.

B. Ablation study

An ablation study to give insight into the usefulness of the
strengths of EEGSym is presented below. On the one hand,
we analyzed the effect of introducing residual connections to
extract spatial features at different stages of the processed
information inside the DL architecture. On the other hand,
the introduction of brain’s symmetry inside the architecture.
Both contributions have been evaluated separately for 8 and 16
electrode configurations over the Physionet [26] dataset. This
dataset was selected for this comparison for being the one with
the largest number of subjects. The results are summarized in
Table [Tl

As can be observed in the 16 electrode configuration, apply-
ing each one of the novelties achieves significantly (p-value
< 0.05) greater performances than the base model without
symmetry or residual connections, according to Wilcoxon
signed rank test [46], with the false discovery rate (FDR)
corrected with Benjamini-Hochberg approach [47]. Although
performances also increased for the 8 electrode configuration
when applying both contributions separately, only the symmet-
ric approach yielded a significant improvement. Nevertheless,
the result of jointly using both approaches gives the best
performances in both electrode configurations.

Additionally, the evolution of the training and validation
losses during the pre-training on the target dataset Physionet
[26], and during one instance of fine-tuning of EEGSym can
be observed in Fig. 3] These results are for the 8 electrode
configuration.
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TABLE Il
COMPARISON OF ACCURACIES ON TARGET DATASETS FOR 8 AND 16 ELECTRODE CONFIGURATIONS

Physionet [26]

OpenBMI [27]

Kaya2018 [38]

Meng2019 [37]

Stieger2021 [39]

#oAmhitetre 7 cou P cod % comrd ™7 comd M7 Conra
ShallowConvNet 82.0+10.9 92/109 79.1£9.9  45/54 * 82.3+94  11/13 82.849.3  38/42 * 85.4+£74  60/62 *
g DeepConvNet  82.8+10.7 95/109 80.5+9.3  47/54 * 824492  12/13 83.6+£9.1  39/42 * 86.2+7.2  60/62 *
§ EEGNet 81.6£11.2  92/109 78.6£9.5  46/54 * 80.9+8.6  11/13 82.2+9.6  36/42 * 84.5+7.8  59/62 *
:; EEG-Inception  82.7+10.8  92/109 80.39.4  47/54 * 81.749.1  12/13 84.4+8.4  42/42 * 87.3£7.0  60/62 *
EEGSym 84.5+9.7  99/109 82.0+9.6  46/54 84.749.1 12/13 85.2+48.3  41/42 88.4+6.5  60/62
ShallowConvNet 86.2+9.6  100/109 80.0+£9.7  46/54 * 83.1£9.6  11/13 85.5+8.6  40/42 * 87.5£7.3  59/62 *
% DeepConvNet  85.9+10.6 101/109 80.9£9.7  46/54 * 82.9+49.7 12/13 85.9+8.0 41/42 * 88.247.3  60/62 *
§ EEGNet 83.1x10.7 97/109 79.6£9.8  45/54 * 82.1£9.1 11/13 82.4+94  39/42 * 85.7+8.2  58/62 *
g EEG-Inception  87.5+£9.3  104/109 81.6+9.4  48/54 * 82.6£9.9  11/13 86.3+8.1  41/42 * 89.4+6.8 60/62 *
- EEGSym 88.6+9.0 108/109 83.3+9.3  46/54 85.1+9.5  12/13 87.4+8.0  41/42 90.2+6.5  61/62

#: number of electrodes used. p+o: mean accuracy and standard deviation obtained across all subjects using leave one subject out (LOSO). BCI Control: users that reach
brain computer interface (BCI) control (>70% accuracy). The best results for each dataset and electrode configuration are marked in bold. Statistical differences between the
mean accuracies of EEGSym and the other models were assessed with Wilcoxon signed rank test, correcting the false discovery rate (FDR) with Benjamini-Hochberg approach.

Obtaining significant differences is marked with * (p-value < 0.05).

TABLE Il
CONTRIBUTION OF EACH NOVELTY ON PHYSIONET

8 electrodes 16 electrodes

Res Sym
pxo  BCI Control pxo  BCI Control
82.9+10.4 90/109 87.249.4  104/109
X 83.2+10.3 94/109 87.849.1 105/109 *
X 84.1%10.1 96/109 *  87.7+9.8 103/109 *
X X 845+9.7 99/109 *  88.6£9.0  108/109 *

Res: If there are residual connections implemented that allows the extraction of
spatial features through the whole architecture. Sym: If the electrodes are introduced
as described in @ p*o: Mean accuracy and standard deviation obtained across
all subjects using LOSO. BCI Control: Users that reach brain computer interface
(BCI) control (>70% accuracy). Statistical differences, between current model and
the baseline, were assessed with Wilcoxon signed rank test, correcting the false
discovery rate (FDR) with Benjamini-Hochberg approach..Obtaining significant
differences is marked with * (p-value < 0.05).

IV. DISCUSSION

In this study, we propose a novel CNN architecture called
EEGSym. It takes advantage of a brain-inspired configuration,
a new extraction of spatial features from the EEG based
on residual connections across all CNN stages, and transfer
learning across subjects. This model was also complemented
by DA techniques called patch perturbation, hemisphere per-
turbation and random shift. It was validated with 5 datasets
including a total of 280 subjects, the largest subject evaluation
of related studies. A direct comparison with 4 baseline models
ShallowConvNet and DeepConvNet [22], EEGNet [23] and
EEG-Inception [5] was presented on those datasets.

A. Advantages of EEGSym

EEGSym allowed on 268 out of 280 subjects to achieve
BCI control (>70% accuracy) in a completely inter-subject
pipeline, without calibration on test subjects. In other words,
95.7% users reached BCI control in an inter-subject classifica-
tion, suggesting that transfer learning has the potential to solve

Pre-training loss
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Fig. 8. Loss and validation loss of pre-training on target dataset

Physionet [26] and fine-tuning on all dataset subjects except for subject
2 for an 8 electrode configuration. Dotted line in fine-tuning marks the
early stopping of the first stage of fine-tuning.
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BCI inefficiency. BCI inefficiency was previously estimated to
affect 10-50% of potential BCI users [36]. This achievement is
even more remarkable since BCI inefficiency seems to affect
less than 5% of the population in inter-subject calssification,
which is a more challenging problem than the usual intra-
subject classification with calibration runs from the end user.

As shown in Table [l we reached accuracies of 88.6+9.0
on Physionet [26], 83.3+9.3 on OpenBMI [27], 85.1+9.5 on
Kaya2018 [38], 87.4+8.0 on Meng2019 [37], and 90.2+6.5
on Stieger2021 [39]. A comparison with the mean accuracies
of the baseline models was performed with Wilcoxon signed
rank test, correcting the FDR with Benjamini-Hochberg ap-
proach. EEGSym significantly (p-value < 0.05) outperformed
ShallowConvNet and DeepConvNet [22], EEGNet [23] and
EEG-Inception [5] in this binary MI classification.

Furthermore, DL networks have a clear advantage in other
areas like computer vision and natural language processing
when large amounts of data are available. In this work, we
further exploit the transfer learning capabilities of DL in the
field of BClISs, by using all datasets publicly available that share
the same imagination paradigm. Our results suggest that the
combination of the pipeline described in subsection with
the new architecture, enables a plug-and-play application of
MlI-based BCIs. It does not need calibration trials from the end
user using only 8 or 16 electrodes to reach these new state-of-
the-art accuracies. Of note, motivation through rehabilitation
is a key aspect for the treatment’s success [48]. The reduced
set-up duration and calibrationless system achievable with
EEGSym could be key in promoting user’s motivation when
using MI-based BClIs for rehabilitation.

The contribution of EEGSym’s designing novelties present
in the implementation of this new architecture are evaluated
in the ablation study. It showed that jointly applying them
offered significantly better performances for both electrode
configurations. However, each one of them separately showed
improvements that were not always significant. The resid-
ual connections offered an improved performance for an 8
electrode configuration but it was not statistically significant.
On the other hand, the symmetric approach always offered
significantly higher performances.

As shown in Fig. [3] the transfer learning produced by the
36 features extracted by EEGSym between the pre-training and
fine-tuning process is appropriate, since the starting point of
the fine-tuning is similar to the ending of the pre-training. This
is also shown by focusing in the first stage of the fine-tuning.
In this stage only the last softmax is allowed to be fitted, so
the model is being optimized over the 36 features extracted
during the pre-training. Despite only tuning this last operation
of the model, we reach a better fit than in the pre-training.
What is more, the second stage only improves the validation
loss by a minimum amount before overfitting and triggering
the early-stopping mechanism.

The pre-training for Physionet [26] dataset in a 8 or 16
electrode configuration required a computation time of 4 hours
and 18 minutes or 6 hours and 25 minutes, respectively. For
a new application, only one pre-training opeartion is needed,
and can be skipped if the pre-trained weight values present
in our open implementation are used. The fine-tuning process

TABLE IV
COMPARISON WITH BINARY CLASSIFICATION OF PREVIOUS LITERATURE

Study TW (s) # uxo
64  80.38+12.54
Dose et al. (2018) [24] 3 16 78.03
9 75.85
g Kostas et al. (2020) [32] 3 64 82.84
= 64 82.88
2 Fan et al. (2021) [29] 3
2 14 78.98
2
= 14 83.63
A Varsehi et al. (2021) [49] 3
9 81.26
16 88.56+8.96
Ours 3
8 84.45+9.70
g Kwon et al. (2020) [34] 4 19 74.15+£15.83
E Zhang et al. (2021) [25] 4 62 84.19+9.98
)
16 84.72+11.73 *
§ Ours 3
o 8  82.93+12.10 *

#: number of electrodes. TW: time window duration used for classifica-
tion. p+o: mean accuracy and standard deviation obtained between all
subjects in a subject-independent scheme. *Results are different from
Table [lI| to mimic the compared works [25], [34] where only the trials
from the last test run were used for reporting accuracies.

in an 8 or 16 electrode configuration required a computation
time of 7 and 12 minutes, respectively. This fine-tuning only
needs to be performed the first time it is adapted to the desired
MI-application, or any time there is a substantial increase of
recorded trials over the first fine-tuning dataset. On inference
mode, i.e. predicting a single trial, the model required 30 ms
in both configurations running on a GPU. The 30 ms needed
for a prediction make this DL approach also suitable for online
decoding.

B. Comparison with previous works

A comparison with previous studies can be found in Table
Physionet [26] dataset includes data from 109 subjects,
but the works that we use for comparison excluded from their
analysis the data of 4 subjects. Dose et al. [24] did not specify
which subjects they exclude from their study. Furthermore,
they extracted 42 trials from each user’s 45 available trials,
without specifying which ones to select. Fan et al. [29] and
Varsehi et al. [49] removed subjects S088, S092, S100, and
S104 for being damaged. However, Kostas et al. [32] excluded
S088, S090, S092 and S100. In this work, since all subjects
could be used, and noticing the disparity of excluded users in
previous works, we decided to include every subject and all
available trials.

The studies that addressed inter-subject classification with
DL have partially exploited the ability that DL networks
present for transfer learning [24], [25], [29], [32], [34]. They
use the data of other subjects from the same dataset to train
the network and evaluate on the rest of subjects or fine-
tune the model to a specific subject of the same dataset. We
believe that one of the clear advantages of our approach has
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been to use data from multiple publicly available datasets
that share an imagination paradigm. They were used for pre-
training the network to initialize the weights of the models
evaluated. This improved use of transfer learning is made clear
when comparing the inter-subject accuracies on Physionet
[26] dataset. All baseline models and EEGSym outperform
previous DL approaches that used all 64 electrodes [24], [29],
[32] available with the information of only 16 electrodes.
Furthermore, EEGSym only needs 8 electrodes to overcome
previous studies in this particular dataset. In OpenBMI [27]
dataset EEGSym also obtains similar results as previous studies
with only 16 out of the 62 electrodes of the dataset.

EEGSym outperforms the state-of-the-art models present in
the literature with only 16 electrodes of the more than 60
available. It has been proved in Physionet [26] and OpenBMI
[27] which include 109 and 54 subjects, respectively. Our
results suggest that the combination of our preprocessing and
pre-training with DA is a tool which enhances DL performance
on this task.

C. Limitations and future work

Despite the positive results of EEGSym achieved in this
study, we also acknowledge several limitations that should be
addressed in the future. The proposed method reduces its per-
formance without fine-tuning to the target dataset (accounting
for the operator, device and procedure variability). This implies
that implementing this model to a custom application will need
to collect data from a few subjects to reach accuracies similar
to this study. Therefore, there is still room to improve the
generalization of the model towards a plug-and-play system.
This could be solved by collecting more data from different
centers and users to increase the publicly available resources.

The idea of introducing the known symmetry of the brain
through the mid-sagittal plane into the network architecture
enables it to reach higher classification accuracies and im-
proves the generalization of the model. We have focused on
the ability of the network for inter-subject classification. The
ability to make the most of the available data by introducing
known spatial relations needs to be extended to intra-subject
classification by fine-tuning the model to each user.

Also, understanding better which features the DL networks
are extracting would be very beneficial for further optimiza-
tion of the task. This will fall into the explainable artificial
intelligence (XAI) field, a very promising research line that
could include developing a model with the consideration of
its explainability.

V. CONCLUSION

In this study, we introduce EEGSym, a new CNN for binary
MI classification. It includes the use of inception modules,
residual connections to enhance spatial features extraction, and
the incorporation of the symmetry of the brain through the
mid-sagittal plane into its architecture design. It also makes
use of transfer learning across subjects and datasets and of
a DA technique that includes patch perturbation, hemisphere
perturbation, and random shift. EEGSym improved state-of-
the-art accuracies on inter-subject MI binary classification.

These results are validated in 5 datasets with the largest
amount of subjects (280) in related studies. EEGSym was
compared to previous state-of-the-art CNNs: ShallowConvNet
and DeepConvNet [22], EEGNet [23], and EEG-Inception [5].
The inter-subject scheme implemented in this study allowed
EEGSym to be used without the need of calibration runs
on new subjects and potentially solving the problem of BCI
inefficiency. Furthermore, this new state-of-the-art accuracies
were obtained with only 16 electrodes of the more than 60
available on some datasets. This reduced set of electrodes en-
ables the use of more inexpensive EEG recording systems with
a reduced set up duration. The combination of a reduced set
up duration and the calibrationless application can boost users’
motivation of MI-based BClIs, which is key for the use of this
applications for rehabilitation. EEGSym outperforms previous
state-of-the-art approaches on inter-subject MI classification
reaching significantly (p-value < 0.05) higher accuracies on
all 5 datasets tested and allows the higher number of users to
reach BCI control.
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