
TYPE Original Research

PUBLISHED 03 August 2023

DOI 10.3389/fnhum.2023.1227727

OPEN ACCESS

EDITED BY

Christoph Guger,

g.Tec Medical Engineering GmbH, Austria

REVIEWED BY

Frederic Dehais,

Institut Supérieur de l’Aéronautique et de

l’Espace (ISAE-SUPAERO), France

Sebastian Halder,

University of Essex, United Kingdom

*CORRESPONDENCE

Selene Moreno-Calderón

selene.moreno@gib.tel.uva.es

RECEIVED 23 May 2023

ACCEPTED 21 July 2023

PUBLISHED 03 August 2023

CITATION

Moreno-Calderón S, Martínez-Cagigal V,

Santamaría-Vázquez E, Pérez-Velasco S,

Marcos-Martínez D and Hornero R (2023)

Combining brain-computer interfaces and

multiplayer video games: an application based

on c-VEPs. Front. Hum. Neurosci. 17:1227727.

doi: 10.3389/fnhum.2023.1227727

COPYRIGHT

© 2023 Moreno-Calderón, Martínez-Cagigal,

Santamaría-Vázquez, Pérez-Velasco,

Marcos-Martínez and Hornero. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Combining brain-computer
interfaces and multiplayer video
games: an application based on
c-VEPs

Selene Moreno-Calderón1*, Víctor Martínez-Cagigal1,2,

Eduardo Santamaría-Vázquez1,2, Sergio Pérez-Velasco1,2,

Diego Marcos-Martínez1,2 and Roberto Hornero1,2

1Biomedical Engineering Group (GIB), E.T.S Ingenieros de Telecomunicación, University of Valladolid,

Valladolid, Spain, 2Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y

Nanomedicina (CIBER-BBN), Madrid, Spain

Introduction and objective: Video games are crucial to the entertainment

industry, nonetheless they can be challenging to access for those with severe

motor disabilities. Brain-computer interfaces (BCI) systems have the potential

to help these individuals by allowing them to control video games using their

brain signals. Furthermore, multiplayer BCI-based video games may provide

valuable insights into how competitiveness or motivation a�ects the control

of these interfaces. Despite the recent advancement in the development

of code-modulated visual evoked potentials (c-VEPs) as control signals for

high-performance BCIs, to the best of our knowledge, no studies have been

conducted to develop a BCI-driven video game utilizing c-VEPs. However, c-VEPs

could enhance user experience as an alternative method. Thus, the main goal

of this work was to design, develop, and evaluate a version of the well-known

‘Connect 4’ video game using a c-VEP-based BCI, allowing 2 users to compete by

aligning 4 same-colored coins vertically, horizontally or diagonally.

Methods: The proposed application consists of a multiplayer video game

controlled by a real-time BCI system processing 2 electroencephalograms (EEGs)

sequentially. To detect user intention, columns in which the coin can be placed

was encoded with shifted versions of a pseudorandom binary code, following

a traditional circular shifting c-VEP paradigm. To analyze the usability of our

application, the experimental protocol comprised an evaluation session by 22

healthy users. Firstly, each user had to perform individual tasks. Afterward, users

were matched and the application was used in competitive mode. This was done

to assess the accuracy and speed of selection. On the other hand, qualitative data

on satisfaction and usability were collected through questionnaires.

Results: The average accuracy achieved was 93.74% ± 1.71%, using 5.25 seconds

per selection. The questionnaires showed that users felt a minimal workload.

Likewise, high satisfaction values were obtained, highlighting that the application

was intuitive and responds quickly and smoothly.

Conclusions: This c-VEP based multiplayer video game has reached suitable

performance on 22 users, supported by high motivation and minimal workload.

Consequently, compared to other versions of “Connect 4” that utilized di�erent

control signals, this version has exhibited superior performance.
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brain-computer interfaces, code-modulated visual evoked potentials, video games,
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1. Introduction

Video games allow users to interact with certain elements in

a virtual environment. Given the pronounced progress made in

recent years in this sector, it is currently estimated that 40% of the

world’s population plays video games, which equates to more than

3.1 billion consumers (DFC Intelligence, 2022). Studies support

that playing video games in moderation can bring great advantages

specially focused on improving cognitive skills (Granic et al.,

2014; Reynaldo et al., 2021), such as increasing decision-making

ability (Jordan and Dhamala, 2022), enhancing visual attention

(Gan et al., 2020) and improving attention control (Anguera

et al., 2013). Furthermore, studies indicate that the abstraction

capacity caused by video games can reduce the sensation of pain

(Raudenbush et al., 2009; Inan and Inal, 2019). In addition to these

benefits, multiplayer video games also reflect the importance of

social interaction (Obbink et al., 2012). Nevertheless, most video

games are controlled by a keyboard, mouse or joystick, making

accessibility difficult for people with severe motor disabilities. To

address this, brain-computer interface (BCI) systems could serve

as alternative technology to promote accessibility to video games

(Kerous et al., 2018). For this reason, it seems appropriate to

delve into the combination of video games and BCI systems, with

the purpose of improving the quality of life and increasing the

independence of people with certain disabilities.

A BCI is defined as a communication system that allows the

user to interact with the environment without the involvement

of muscles or peripheral nerves (Wolpaw et al., 2000). BCI

systems allow the interpretation of user’s intentions by monitoring

and processing their brain activity. Although there are several

techniques to record such activity, electroencephalography (EEG)

is commonly used as it is non-invasive, portable and inexpensive in

comparison with other methods. This procedure is performed by

placing a set of electrodes on the scalp (Wolpaw et al., 2000).

In this context, controlling video games with BCI systems

would not only help to promote their accessibility to users with

motor disabilities, but could also allow exploring the influence of

competitiveness, collaboration or motivation on brain dynamics.

To contextualize these terms, it is worth remembering that

within multiplayer video games there are two main modalities:

collaborative and competitive. Collaborative video games are those

in which two or more players must make decisions as a team to

achieve a common purpose, whereas in a competitive game the

participants are rivals who have to achieve a faster goal than their

counterparts. In this sense, a previous study evaluated the influence

on social interaction between participants when they played a

cooperative game (Obbink et al., 2012), but not a competitive video

game.

Several studies have proposed BCI-driven multiplayer video

games. Luca et al. (2021) aimed to identify patterns of neuronal

activity and connectivity through a neurofeedback (NF) video

game featuring both competitive and collaborative modes. Another

study, carried out by Bonnet et al. (2013), implemented a video

game in which two users played a soccer game using sensorimotor

rhythms (SMRs). This game included individual, collaborative

and competitive modes, with an accuracy of 75.83%, 75.42%, and

74.58% respectively. The first two modes were tested on 20 users

for comparison, while only 8 users participated in the competitive

mode. Also, it should be noted scientific literature does not

recommend these kind of endogenous in BCIs for communication

and control due to allow the discrimination of small amount of

classes, requiring more training and achieving lower accuracies.

However, they are recommended for neurorrehabilitation purposes

(Young et al., 2014; Cervera et al., 2018). In contrast, Grkk et al.

(2013) developed a video game based on steady-state visual evoked

potentials (SSVEPs) to evaluate social and cooperative interaction,

although it did not include a competitive mode nor reported

accuracy metrics. Also, they required the use of a mouse.

In addition, among all the multiplayer games transferred to

BCI systems, two studies developed different versions of the

famous competitive game “Connect 4” (Maby et al., 2012; Holz

et al., 2013), which consists of lining up 4 coins of the same

color on a vertical board. They used SMR and P300 evoked

potentials, respectively. However, the results showed an accuracies

of 62.25% (Holz et al., 2013) and 83.30% (Maby et al., 2012).

Also, the evaluations were conducted on a small number of users,

only 4 and 2 correspondingly, making it difficult to draw robust

conclusions. The limitations of using these signals mentioned are

mainly centered on several factors. On the one hand, in general,

P300-based systems require a calibration phase, which typically

lasts 20–30 min (Martnez-Cagigal et al., 2016). However, this time

requirement increases significantly for SMRs, sometimes extending

to hours or even days. Unfortunately, some individuals may never

be able to learn to generate satisfactory results (Wolpaw et al.,

2000). Furthermore, current state-of-the-art BCI systems have been

demonstrated the accuracy and the selection speed of these systems

is slower than other types of control signals.

Recently, code-modulated visual evoked potentials (c-VEPs)

have been proposed as a novel control signal able to overcome

the aforementioned limitations, achieving similar or even higher

accuracy and selection speeds (Bin et al., 2009; Volosyak et al.,

2020). This control signal encodes commands by utilizing shifted

versions of a pseudo-random sequence. In this paradigm, referred

to as circular shifting, a calibration template is computed based on

the user’s EEG response to the visual stimulation. Subsequently, the

online decoding of the desired user’s command becomes feasible

by identifying the phase shift relative to the original template. BCI

applications based on c-VEPs have achieved excellent performances

both for healthy users (e.g., 90%) (Bin et al., 2009) and motor-

disabled users (e.g., 79%) (Verbaarschot et al., 2021). As has been

demonstrated to date, the use of c-VEPs holds great potential due to

their ability to attain high accuracy with very short calibration and

fast command selections (Bin et al., 2009). Despite the promising

potential of c-VEP-based BCIs for communication and control,

to the best of our knowledge, there are no BCI video game in

the scientific literature utilizing this type of control signal. This

knowledge gap motivates us to explore the viability of employing

c-VEPs to control multiplayer BCI-based video games and assess

their suitability for such applications.

The aim of this work is to design, develop and evaluate a

multiplayer video game using c-VEPs, specifically, a version of

the famous “Connect 4”, where two users compete to win. The

application has beed evaluated by 22 healthy users during a single

session, where three types of tasks were carried out: guided, free

Frontiers inHumanNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1227727
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Moreno-Calderón et al. 10.3389/fnhum.2023.1227727

and competitivemultiplayer. Finally, the usability of the application

was assessed from two points of view: quantitative analysis, i.e.,

accuracy and speed; and qualitative analysis, i.e., satisfaction

questionnaires. We will focus our attention in this game since it

is an intuitive and well-known game, the matches are prompt and

it allows evaluating of the competitiveness between two players

reflecting a clear winner. In our proposed video game, users must

attend to the position on the board where they wish to place a coin,

while each available column’s target cells is illuminated following an

out-of-phase version of a pseudo-random sequence.

2. Subjects and methods

2.1. Subjects

A total of 22 healthy controls (aged 28 years ± 2.60 years, 10

females and 12 males) participated in the experiments. Six users

had previous experience controlling BCI systems. All participants

gave their informed consent and were informed in advance of the

purpose of the study.

2.2. Stimulation paradigm and architecture
of BCI system

Our “Connect 4” video game consists of a vertical board of

seven columns and six rows. Two players, designated as player 1

and player 2, take turns placing their respective yellow and red

coins. The objective of the game consist in aligning four coins

of the same color horizontally, vertically or diagonally. Figure 1

shows a snapshot of the video game. To determine in which column

the coin should fall at any given moment, a stimulation paradigm

based on c-VEPs is used. Users must attend to the position on

the board where they want to place a coin, while each of the

target cells of columns available are illuminated following an out-

of-phase version of a pseudo-random sequence (Martnez-Cagigal

et al., 2021). Coin descends vertically, propelled by the force of

gravity, so only one cell per column can be simultaneously flashing,

except whenever a column is already filled. The user’s attention to

the visual stimulus generates a specific brain response in the EEG,

allowing to differentiate the position where the user wants to place

the coin by detecting the phase difference through a real-time signal

processing pipeline (Martnez-Cagigal et al., 2021).

The code used to modulate the illuminations of the board

commands corresponds to a binary maximum length sequence (m-

sequence) of N = 63 bits, generated through a linear feedback shift

register (LFSR) using the polynomial x6 + x5 + 1 and initial state

110,000 (Holmes, 2007). Its autocorrelation function is flat; being

1 for the original signal and −1/N for the rest (Martnez-Cagigal

et al., 2021). Since the refresh rate of the monitor allowed up to

144 Hz, the stimuli were presented at 120 Hz. Several studies have

shown that the higher the frequency of stimulus presentation, the

greater the user comfort (Gembler et al., 2018; Baaklar and Ider,

2019; Martnez-Cagigal et al., 2023). Therefore, a higher frequency

has been opted for over the standard 60Hz to improve system speed

and enhance the satisfaction of users (Martnez-Cagigal et al., 2023).

Thus, the duration of a complete cycle of the sequence corresponds

to 0.525 s (i.e., 63/120). The selection matrix consists of seven

commands, where each command controls each of the columns

where a coin can be placed. Despite the flat autocorrelation of

the sequence, the autocorrelation of the EEG response does not

necessarily have to be so. Therefore it is desirable to space out the

assigned delays as much as possible throughout the 63-bit code to

facilitate its subsequent decoding (Martnez-Cagigal et al., 2021). In

this case, the delays assigned to each column were set in multiples

of 9 samples, i.e.; θi = 9 · i, where i = 0, 1, ...6.

As shown in Figure 2, the BCI system consists of 3 main

stages: (1) signal acquisition; (2) signal processing; and (3) the

video game application. These stages have been implemented

within MEDUSA c©, a software ecosystem for the development of

BCI systems and neuroscience experiments www.medusabci.com

(Santamara-Vazquez et al., 2023). The application has been

specifically and entirely developed for this study, including the

processing stages and graphical interface.

2.3. Signal acquisition

EEG signals were recorded using g.Nautilus Pro equipment

(g.Tec, Guger Technologies, Austria), with a sampling rate of

250 Hz. EEgs were transmitted via Bluetooth to the computer

running the video game instance. Eight gel-based electrodes were

placed on the scalp at positions Fz, Cz, Pz, P3, P4, PO7, PO8,

and Oz, using the right earlobe as reference (A2) and AFz as a

ground, according to the International System 10-10 (Krusienski

et al., 2008). The computer used was an Intel(R) Core(TM) i7-

10700F CPU@ 2.90GHz, 32 GB RAM. Of note, the application was

displayed in a Keep Out XGM24F+ 23.8" LED FullHD FreeSync

monitor with a maximum refresh rate of 144 Hz.

2.3.1. Processing stage
The first step in the processing stage consists of preprocessing

the EEG signal to eliminate unnecessary frequency bands for

c-VEP detection. The preprocessing consisted of a 7-order

Butterworth infinite impulse response (IIR) bandpass filter with

cutoff frequencies between 1 and 30 Hz. To decode the selected

command in real-time, the standard processing method for

c-VEPs based on circular shifting was used (Martnez-Cagigal et al.,

2021). In this stage, two phases are distinguished: calibration and

testing.

In calibration, the signal is recorded when the user looks

at the command encoded with the original m-sequence (i.e.,

without delay) for k numbers of cycles (i.e., repetitions of the m-

sequence). Two versions of the EEG response were obtained after

preprocessing: (1) the concatenated epochs A ∈ R
[kNs·Nc] (i.e., Ns

is the number of samples and Nc the number of channels) and

(2) the epochs averaged over all cycles B ∈ R
[Ns·Nc]. To maximize

the correlation between these two versions, canonical correlation

analysis (CCA) was applied. The spatial filter wb is selected as

the projection that maximizes the correlation coefficient between

A and B. Of note, the averaged version is replicated k times to

match the dimensions of the concatenated version. Thereby, the

main template was calculated by projecting the averaged response
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FIGURE 1

Snapshot of the graphical interface of the video game. The main board is located on the left side of the screen, while the current round and player

are displayed on the right. In this case, the red player has won after lining up four coins horizontally.

FIGURE 2

Architecture of BCI system, consisting of three stages: signal acquisition, where the EEG signal is recorded from the two participants; signal

processing stage, where each EEG is processed (averaged EEG signals to the stimuli are also shown); and the application, the “Connect 4” video

game in charge of giving real-time feedback to users.

with the CCA-trained spatial filter. Templates for the rest of the

commands were calculated by circularly shifting the main template

according to each lag (Martnez-Cagigal et al., 2021). In addition,

artifact rejection was applied, i.e., only non-noisy epochs were used

to calibrate the system. The standard deviation (STD) of the signal

was calculated for each channel. Then, an epoch was discarded if at

least the STD in one channel exceeded three times the STD of that

channel (Martnez-Cagigal et al., 2023).

Subsequently, in the test stage, the epochs of each trial are

extracted and spatially projected with the spatial filter wb. Pearson’s

correlation coefficients of the projection with all templates are

calculated. The command selected by the user will be the one

corresponding to the delay whose template yielded the highest

correlation (Martnez-Cagigal et al., 2021).

2.3.2. Application
The application stage is in charge of interpreting the selected

commands and providing feedback to the user in real time. This

application consists of a board with seven columns and six rows

where four coins of the same color must be aligned horizontally,

vertically or diagonally. Initially, it is a competitive game, where

one player controls the red coin and the other the yellow ones. This

application can be used in both individual and competitive modes.

In individual player mode, a single person manages the red and

yellow coins, selecting them sequentially. If neither player manages

to line up four coins vertically, horizontally or diagonally and there

are no empty spaces on the board, the game would indicate that the

players ended in a tie. Between one user and another, 3 s were given

to think.
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The graphical interface has been developed in Unity, a video

game engine that uses C# programming language. Unity was

selected because it enables control over the monitor refresh

rate. For c-VEPs it is specially important to be precise in the

stimulation times, since small jitter (i.e., latency variations) could

lead to decoding mistakes (Martnez-Cagigal et al., 2021). The

communication between the graphical interface and the processing

stage was carried out using an asynchronous TCP/IP client-server

architecture.

On the other hand, it is worth mentioning that much of the

research in the field of BCI and video games are focused on the

technical challenges of these systems, such as improving real-time

processing or accuracy. However, little attention is paid to the

final application, despite previous studies suggesting its relation to

system performance (Nijboer et al., 2010). Examples of such factors

are developing user-friendly graphical interfaces or using control

paradigms more in line with end-user characteristics. Taking this

into account, our intention was to develop a visually appealing

and dynamic application that showcases the current round number,

identifies the active player, and tracks the elapsed time. Tominimize

distractions from adjacent stimuli and enhance the accuracy of

command selection, a dot has been incorporated within each cell.

To promote open science, the application has been developed

as a MEDUSA c© Platform app, being available in the app market

www.medusabci.com/market/connect4/ (Santamara-Vazquez

et al., 2023).

2.4. Experimental protocol

In order to evaluate the usability of the application, a mixed

analysis was performed. Firstly, a quantitative analysis, measuring

accuracy and speed-related parameters such as output characters

per minute (OCM) and information transfer rate (ITR). The

accuracy of all tasks was calculated for each user, considering the

number of correct selections and the number of selections made. A

correct selection was considered when the coin fell to the position

corresponding to the cell where the user was looking at.

Although the ITR is the most widely used metric, studies

suggest that it relies on assumptions that are often inaccurate in

online BCI systems (Speier et al., 2013; Yuan et al., 2013). The ITR

was calculated through the following formula:

ITR(
bits

min
) = Q(log2(S)+ P · log2(P)+ (1− P)log2(

(1− P)

(S− 1)
)) (1)

where Q represents the number of selections per minute, P is

the accuracy and S is the number of commands. The number of

selections per minute was 11.43, calculated from the selection time

per command, which was 5.25 s. This time was calculated without

considering the pause times, taking into account that 10 cycles were

used, with each cycle lasting 0.525 s. Additionally, the accuracy was

calculated based on the number of correct selections out of the

total number of selections made. Lastly, the number of commands

was 7, based on the number of columns. Therefore, we will also

calculate the OCM. This is computed by dividing the total number

of selections by the time required to select them in minutes. This

metric is specially useful for estimating the system communication

rate in asynchronous systems (Speier et al., 2013). Additionally,

a qualitative analysis was carried out by means of questionnaires

such as system usability scale (SUS) and NASA task load index

(NASA-TLX) (Hart and Staveland, 1988).

As for the number of sessions, one session was conducted per

user. Each session consisted of a series of tasks that lasted 45 min

in total. The performance of these tasks was divided into two

parts: individual and competitive assessment. Once the user had

completed their individual tasks, they were paired with another

person to carry out the competitive multiplayer mode.

Prior to the completion of all the tasks, a calibration was

conducted to determine the user’s c-VEP templates and required

to identify where the user was looking at any given moment. In

this calibration, the user was asked to focus their attention on

the first column (corresponding to the command that encodes the

original m-sequence, without lag). Ten trials of 10 cycles each were

recorded, therefore the calibration stage lasted 52.50 s per user.

Subsequently, a decoding model was trained following the signal

processing pipeline detailed in Section 2.3.1.

Upon completion of the calibration, the next steps were to

perform the tasks. Each command had a selection time of 5.25 s,

equivalent to 10 established cycles. Firstly, individual tasks were

performed. These were divided into guided and free tasks, with the

same user controlling both the yellow and red coins.

• Guided tasks. The objective was to arrange the coins in a

specific manner as instructed by the supervisor. Four tasks

were performed, requiring 15, 17, 21, and 25 selections,

respectively.

• Free tasks. The objective was to win the match freely, with

some autonomy. It did not matter in which row or column

the coins were positioned as long as they were aligned with the

color and the way they were previously specified (e.g., placing

yellow coins vertically). Three tasks were carried out.

It is important to note that in cases where a user accidentally

selected the wrong command, they were required to report it,

resulting in an increase in the total number of final selections. Once

the individual tasks were completed, the competitive assessment

was carried out through multiplayer tasks:

• Multiplayer tasks. Three matches were played in which two

users competed to win. For this purpose, two EEG signals were

recorded in parallel, each with its own processing pipeline. A

different player started each match.

After carrying out all the tasks, participants were asked to fulfill

standardized NASA-TLX and SUS questionnaires to assess their

workload and satisfaction. NASA-TLX is one of the most widely

used methods for assessing mental workload and fatigue. This

procedure gives an overall workload score based on a weighted

average of the scores of 6 subscales ( i.e., mental demand, physical

demand, temporal demand, performance, effort and frustration),

defining the relevant factors in the user’s subjective experience

of workload (Hart and Staveland, 1988). On the other hand,

satisfaction was assessed through a SUS questionnaire, which

offered an overview of the usability of the application, alternating
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10 positive and negative questions about the application to avoid

acquiescence bias (Brooke, 1995). The questionnaire was based on

a 5-point Likert scale (Likert, 1932). Additionally, the last question

focused on collecting suggestions to improve the application.

3. Results

3.1. Quantitative analysis

Table 1 details the average accuracies and ITRs of each user

for each type of task, as well as for the sum of all of them. The

average accuracy for guided, free and multiplayer tasks was 94.39%,

95.43%, and 91.40%, respectively. The global average was 93.74%

± 1.71%. In terms of system speed-related parameters, an ITR of

30.61 bpm ± 0.34 bpm was reached. The results of the OCM for

different number of cycles in guided tasks are presented in Table 2.

As it can be observed, the OCM for 10 cycles was 11.43 selections

per minute. The table also displays the accuracy for all users for

each cycle, highlighting that some users reached their peak accuracy

using fewer cycles, resulting in a shorter selection time.

3.2. Qualitative analysis

NASA-TLX questionnaire carried out by the users indicates a

low workload (total of 28.82 ± 11.10 points out of 100), calculated

as the weighted average of the scores for the 6 parameters (Hart and

Staveland, 1988). The total workload score for each user as well as

the variables that are most relevant after the use of the application

for all participants are displayed in Figure 3.

SUS questionnaire results are shown in Table 3. The statements

were evaluated between 1 (strongly disagree) and 5 (strongly

agree) points. All positive statements (odd numbering) were rated

between 4 and 5 points, and most of the negative ones (even

numbering) were rated below 3 points. It is noteworthy to mention

that users were considerably satisfied with the BCI video game, and

a high satisfaction value was obtained (SUS coefficient of 80.60 out

of 100) (Brooke, 2013). According to the results, the application

is intuitive, easy to use and responds with fluidity. Regarding the

open-ended question, some suggestions for improvement were

indicated, such as increasing the spacing between illuminations and

giving more time between a selection and the onset of the following

stimulation in order to plan the next move. On the other hand,

some users reported feeling confident making a selection in less

time than proposed.

4. Discussion

4.1. Quantitative analysis

As can be seen in Table 1, high accuracy has been achieved

for all tasks (>91%), thus verifying its correct functioning, since

a BCI system is considered to be controllable when the user

achieves more than 70% accuracy (Martnez-Cagigal et al., 2016).

A Wilcoxon signed-rank test was used to perform the statistical

analysis, although no significant differences in accuracy were

found between tasks (p-values > 0.05), i.e., this study found that

competitiveness did not have a significant impact on performance,

with all users achieving high accuracy. However, it is worth noting

that the accuracy for multiplayer tasks is slightly lower than for

the other tasks. In this regard, a higher accuracy in the multiplayer

tasks could be expected due to a higher motivation and stimulates

effort and the desire for self-improvement. Nonetheless, it has been

demonstrated that playing against a person results in higher arousal

levels compared to playing against a computer (Ravaja et al., 2006).

Furthermore, several studies have demonstrated that heightened

fatigue and diminished arousal levels can give rise to attention

deficits, increased workload, and lower performance (Kthner et al.,

2014; Saha et al., 2021). In this case, this increased arousal may

cause fatigue or pressure due to the competition, leading to a loss

of concentration which can be reflected negatively in the results.

Thus, this pressure and low concentration could prevail over the

added motivation.

On the other hand, the reached ITR (30.61 bpm ± 0.34

bpm) could seem low compared to other c-VEP-based applications

(Martnez-Cagigal et al., 2021). This is due the low number of

possible commands (i.e., 7 columns), which is directly reflected

in the ITR calculation. For this reason, the command selection

time could be a more relevant metric to characterize the speed of

the system, which in this case has been 5.25 s per command. A

detailed evolution of the accuracy and selection time for the set of

guided tasks as a function of the number of cycles used is shown

in Table 2. It can be observed that several users would have been

able to reach the maximum accuracy with a lower number of cycles

than the established. For instance, user U05 could have reached the

maximum accuracy with five cycles, which would be equivalent to

2.62 s per selection. On average, the number of cycles required to

reach maximum accuracy per user was 9.36, as many users required

10 cycles.

4.2. Qualitative analysis

4.2.1. NASA-TLX
Figure 3A provides the importance of each of the 6 NASA-

TLX variables as a cause of the workload and their importance in

each task for all users. The ratings for frustration, performance and

physical demand are remarkably low. The parameter that affected

most the experiment was the temporal demand, i.e., some users

felt certain time pressure due to the pace of command selection.

It could be deduced that workload could influence the decrease

in performance. Specifically, 6 participants experienced a drop in

accuracy during competitive tasks. Unlike the individual mode,

where the intended coin placement was known, the competitive

mode required the participants to devise their own strategy and

account for their opponent’s move in just 5.25 seconds. This might

caused a loss of confidence and reduced focus on the stimulus

presentation.

Figure 3B shows that most users had a low score on the NASA-

TLX assessment (with an overall score of 28.82 out of 100). A

high NASA-TLX value means a higher workload. For instance,

users U03 and U04 reported the two highest NASA-TLX scores

(52.3 and 49.3 respectively), but even so obtained an accuracy of

91.83% and 92.90% respectively. Hence, it is our belief that mental
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TABLE 1 Quantitative results of the assessment by all users for each set of tasks, as well as the overall average.

User Guided tasks Free tasks Multiplayer tasks Average

Accuracy ITR (bpm) Accuracy ITR (bpm) Accuracy ITR (bpm) Accuracy + STD ITR + STD

U01 98.75% 31.73 100.00% 32.08 100.00% 32.08 99.58%± 0.59% 31.96± 0.16

U02 96.25% 31.14 93.33% 30.52 95.23% 30.91 94.93%± 1.21% 30.85± 0.25

U03 91.66% 30.19 93.33% 30.52 90.50% 29.98 91.83%± 1.16% 30.23± 0.22

U04 95.24% 30.91 96.43% 31.18 87.03% 29.36 92.90%± 4.18% 30.48± 0.80

U05 100.00% 32.08 100.00% 32.08 85.00% 29.02 95.00%± 7.07% 31.06± 1.44

U06 85.33% 29.08 86.67% 29.30 88.33% 29.5 86.77%± 1.22% 29.32± 0.20

U07 92.13% 30.29 92.85% 30.43 91.53% 30.17 92.17%± 0.54% 30.29± 0.11

U08 91.95% 30.25 88.63% 29.64 100.00% 32.08 93.52%± 4.77% 30.65± 1.03

U09 97.56% 31.43 100.00% 32.08 100.00% 32.08 99.18%± 1.15% 31.86± 0.31

U10 78.48% 28.04 81.08% 28.41 71.20% 27.11 76.91%± 4.17% 27.85± 0.54

U11 100.00% 32.08 100.00% 32.08 100.00% 32.08 100.00%± 0.00% 32.08± 0.00

U12 100.00% 32.08 100.00% 32.08 95.23% 30.91 98.41%± 2.25% 31.69± 0.55

U13 100.00% 32.08 100.00% 32.08 86.57% 29.28 95.52%± 6.33% 31.14± 1.32

U14 100.00% 32.08 100.00% 32.08 86.06% 29.19 95.35%± 6.57% 31.11± 1.36

U15 98.76% 31.73 100.00% 32.08 95.23% 30.91 97.99%± 2.02% 31.57± 0.49

U16 91.86% 30.23 96.43% 31.18 85.94% 29.18 91.41%± 4.29% 30.19± 0.81

U17 96.43% 31.18 100.00% 32.08 100.00% 32.08 98.81%± 1.68% 31.78± 0.42

U18 86.75% 29.31 84.22% 28.89 100.00% 32.08 90.32%± 6.19% 32.09± 1.41

U19 88.06% 29.54 90.00% 29.88 96.29% 31.14 91.45%±3.51% 30.18± 0.69

U20 88.63% 29.64 96.42% 31.17 96.66% 31.23 93.90%± 3.73% 30.68± 0.73

U21 100.00% 32.08 100.00% 32.08 77.81% 27.94 92.60%± 0.59% 30.70± 0.16

U22 98.71% 31.71 100.00% 32.08 82.14% 28.57 93.61%± 8.13% 30.78± 1.57

Average 94.39% 30.85 bpm 95.43% 31.09 bpm 91.40% 30.31 bpm 93.74%± 1.71% 30.61 bpm ±

0.34 bpm

STD 5.86% 1.16 bpm 5.77% 1.18 bpm 7.89% 1.46 bpm

ITR, information transfer rate; STD, standard deviation.

workload is not a problem in our system, but rather an inherent

aspect of BCI systems. In general, users emphasized that they did

not experience too much fatigue, so this allowed them to use

the application for a lengthy period of time without experiencing

eyestrain. On the other hand, users felt confident and relaxed as

they made the selections and indicated that the proposed tasks were

easy and straightforward, and that they were satisfied with the level

of performance. After applying Spearman’s Rank-Order correlation

between the questionnaire values and the total accuracies for each

user, a correlation of -0.26 was found and was not statistically

significant (p-value > 0.05), i.e., a weak correlation was found

between high NASA-TLX scores and decreasing accuracies.

4.2.2. Questionnaire SUS
Results of the questionnaire SUS are depicted in Table 3. As can

be seen, in terms of qualitative analysis, the questionnaire reflects

that the developed application complies with the requirements

and achieves high satisfaction values. The first statement reached

the highest value, indicating that the developed application is

accessible and convenient. Besides, all positive statements reached

values above the mean (>4.4). On the other hand, in terms of

negative statements, users reported that the application required

a significant level of concentration, which could be attributed to

the need to make a strategy before on making a move against the

other user before the lighting sequence began. This was because the

users did not have much time between selections (only 3 s until the

illumination appeared). The most discordant responses came from

the difficulty of command selection, which is closely related to the

user’s accuracy. In general, the greater the perceived difficulty, the

lower accuracy obtained. Another parameter to be highlighted was

the selection time. Mostly, participants that yielded low accuracy

suggested to increase the inter-stimulus interval to have more time

to think, whereas those who completed the task with nearly zero

errors thought they were able to make faster selections. Moreover,

the former also indicated that they found the stimulation annoying.
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TABLE 2 Performance metrics of each user in function of the number of cycles for guided tasks.

No. Cycles 1 2 3 4 5 6 7 8 9 10

Time (s) 0.53 1.05 1.58 2.10 2.62 3.15 3.68 4.20 4.73 5.25

OCM
(select/min)

113.21 57.14 37.97 28.57 22.90 19.05 16.30 14.28 12.68 11.43

U01 26.25 47.50 67.50 73.75 87.50 93.75 97.50 96.25 97.50 98.75

U02 23.75 47.50 60.00 76.25 81.25 85.00 88.75 92.50 91.25 96.25

U03 17.85 34.52 46.43 51.19 66.66 67.85 76.19 79.76 84.52 91.66

U04 17.85 34.52 54.76 60.71 78.57 85.57 83.33 85.71 91.66 95.24

U05 33.33 71.79 93.59 98.71 100.00 100.00 100.00 100.00 100.00 100.00

U06 26.66 36.00 44.00 45.33 60.00 68.00 68.00 74.66 77.33 85.33

U07 25.84 41.57 51.68 64.04 69.66 76.40 80.89 85.39 86.51 92.13

U08 21.84 29.88 54.02 58.62 63.22 64.36 70.11 74.71 80.46 91.95

U09 31.70 52.44 69.51 73.17 80.48 85.36 87.80 90.24 93.90 97.56

U10 17.72 22.78 36.71 49.36 53.16 55.69 59.49 65.82 72.15 78.48

U11 37.18 58.97 79.48 91.02 92.30 97.43 100.00 100.00 100.00 100.00

U12 28.75 65.00 77.5 91.25 95.00 97.50 98.75 98.75 100.00 100.00

U13 35.04 67.53 85.71 94.80 96.10 96.10 98.70 98.70 100.00 100.00

U14 24.36 46.15 61.54 80.77 87.18 96.15 96.15 98.71 100.00 100.00

U15 29.63 49.38 66.66 81.48 85.18 88.88 91.35 95.06 95.06 98.76

U16 26.74 34.88 40.69 47.67 62.79 70.93 77.91 84.88 91.86 91.86

U17 15.47 41.66 55.95 66.66 76.19 83.33 85.71 89.28 91.66 96.43

U18 18.07 25.30 32.53 44.58 44.58 55.42 68.67 72.29 75.90 86.75

U19 26.86 34.33 38.80 53.73 64.18 64.18 73.13 77.61 80.59 88.06

U20 22.72 37.50 43.18 61.36 64.77 64.77 65.91 72.72 81.81 88.63

U21 33.33 55.13 74.36 84.61 89.75 94.87 98.71 97.43 100.00 100.00

U22 34.61 60.25 67.95 80.77 85.89 91.02 92.31 94.87 98.71 98.71

Average 26.17 45.21 59.21 69.53 76.56 81.02 84.51 87.51 94.49 94.39

OCM: output characters per minute. Maximum accuracy achieved is shown in bold.

4.3. Comparison with previous studies

The applications with further similarities to our application

were those of Holz et al. (2013) and Maby et al. (2012) since they

implemented versions of the ‘Connect 4’ game with other control

signals. Table 4 summarizes the main differences between these and

our study.

First of all, concerning the number of users evaluated, in the

study by Holz et al. (2013), their application was assessed in 4 users

with severe motor restrictions. On the other hand, in the study by

Maby et al. (2012), the experimental evaluation was performed with

two control users. A larger number of users would be desirable

to reach conclusive results. In our study, 22 control users were

evaluated (10 females and 12 males), providing more heterogeneity

and improving the statistical power.

In terms of the type of control signal used, Holz et al.

(2013) used the elicited SMRs via hand and foot motor imagery

(MI). SMRs are endogenous signals produced by imagining or

performing limb movements. SMR-based BCI systems have been

applied for rehabilitation due to could cause neuronal plasticity as

an endogenous signal. However, SMRs are not an optimal selection

in BCI systems for communication and control, since only 2-4

classes can be decoded and it takes a lot of time to train, not

to mention that some people do not generate it properly. Often,

they also get lower accuracies than for P300, SSVEP and c-VEPs

(Martnez-Cagigal et al., 2016). In this case, an average accuracy of

62.65%was obtained with an average ITR of 0.53 bpm. On the other

hand, Maby et al. (Maby et al., 2012) used P300 evoked potentials.

P300 have been widely used in communication and control BCI

applications as they allow to reach high accuracies with moderate

selection times (e.g., >90%, 10–25 bpm) with a calibration of 20–

30 min (Martnez-Cagigal et al., 2016). In this case, they obtained

an average performance of 83.30% at 37.00 bpm. In this sense, the

accuracy of our study (93.74% ± 1.71%) was significantly higher

than the reported by Maby et al. (2012) (p-value=0.004) and the

reported by Holz et al. (2013) (p-value=0.00026) after applying

Mann-Whitney U-Test. With regard to the speed of the system, the

ITR value for Holz et al. (2013) was of 1.44 bpm. However, in the
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FIGURE 3

Results of the NASA-TLX questionnaire. (A) Distribution of the variables that contributed the greatest workload for all users. (B) Overall score for each

user.

case of Maby et al. (2012) it was 37.01 bpm, slightly higher than the

one obtained for our application (30.61 bpm).

Concerning the selection time, Holz et al. (2013) used 15 s per

selection, while Maby et al. (2012) required a theoretical selection

time of 4.06 s, which resulted in a real 16.46 s since users were given

10 s to think before blinking. In our study, the theoretical selection

time was 5.25 s after using 10 cycles with very high accuracies

for all users. This short selection time could reduce the possible

occurrence of fatigue with respect to the time required in the others

studies like in Holz et al. (2013). Furthermore, each user was given

3 s to think before the illumination appeared. Also, as we have

observed before, some users obtained an accuracy of 100% with

only five and seven cycles, which would be equivalent to a selection

time of 2.62 s and 3.68 s, respectively. In most studies that utilize

P300 as a control signal, a longer time per selection is necessary due

to the use of more sequences to enhance decoding accuracy (they

used only 2).

Another parameter to note is the calibration time. The c-

VEPs do not require an extensive calibration (Martnez-Cagigal

et al., 2021) (52.50 s were used in our protocol). In the cases of

the “Connect 4” adaptations, Holz et al. (2013) did not require

a calibration stage, but an endogenous training stage that lasted

between 26.26 min and 3 h, depending on the user. Maby et al.

(2012) used a calibration that lasted 4.26 min, corresponding to

63 selections with two sequences per trial (repetitions of the same

column flashing).

Regarding qualitative aspects, our workload assessed by the

NASA-TLX questionnaire for all users was 28.82 points, whereas

Holz et al. (2013) obtained 37.75 points. They also reported

moderate workload and frustration, leading to fatigue for some

participants. Maby et al. (2012), by contrast, did not evaluate any

fatigue-related parameters.

4.4. Limitations and future work

Despite the satisfactory results and the successful achievement

of the objective, several limitations were identified. Firstly, although

the effectiveness of the BCI video game developed with healthy

users has been demonstrated, we believe that it is necessary to

evaluate the application with people with severe motor disabilities,

since they have traditionally been the target application of BCI

systems for communication and control. On the other hand, in

order to achieve enhanced user comfort and greater ease of use,

the exploration of dry electrodes could be considered as they do

not require a conductive gel, thereby eliminating the need for

its application and subsequent cleaning. In line to improve user

comfort, it would also be advisable to use non-binary sequences

(Gembler et al., 2018) or “amplitude depth reduction” (Ladouce

et al., 2022) to reduce visual fatigue caused by the stimulus.

Similarly, in terms of technical aspects, it would be advisable

to apply ‘early stopping’ techniques. These algorithm would

dynamically detect the number of cycles necessary to issue a

selection, so it would not be necessary to wait for the 10 established

cycles to make the decision. Some users felt that they could control

the system with a lower number of cycles, which could have lead

to a drastical ITR and speed increase. On the other hand, it would

be advisable to develop an asynchronous stage (i.e., non-control
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TABLE 3 Results of questionnaire SUS for all users.

Statements Mean + STD

1. The application is intuitive and easy to understand. 5.00± 0.00

2. The application requires too much concentration. 3.18± 0.98

3. I would imagine that most users would learn to use this application quickly. 4.86± 0.34

4. The duration of the assessment session was too long. 1.86± 0.75

5. The session is entertaining. 4.77± 0.42

6. I had difficulty selecting the desired commands. 1.95± 0.97

7. The application responds quickly and smoothly. 4.90± 0.28

8. The time needed to select a command does not seem to be adequate. 2.90± 1.38

9. I would like to use this application frequently. 4.41± 0.71

10. The flickering stimuli of the application’s cells are annoying. 1.90± 0.79

Average score of each statement evaluated between 1 and 5 points.

TABLE 4 Summary of comparison with other ‘Connect 4’ video game versions.

Study Year Control signal N◦ Users Multiplayer Processing stage Accuracy + STD Selection
time

Holz et al. (2013) 2013 SMR 4 No rLDA 62.25%± 10.75% 15 s

Maby et al. (2012) 2012 P300 2 Yes xDawn algorithm + Bay. 83.30%± 5.18% 4.06 s

Present study 2023 c-VEPs 22 Yes CCA 93.74%± 1.71% 5.25 s

rLDA: linear discriminant analysis with shringake regularization, CCA: canonical correlation analysis, SMR: sensorimotor rhythm, c-VEPs: code-modulated visual evoked potentials, Bay:

Bayesian classifier, STD: standard deviation.

detection) tomonitor users’ attention. In this way, users could think

about the strategy to follow and voluntarily activate the system

when they are ready.

5. Conclusion

This study focused on designing, developing and evaluating

a version of the popular multiplayer game “Connect 4” with a

BCI system based on c-VEP. The application was evaluated on 22

healthy users, obtaining promising results. An average accuracy of

93.74% ± 1.71% was achieved, suggesting that the use of c-VEPs is

appropriate for developing a multiplayer competitive video game.

These results were obtained with a calibration time of 52.5 s per

user. It should also be noted that the command selection time was

5.25 s. On the other hand, the satisfaction questionnaire completed

by the different participants suggests that the developed application

is intuitive, easy to use and responds with speed and fluency. They

also indicated low values of frustration and effort.

Furthermore, in comparison with two developments of the

same video game that used SMR and P300 as control signals

(Maby et al., 2012; Holz et al., 2013), our study achieved

superior quantitative and qualitative results, thus demonstrating

the favorable performance of the developed application based on

c-VEPs.
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