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Abstract
Objective. Code-modulated visual evoked potentials (c-VEP) have been consolidated in recent
years as robust control signals capable of providing non-invasive brain–computer interfaces (BCIs)
for reliable, high-speed communication. Their usefulness for communication and control
purposes has been reflected in an exponential increase of related articles in the last decade. The aim
of this review is to provide a comprehensive overview of the literature to gain understanding of the
existing research on c-VEP-based BCIs, since its inception (1984) until today (2021), as well as to
identify promising future research lines. Approach. The literature review was conducted according
to the Preferred Reporting Items for Systematic reviews and Meta-Analysis guidelines. After
assessing the eligibility of journal manuscripts, conferences, book chapters and non-indexed
documents, a total of 70 studies were included. A comprehensive analysis of the main
characteristics and design choices of c-VEP-based BCIs was discussed, including stimulation
paradigms, signal processing, modeling responses, applications, etc.Main results. The literature
review showed that state-of-the-art c-VEP-based BCIs are able to provide an accurate control of
the system with a large number of commands, high selection speeds and even without calibration.
In general, a lack of validation in real setups was observed, especially regarding the validation with
disabled populations. Future work should be focused toward developing self-paced c-VEP-based
portable BCIs applied in real-world environments that could exploit the unique benefits of c-VEP
paradigms. Some aspects such as asynchrony, unsupervised training, or code optimization still
require further research and development. Significance. Despite the growing popularity of
c-VEP-based BCIs, to the best of our knowledge, this is the first literature review on the topic. In
addition to providing a joint discussion of the advances in the field, some future lines of research
are suggested to contribute to the development of reliable plug-and-play c-VEP-based BCIs.

1. Introduction

For decades, mankind has fantasized about the pos-
sibility of controlling devices with brain signals. Des-
pite that there is still a long way to achieve this goal,
recent progress in computational neuroscience took
a step forward and contributed to the development
of the first non-invasive brain–computer interface
(BCI) systems. Through a real-time monitoring of

the electroencephalographic (EEG) signals, BCIs are
able to translate users’ intentions into application
commands [1]. Traditionally, BCIs have been aimed
at improving the quality of life of motor-disabled
people by replacing their central nervous system out-
puts. Recent studies have also been focused on apply-
ing BCIs for neurorehabilitation [2], cognitive train-
ing [3], mental state monitoring [4] and even leisure
activities [5]. Unfortunately, despite the efforts within
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the research community, BCIs are still considered an
orphan technology; i.e. the BCIs have been tested in
the laboratory but do not provide sufficient incentives
to be commercially interesting in their current form
[1]. Rarely is the technological readiness level high
enough for commercial applications, as the methods
are often not validated with either the target group of
users or in their own environment [1].

A major limitation of current BCIs is their incon-
sistent performance, which tends to vary substantially
during and between sessions and individuals [1]. Due
to the inherent limitations of the EEG (e.g. low spatial
resolution, poor signal-to-noise ratio (SNR), volume
conduction), users’ intentions are not directly reflec-
ted in their raw EEG signals, even in the rare cases
where neural representation of cognitive processes is
well-known [1, 6]. Thus, decoding users’ intentions
in real-time is a challenge that the researcher should
face. In practice, BCI paradigms rely on the detection
of measurable changes in the EEG related to different
tasks, known as control signals [1, 7].

The selection of a control signal usually depends
on the purpose of the system. For instance, in thera-
peutic applications where an accurate and explicit
control of the BCI may not be required, but the rein-
forcement of neural pathways through neurofeedback
training (e.g. neurorehabilitation, cognitive training),
self-regulated control signals such as sensorimotor
rhythms (SMR) or slow-cortical potentials (SCP) are
more common [1, 6, 7]. On the other hand, BCIs
for control and communication purposes often rely
on event-related potentials (ERP), i.e. time-locked
responses to certain events [1, 7], usually as visual
evoked potentials (VEP). Their modulation through
the user’s volitional attention to one of the possible
targets allows the BCI to detect the ERP and emit
the corresponding command. Unlike SMR or SCP,
these control signals allow the discrimination of a
great amount of classes, while requiring less train-
ing and achieving a higher decoding accuracy and
information transfer rate (ITR) [1]. For ERP-based
BCIs, oddball paradigms that elicit P300 responses
have demonstrated their feasibility for healthy users
(HU, approx. accuracy >90%, ITR of 10–25 bpm)
[8–10] and motor-disabled users (MDU, approx.
>80%, 10–25 bpm) [8, 9, 11, 12]. For VEP-based
BCIs, steady-state VEPs (SSVEP) have traditionally
stood out due to their simplicity and speed. The clas-
sical SSVEP system flickers each command at a par-
ticular frequency, generating an oscillatory response
in the EEG that matches the frequency of the com-
mand the user is looking at [1]. This methodology
has been mainly tested with HU (approx.>90%, 40–
50 bpm) [13, 14], and seldom with MDU (approx.
>80%, 10–40 bpm) [15, 16]. For a comprehensive
review on SSVEPs, see Vialatte et al [17].

Whilst P300 and SSVEP-based BCIs are able to
provide a suitable level of system control, perform-
ances do not approximate to a muscle-based control,

nor to the required level of reliability for a practical
use [1]. During the last decades, the research com-
munity has proposed novel approaches toward the
development of plug-and-play, non-invasive BCIs;
such as reduced calibration, asynchronous systems,
adaptive systems, or variations of known paradigms.
Among these proposals, a growing interest in a novel
control signal arose due to its ability to reach excel-
lent performances and reduced calibration times: the
code-modulated VEPs (c-VEP). In this paradigm,
commands flash following pseudo-random noise
codes, generating EEG responses that are more cor-
relatedwith the command the user is paying attention
to than with the rest [13].

The basis of c-VEP systems was proposed by Sut-
ter [18] in 1984 and tested with an amyotrophic lat-
eral sclerosis (ALS) patient [19], reaching commu-
nication rates of 10–12 words per minute using an
invasive electrocorticographic (ECoG) system. These
studies were ignored by the research community until
2009, when Bin and colleagues [13] demonstrated the
feasibility of Sutter’s idea in an EEG-based BCI, show-
ing that the c-VEP approach (91%, 92.8 bpm) out-
performed the classical SSVEP paradigm (85%, 39.7
bpm) in HU using only one EEG channel (i.e. Oz)
[13]. These results caused an exponential outburst
of c-VEP-based studies in the literature, which reas-
serted the efficacy of this control signal to achieve
state-of-the-art high-speed non-invasive BCIs. Not-
withstanding its popularity, to the best of our know-
ledge, there is no literature review on c-VEP-based
BCI systems.

Therefore, this literature review aims to gain a
comprehensive understanding of the existing research
about EEG-based BCIs that apply c-VEP as control
signal. In total, 70 studies have been included in
this review, which allowed us to draw joint conclu-
sions about past and current approaches, as well as to
identify current challenges and future research lines
in this exciting field.

The manuscript is organized as follows. Section 2
details the study selection process and the basis of
c-VEP systems. In section 3, an analysis of the main
aspects of c-VEP-based BCIs is shown: comparison
with other solutions, paradigms, signal processing,
sensor robustness, public databases, applications, etc.
State-of-the-art c-VEP BCIs, open questions, current
challenges and future research lines are discussed in
section 4. Finally, section 5 draws a joint conclusion
considering all the reviewed studies.

2. Methods

2.1. Study selection process
This literature review was conducted according to the
Preferred Reporting Items for Systematic reviews and
Meta-Analysis (PRISMA) guidelines [20]. A system-
atic search within Web of Science (WOS) and Google
Scholar (GS) databases was performed to identify
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Figure 1. (a) Flowchart of the study selection process as carried out in accordance with the PRISMA guidelines. (b) Distribution
of c-VEP-related publications per year during the last decade. (c) Number of c-VEP-related JCR-indexed journals, conferences,
book chapters and non-indexed records included in the literature review.

BCI studies based on c-VEP. For WOS, the advanced
search query was ‘c-VEP’ OR ‘cVEP’ AND ‘BCI’,
including all years and databases. For GS, two separ-
ate searches were conducted using the terms ‘c-VEP
BCI’ (GS1) and ‘cVEP BCI’ (GS2). In order to provide
a comprehensive review of the literature, all types
of records were screened, including journal public-
ations indexed in Journal Citation Reports (JCR),
conferences, book chapters and non-indexed studies.
Figure 1 details the study selection process accord-
ing to the PRISMA statement. As shown, a total of
159 records were identified through the aforemen-
tioned searches (WOS: 54, GS1: 57, GS2: 38). Ten
additional records were identified through other art-
icles references. After duplication removal, 87 stud-
ies were screened for relevance via title and abstract
examination. Seven records were excluded in this
step, that were either unrelated to BCIs or EEG, were
not written in English or were only composed by an
abstract/poster. Thus, 80 publications were assessed
for eligibility by carefully reading the entire manu-
script. At this point, studies that were not related
to c-VEP or that lacked crucial information (e.g.
methods, results, discussion) were excluded. After the
selection process, a total of 70 studies were included
in this literature review. A table that summarizes the
main aspects of all the included studies is available
in the supplementary material (available online at
stacks.iop.org/JNE/18/061002/mmedia).

2.2. The basis of c-VEPs
Interestingly, stimulus modulations of VEP-based
BCIs share many similarities with the channel access
methods used in telecommunications, which allow
more than two terminals to share bandwidth without
causing interference to their transmissions. Consid-
ering a terminal as a selection command, SSVEP-
based BCIs work like frequency-division multiple

access, assigning each command to a different stim-
ulation frequency. For that reason, SSVEP are also
known as frequency-modulated VEP (f-VEP). Simil-
arly, c-VEP-based BCIs use pseudorandom sequences
to encode each command, as code-division multiple
access does [21]. As a result, the broadband stimula-
tion in c-VEP causes broadband responses that can
be decoded robustly even in the presence of narrow-
band interference (e.g. salient unrelated brain oscilla-
tions, such as α waves). On the other hand, SSVEP
are based on narrow-band stimuli, so they can be
decoded in the presence of broadband noise [22].

Although each command could be modulated
by a different code, finding a family of codes with
suitable cross-correlation properties is not trivial
[22]. Thus, the classical approach relies on finding
a pseudorandom binary sequence that presents low
auto-correlation values for non-zero circular shifts,
then encoding each command with time-delayed ver-
sions of the original sequence [13, 19]. Maximal
length sequences (i.e. m-sequences), easily generated
by linear feedback shift registers (LFSR), are often
employed in c-VEP-based BCIs due to their excel-
lent autocorrelation properties; i.e. 1 for a null shift,
and−1/N otherwise, whereN is the length of the m-
sequence [21].

Figure 2 summarizes the rationale behind a
c-VEP-basedBCI system.Abinary 63-bitm-sequence
(generated using a LFSR of length m= 6 with taps
110000 and polynomial x6 + x5 + 1) is shown in
figure 2(a). A LFSR of length m= 6 generates an m-
sequence of length 2m − 1= 63 bits. In this case, the
monitor rate was 60 Hz, so a complete cycle lasted
T= 1.05 s (i.e. 63/60). Figure 2(b) shows the encoding
of 5 possible commands, which would flicker using
time-delayed versions of the m-sequence, whose lags
increase with a step of τ = 4. Whenever the screen is
refreshed, each command lightens if its current code
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Figure 2. Codes and evoked responses of a c-VEP system with a monitor rate of 60 Hz. (a) Main code derived from a binary
m-sequence of 63 bits. (b) Delayed versions of the m-sequence using shifts of τ = 4 samples, which would be assigned to
different commands. (c) Main template, computed as the averaged EEG responses to 150 calibration cycles. (d) Periodic
autocorrelation function of the m-sequence. (e) Periodic autocorrelation function of the template. (f) Normalized power spectral
density of the template.

sample is 1, and dims otherwise. After recording, pre-
processing and averaging all EEG responses to com-
plete calibration cycles of the original m-sequence, a
main template is computed, as shown in figure 2(c).
Several signal processing methods to create this tem-
plate will be discussed in the following sections. The
periodic autocorrelation of the m-sequence is depic-
ted in figure 2(d). Although the stimuli of differ-
ent commands will be uncorrelated, it cannot be
claimed that the EEG responses will be uncorrelated
as well. This effect can happen when brain is modeled
as a linear system, and even more when a nonlin-
ear dynamic system is assumed [23]. Figure 2(e)
plots the auto-correlation function of the EEG tem-
plate. For the case of time-shifted stimuli, despite
responses not being completely uncorrelated for cer-
tain lags like in the underlying bit-sequence, usually
there is enough distinction to identify the time-shift
of the EEG responses. This is achieved by creating
templates for each command, circularly shifting the
main template according to their lags. In online ses-
sions, whenever an EEG response to several test cycles
arrives, it is pre-processed and compared with all
the templates. Hence, the selected command is iden-
tified as the one whose template reaches the max-
imal correlation with the processed EEG response
[13]. Finally, figure 2(f) shows the power spectral
density of the EEG responses used to build the tem-
plate. Since the maximum frequency component for
a 60 Hz monitor is 30 Hz (i.e. equivalent to the code
10101010 . . .), the gamma band (i.e. γ ∈ 30–100 Hz)
will be least affected by the stimulation. Note that the
peaks of the spectrum correspond to the harmonics of

the m-sequence period (i.e. 1/T= 0.952 Hz), which
are more pronounced over the 1–10 Hz band.

3. Results

3.1. Equivalent terms
The term ‘c-VEP’, which either stands for
code-modulated or codebook VEP, has been used
consistently in 91.30% of the studies included in
the review (i.e. 63/70), consolidating as the main
term over the years. However, there are several
subsidiary terms that should be known to identify
further research in the field. For instance, Thielen
et al [24, 25] referred to them as broad-band VEPs
(BBVEPs), according to their spectral properties.
On the other hand, Nagel et al [26] initially used
the term random VEPs (rVEPs) to describe c-VEPs
produced as responses to completely random codes.
Since c-VEPs do not refer specifically to VEPs caused
by m-sequences, but to pseudorandom codes in gen-
eral, rVEPs can be also considered a synonym for
c-VEPs. Of note, some authors used the term ‘noise-
tagging’ to refer to the general approach of employing
pseudorandom codes tomodulate stimuli in different
paradigms [27].

3.2. A reference processing pipeline
Throughout the years, a great amount of methodolo-
gies have been proposed to improve the performance
of c-VEP-based BCIs. These approaches have targeted
all system stages, such as paradigm variations, stim-
ulus presentation, feature extraction and classifica-
tion, asynchrony, etc. Although all of these ideas will
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Figure 3. The reference processing pipeline for c-VEP-based BCIs. Calibration stage aims at computing the templates for each
command, according to their lags. In online sessions, the test stage projects the trial epochs and determines the selected command
through a correlation analysis. Variables N s, Nc , kc and kt refer to the number of samples, channels, calibration cycles and test
cycles, respectively; while τ indicates the lag step.

be discussed in the following subsections, we have
identified a reference signal processing pipeline that
is exactly the same in 24 out of 70 studies. We expect
it to be improved by other state-of-the-art methods,
and to evolve into a best practice or ‘gold standard’.
However, we encourage its as-is implementation as
reference pipeline and as a first approximation to
c-VEP-based BCIs.

The reference approach, depicted in figure 3, uses
a multi-channel EEG system (55/70), where com-
mands are encoded by delayed versions of a 63-bit m-
sequence (35/70). The lag step may be τ = 2 (20/70)
or τ = 4 (61/70) depending on the number of pos-
sible commands, usually 32 or 16, respectively. Dur-
ing training, the user is asked to focus on a reference
target (which can be any command, although it is
usually the one without lag for simplicity) for kc cal-
ibration cycles. Then, EEG epochs are reshaped with
dimensions X0 ∈ Rkc,Ns,Nc , where N s are the num-
ber of samples of a complete cycle, and Nc the num-
ber of EEG channels. A multi-channel response is
computed by averaging over the kc cycles, obtaining
X̃t0 ∈ RNs,Nc . Afterward, canonical correlation ana-
lysis (CCA) is applied to maximize the correlation
between individual epochs and the averaged EEG
response (44/70). CCA finds linear projections of
two signals A and B that maximize the correlation
between them [28]. In this case, A ∈ Rkc·Ns,Nc would
be the concatenated x0 epochs; and B ∈ Rkc·Ns,Nc the
x̃t0 replicated kc times to match the dimensions. After
optimizing:

max
Wa,Wb

WT
aA

TBWb√
WT

aA
TAWa ·WT

bB
TBWb

, (1)

spatial filters Wa ∈ RNc,Nc and Wb ∈ RNc,Nc are
obtained. For c-VEP-based BCIs, only the filters
wa and wb that maximize the correlation coef-
ficient between the projected epochs (i.e. Awa)
and template (i.e. Bwb) are required; i.e. the first

components (columns) of Wa and Wb, respectively
[29]. Then, the multi-channel response is projec-
ted to obtain the reference template xt0 = X̃t0 ·wb,
where xt0 ∈ RNs,1. Templates for the rest of the com-
mands (xt1,xt2, . . . ,xtm) are computed by circularly-
shifting xt0 according to their lags. In the test (i.e.
online) mode, EEG epochs are averaged and pro-
jected with wb to obtain a spatially-filtered epoch;
i.e. x̂test = X̃test ·wb with x̂test ∈ RNs,1. Subsequently,
the Pearson’s correlation coefficients ρ between
the resulting vector and all the templates are cal-
culated, identifying the selected command as the
one that reaches the maximal correlation value; i.e.
y= argmaxi ρ(x̂test,xti).

Another equivalent possibility to avoid online
averaging would be to concatenate the kt test EEG
epochs and usewa to obtain a spatially-filtered vector;

i.e. x̂ ′test = X̃
′
test ·wb, where X̃

′
test ∈ Rkt·Ns,Nc and x̂ ′test ∈

Rkt·Ns,1. Then, the correlation would be computed
between this resulting vector and the replicated ver-
sion of each template kt times (i.e. xti ∈ Rkt·Ns,1).

3.3. Comparison with SSVEP systems
One of the questions that arose when c-VEP-based
BCIs were proposed was whether they would out-
perform SSVEP systems. Bin et al [13] were the first
researchers to attempt to answer this by comparing a
system (12 HU, Oz) controlled by SSVEP with one
controlled with c-VEP. Results showed that c-VEP
(95.0%, 92.8 bpm) outperformed SSVEP (88.0%,
39.7 bpm) both in terms of accuracy speed. How-
ever, care must be taken when interpreting these
ITR results, as the SSVEP system had 6 targets,
while the c-VEP included 16 commands. Since ITR
depends on the total number of possible selections,
speed is biased toward the c-VEP system. Years later,
Kapeller et al [30] obtained similar performance
results (c-VEP: 98.2%, SSVEP: 91.4%) when con-
trolling a 4-command robot (11 HU, 8 channels).
In 2019, Gembler et al [14] indirectly compared
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an 8-command system (20 HU, 10 channels) using
both quantitative (c-VEP: 94.0%, 92.7 bpm; SSVEP:
96.3%, 75.1 bpm) and qualitative (i.e. questionnaire)
measures. Although the c-VEP system reached a
higher speed, the SSVEP system achieved a higher
accuracy. In terms of user-experience, some users
slightly preferred the SSVEP system. However, dif-
ferences between both paradigms in terms of per-
formance and user-friendliness were not significant.
They concluded that, since performances were sim-
ilar, the optimal paradigm depends on users’ pref-
erences. Recently, Volosyak et al [31] compared a
4-target system by performing an analysis of BCI illit-
eracy (86 HU, 16 channels). All participants were able
to control the c-VEP (97.8%, 40.23 bpm) system,
while 3 users were not able to control the SSVEP
(95.3%, 37.87 bpm) one. They stated that c-VEP per-
formances (both accuracy and ITR)were significantly
higher than SSVEP ones. Users’ questionnaires did
not show any difference in terms of comfort between
both systems.

In conclusion, c-VEP systems seem to be able
to achieve similar or even higher selection speeds
[13, 14, 30, 31] and accuracies [13, 30, 31] than
SSVEP-based BCIs. As mentioned above, Volosyak
et al [31] reported statistical differences to support the
superiority of c-VEP, while Gembler et al [14] did not
find significant differences between both paradigms
and the other studies did not perform any statistical
analysis [13, 30]. Even though a meta-analysis would
be beneficial to give insight into these results, unfol-
ded ITR and accuracy values for each user were not
available for most studies.

The particular aspects of SSVEP and c-VEP
paradigms may make a difference when designing
a BCI system. Although recommended, an SSVEP-
based BCI does not necessarily require a mandat-
ory calibration, while in general a c-VEP does [13].
On the other hand, c-VEP is less sensitive to non-
related basal EEG activity than SSVEP, which presents
a narrow-band response [13, 22]. As SSVEP systems
usually encode each command with different car-
rier frequencies, the number of targets is somewhat
limited by the monitor’s refresh rate [32]. Further-
more, carrier frequencies over beta band are thought
to be more difficult to discriminate [33], making
SSVEP-based BCIsmore suitable for applications that
need fewer commands. Of note, some state-of-the-
art SSVEP-based BCIs employs phase modulation as
well. Even though the number of commands of a cir-
cular shifting-based c-VEP system is limited by the
lag step τ and the sequence length, it is usually less
restrictive [13].

3.4. Comparison with eye tracking devices
Another interesting question is whether c-VEP BCIs
could compete against eye trackers (ETs). Nezamfar
et al [34] asked 10 HU to solve maze tasks using
a 4-command system controlled by a single-channel

(i.e. Oz) c-VEP-based BCI and an ET. Althoughmean
accuracies were similar between both modalities
(92.6% c-VEP, 91.4% ET), c-VEP results were more
consistent over participants. Furthermore, question-
naires showed that most users preferred c-VEP over
ET because the control was significantly faster and
required less total calibration time (ET needed a re-
calibration after each task). They also observed diffi-
culties of ET calibration for users that wore eyeglasses
[34]. Even though further research should be conduc-
ted to validate these findings, it is worth highlighting
that c-VEP and ET systems seem to be comparable
in terms of accuracy and speed. Therefore, c-VEP-
based BCIsmight be appropriate when ET calibration
is hindered (e.g. eyeglasses, contact lenses, low ambi-
ent lighting, blepharoptosis). For the sake of fairness,
it should be mentioned that BCIs also present some
technical disadvantages, such as the EEG cap setup
(i.e. gel electrodes, impedance measurement) and the
fragility of the wired channels. It was also suggested
that ET information could supplement the BCI sys-
tem, improving the c-VEP decoding [35].

3.5. Bit-sequences
Generating bit-sequences, or codes, with appropri-
ate autocorrelation properties is not trivial. For that
reason, most of the studies (58/70) relied on binary
m-sequences [36], binary codes generated through
a LFSR using primitive polynomials over the Galois
Field of base 2; i.e. GF(2) [21]. As shown in figure 2,
m-sequences have overall minimum autocorrelation
values for non-zero circular shifts, which makes them
optimal for classic c-VEP-based BCIs. However, some
studies used alternatives such as Gold [37] (9/70),
Kasami [38] (2/70), Barker [39] (2/70), Golay [40]
(5/70), almost perfect autocorrelation (APA) [41]
(4/70), de Bruijn [42] (1/70), hand-crafted (5/70),
or random sequences (4/70). Table 1 enumerates the
studies that used these variations. In general, some
studies suggested that the performance of BCIs based
on time-delayed versions of a single bit-sequence does
not vary significantly when using different code types
[43–45].

As shown, a 63-bit m-sequence is usually suffi-
cient for modulating up to 32 commands. Applica-
tions that require more commands, however, must
rely on longer m-sequences [73], increasing the selec-
tion time; or on multi-sequence paradigms, in which
(1) different bit-sequences modulate subgroups of
commands [23, 89, 94, 95], or where (2) each com-
mand is modulated by a different bit-sequence [22,
24, 26, 34, 35, 46, 48, 49, 55, 62, 64, 92, 93, 97–
99]. In the latter case, it is recommended to prevent
cross-talk between neighboring commands by dis-
tributing each bit-sequence in function of their cross-
correlation properties [24].

For multi-sequence systems, using sets of m-
sequences is not convenient because they do not
guarantee low cross-correlations between them [21].
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Table 1. Bit-sequences employed in the reviewed studies.

Sequence type # References

M-sequences 58 [13, 14, 18, 19, 25, 29–
31, 34, 35, 43–90]

Gold 9 [22, 24, 43, 44, 87, 88,
91–93]

Kasami 2 [88, 89]
Barker 2 [43, 44]
Golay 5 [23, 88, 90, 94, 95]
APA 4 [23, 88, 94, 95]
De Bruijn 1 [88]
Hand-crafted 5 [45, 82, 96–98]
Random 4 [26, 97–99]

#: number of studies, APA: almost perfect autocorrelation.

By contrast, Gold [22, 24, 43, 44, 87, 91–93] and
Kasami [89] sequence sets are easy to generate
and present acceptable auto-correlation and peri-
odic cross-correlation properties, making them espe-
cially suitable for this purpose [21]. In a nutshell,
both sets are derived from combinations of pre-
ferred pairs of m-sequences. For a preferred pair of
m-sequences generated with a polynomial of orderm,
there are 2m + 1Gold codes and 2m/2(2m + 1)Kasami
sequences (e.g. 65 Gold and 520 Kasami sequences for
a preferred pair of 63-bit m-sequences). Note that the
large set of Kasami sequences contains both the Gold
codes and the so-called small set of Kasami sequences
[21].

There are some single-sequence alternatives tom-
sequences. For instance, Barker and Golay sequences,
which obey a more restrictive rule: to present low
aperiodic correlation values (i.e. correlation over
incomplete periods of codes). Barker codes [43, 44]
guarantee a minimum aperiodic correlation, how-
ever, only Barker codes of length⩽13 exist [21]. Golay
sequences [23, 90, 94, 95] are pairs of complement-
ary codes with low aperiodic correlations without
length restrictions, hence they are used in digital
applications for which Barker sequences are not avail-
able [21]. De Bruijn sequences also exist as a spe-
cial class of nonlinear shift register codes with max-
imal length, whose cardinality behaves as a double
exponential growth (there are 2(2

m−1)−m de Bruijn
sequences of length 2m) [88, 100]. However, auto-
and cross-correlation properties vary among differ-
ent codes [100]. APA sequences, defined as complex
periodic sequences such that all out-of-phase correla-
tion coefficients are zero except one, are also popular
[23, 88, 94, 95].

Some studies claim that the use of different
sequence types does not appear to significantly affect
overall performances as long as low values of auto-
and/or cross-correlation are guaranteed [43–45].
By contrast, Torres and Daly [88] recently repor-
ted significantly higher performances for de Bruijn,
APA and Golay sequences in comparison with m-
sequences, Gold and Kasami codes using simulated

data. Further analysis with real EEG data would
be recommended to validate these findings. Finally,
several authors recently opted to use fully random
codes (see section 3.13) [26, 97–99], or to create cus-
tom codes [45, 82, 96] or modulations of known
families [24] to confine spectral density to high-
frequency bands (e.g. by xor-ing the bit-sequence
with a bit-clock at a doubled rate), reducing visual
fatigue.

3.6. Stimuli variations and p-ary sequences
Binary sequences encoded as white/black (WB)
flashes are the most common stimulus presenta-
tion across the reviewed studies (60/70)). However,
some authors opted to use different color combina-
tions to display the stimuli [29, 35, 57, 58, 62, 64, 68].
The rationale behind these variations are user
safety, visual comfort or performance purposes. For
instance, Aminaka et al [58, 68] used green/blue (GB)
flashes because it is known to be the combination
with the lowest risk of triggering photoparoxysmal
responses in users suffering from photosensitive epi-
lepsy [101], although the combination has demon-
strated to perform significantly worse (74%) than
WB (79%) in c-VEP-based BCIs [58]. Others based
their studies [35, 57, 62, 64] on the opponent process
theory of color vision, which claims that neural chan-
nels for color processing are composed of pairs of
opponent colors: yellow/blue (YB), red/green (RG)
and WB [102]. Nezamfar et al [62] compared the
three combinations, finding that RG elicited the
strongest c-VEP responses for rates of 60 Hz (YB:
94.5%, RG: 98.5%, WB: 89.2%) and 110 Hz (YB:
88.5%, RG: 89.5%, WB: 83.4%); as well as being less
tiring for users due to its equiluminance. Riechmann
et al [57] reinforced those results by comparing RG
(68.0%) versus WB (66.0%), although perform-
ance differences were not significant. Finally, Wei
et al [29] compared different color/black combin-
ations, finding that WB (99.0%) and yellow/black
(96.0%) achieved a significantly higher accuracy than
green/black (93.0%), red/black (88.0%) or blue/black
(84.0%); probably due to its greater contrast and the
joint stimulation of the cones and rods of the retina.

Of note, some authors (5/70) employed altern-
ating checkerboard patterns to encode each com-
mand, rather than simple flashes [34, 35, 44, 62, 64].
In SSVEP-based BCIs, these complex stimuli are
believed to elicit more pronounced responses
than simple ones, although inducing weaker high-
frequency components [17]. Whether this phe-
nomenon is also present in c-VEP-based BCIs
remains as an open question, as no study has com-
pared performances using both types of stimuli.
Other stimuli variations, such as size and proxim-
ity, were also studied by Wei et al [29], concluding
that the larger and further apart the stimuli are, the
higher the accuracy. They recommended using stim-
uli sizes greater than or equal to 3.8◦ visual angle, and
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separations of at least 4.8◦ (measured from center to
center between consecutive targets) [29].

A recent approach that leads to display stimuli
with different color tones or intensities is the use of p-
ary sequences. Specifically, m-sequences are not lim-
ited to the binary domain, but can be generated using
primitive polynomials of GF(p), where p must be
prime [103]. Gembler et al [84] compared binary (i.e.
p= 2) and quintary (i.e. p= 5) m-sequences with 60,
120 and 240 Hz refresh rates. To encode the quintary
sequence, they used white, black and three additional
shades of grey. Even though both achieved similar
results (binary vs. quintary: 99.4%, 98.5% at 60 Hz;
97.6%, 97.5% at 120 Hz; 97.9%, 97.6% at 240 Hz),
quintary patterns were significantly less annoying for
users, especially for the 60 Hz condition [84]. The
extra dimensions provided by p-ary sequences not
only allows to exploit color variations, but also other
characteristics such as stimuli sizes, changing images,
apparent motions, tactile textures, etc. However, to
the best of our knowledge, no study have explored
these kind of modulations yet.

3.7. Circular shifting vs. ensemble
Concerning signal processing topics, a widespread
approach to generate the template xti of the ith com-
mand is to circularly shift xt0, the reference tem-
plate, iτ samples apart (section 3.2). Even though the
c-VEP response does not necessarily share the auto-
correlation properties of the stimulation sequence
[23, 24, 62, 73], this method has repeatedly shown its
usefulness in c-VEP paradigms.

However, some studies (7/70) have trained all
templates separately, averaging c-VEP responses
to each of the bit-sequences individually,
instead of using the circular shifting method
[14, 45, 51, 56, 66, 74, 76]. Gembler and Volosyak
[74] showed that this ensemble method achieved a
significantly higher grand average accuracy than the
circular shifting one for window decoding lengths
of 150–450 ms (e.g. for 450 ms, circular: 85.0%,
ensemble: 93.0%). This may be due to the additional
response expected at the beginning of each flash-
ing, which is not modeled in the circular approach
but is captured using the ensemble method. Des-
pite the improvement in performance, the ensemble
method entails a significantly longer calibration (i.e.
CT, where C is the number of commands and T
is the duration of the circular shifting calibration),
which might be counter-productive in practical
applications.

3.8. Presentation rates
In order to maximize the speed of command selec-
tion, the presentation rate (i.e. sampling rate of
the code) generally matches the screen refresh rate.
Therefore, most of the studies display the bit-
sequences at 60 Hz (47/70). Over the years, some

Table 2. Presentation rates employed in the reviewed studies.

Rate # References

15 Hz 3 [48, 49, 75]
20 Hz 1 [75]
30 Hz 7 [48, 49, 57, 62, 66, 75, 80]
40 Hz 1 [19]
60 Hz 47 [13, 14, 22, 23, 26, 29, 31,

35, 43, 44, 47, 50, 51, 53,
54, 56, 62, 66–76, 78–80,
82–94, 97–99]

62.5 Hz 1 [96]
70 Hz 1 [19]
80 Hz 5 [58–61, 68]
90 Hz 1 [45]
100 Hz 1 [46]
110 Hz 3 [34, 62, 64]
120 Hz 6 [24, 69, 71, 73, 80, 84]
200 Hz 1 [69]
240 Hz 2 [73, 84]

researchers compared the performance of the system
when using different sequence rates (see table 2).

The studies of Aminaka et al [58, 60, 61] consist-
ently showed higher performances of 60 Hz (mean:
88.2%) over 80 Hz (mean: 83.1%) rates for 31-
bit m-sequences in a BCI that used light emitting
diodes (LED) for stimulus presentation. Nezamfar
et al [48, 49] compared 15 Hz and 30 Hz rates using
m-sequences of 31 bits, reporting higher accuracies
for the 30 Hz condition. Then, they also compared
30, 60 and 110 Hz rates for m-sequences of 31, 63
and 127 bits [62]. They achieved a higher grand aver-
age accuracy in the 60 Hz condition, although the
110 Hz rate was perceived as less fatiguing by the par-
ticipants. On the contrary, Wittevrongel et al [66]
compared 60Hz (up to 5 cycles) and 120Hz (up to 10
cycles) rates for a 63-bit m-sequence, stating that the
faster the presentation rate, the higher the accuracy
for equal-length stimulation duration. Gembler et al
[69] observed the same behavior when comparing
60 Hz (77.7%, 3 cycles), 120 Hz (78.6%, 6 cycles) and
200Hz (75.9%, 12 cycles) for a 63-bit m-sequence. As
shown, the accuracy was comparable when the same
stimulation duration was used, which implied more
test cycles for the higher presentation rates. Similarly,
Başaklar et al [73] tested a 127-bit m-sequence using
60 Hz (1 cycle, 92.0%), 120 Hz (2 cycles, 97.0%) and
240 Hz (4 cycles, 87.0%). The accuracy at 120 Hz was
significantly higher than at other presentation rates.
Additionally, they observed a decrease in the number
of distinguishable patterns in the 240 Hz condition,
where the c-VEP template approximated to a sinus-
oid, presumably due to the nonlinearity of the visual
system. Finally, Gembler et al [76] studied the per-
formance of 30 Hz, 60 Hz and 120 Hz for different
age groups (young: 20–28 years, elderly: 62–83 years).
Interestingly, the presentation rate did not affect the
elderly, who obtained similar results (30 Hz: 96.5%,
60 Hz: 98.6%, 120 Hz: 99.7%); but 60 Hz achieved
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significantly higher results for the young subgroup
(30 Hz: 96.4%, 60 Hz: 97.9%, 120 Hz: 96.6%). Never-
theless, the authors suggested the use of 120Hz,which
also achieved appropriate performances and was pre-
ferred by the users in terms of user-experience.

As shown, there is no consensus on which
presentation rate is most suitable for c-VEP-based
BCIs. The accuracy seems to depend on many vari-
ables, such as the number of calibration and test
cycles, bit-sequence length, number of commands
and codes, etc. Presentation rates of 120 Hz may
be appropriate for some users, since they present
twice as many cycles as the 60 Hz rate [66, 69, 73],
which can lead to shorter calibration and selection
times. However, care must be taken when increas-
ing the presentation rate, since c-VEP templates may
become less orthogonal to each other [73]. Note that
EEG responses maintain the same spectral distri-
bution even if presentation rate increases, presum-
ably due to (1) the nonlinearity of the visual sys-
tem [23, 24, 73] and (2) the fact that cones are less
responsive to high frequency stimuli [62]. Of note,
there is a clear consensus that the higher the sequence
rate, the less fatiguing the stimulation is for the user
[48, 62, 69, 73, 76].

3.9. Equivalent neighbors
In 1992, Sutter [19] claimed that the flash patterns of
adjacent commands are also perceived by the visual
system and contributes to the joint EEG response.
Under this assumption, it was hypothesized that EEG
responses to the commands that are located at the
outer edges of a speller grid are different than the
other templates, potentially decreasing the accuracy.
According to this hypothesis, commonly known as
the principle of equivalent neighbors, many studies
opted to surround the boundary commands of the
spellermatrix with non-selectable commands [13, 19,
23, 26, 47, 50, 52, 53, 65, 67, 69, 70, 88–90, 94, 97].
Targets are placed in such a way that the relation
among the perceived delays (i.e. the target cell and
the leak from its contiguous neighbors) is homogen-
eous throughout the matrix, at the expense of includ-
ing additional rows and columns. In 17 out of the 70
studies included in this review this principle is fol-
lowed. Despite its widespread use throughout the lit-
erature, so far no study has demonstrated whether
using it improves the general performance of a c-VEP
system. Further research is necessary to determine if
using equivalent neighbors benefits the system or, on
the contrary, it causes an unnecessary waste of space
including extra rows and columns.

3.10. Raster latencies
The update of a frame is not performed simultan-
eously for all pixels in the screen on standard monit-
ors, but use rasterization to update each line sequen-
tially from top to bottom (i.e. vertical blanking).
This process causes a raster latency that increases

systematically (e.g. from the upper left pixel to the
lower right pixel), generally resulting in latency vari-
ations among c-VEP commands, as they are placed in
different positions across the screen. In 2018, Nagel
et al [70] demonstrated that these variations affect to
the point of significantly improving the performance
of the system if they are corrected (92.0% vs. 95.4%).
Some of the studies (5/70) included in this review
employed this correction [22, 70, 97–99]. Although
maximal raster latency seems consistent at about 95%
of the refresh cycle for cathode ray tube and liquid-
crystal display monitors (i.e., 15.55 ms for 60 Hz)
[70], it is recommended tomeasure the delay between
top and bottom lines using an optical sensor of some
kind. The measured delays can be used to shift back
the estimated templates to improve overall system
accuracy.

3.11. Single-channel versus multi-channel
approaches
Unlike other BCIs such as those relying on SMR
or the P300, c-VEP systems may achieve suit-
able performances using only one EEG elec-
trode [13, 34, 43, 44, 48, 49, 62, 64, 87, 96]. Some
of the studies in this review obtained an aver-
age accuracy over 90% using only the Oz channel
[13, 34, 48, 49, 62, 64, 87]. Several studies determ-
ined, via brute force searches, that the most dis-
criminative channel was Oz [13, 48, 49], presumably
because it was the one that reflected more inform-
ation about the primary visual cortex, placed in the
occipital lobe [1]. However, several studies demon-
strated that using multi-channel recordings benefits
the overall c-VEP system [47, 52], outperforming
the single-channel approach significantly (98.0%
vs. 95.0% [47]; 96.3% vs. 92.3% [52]). Of note,
the SNR of a localized relevant signal source can
be strengthened by mixing distant electrodes with
negative weights to reject common noise, under the
assumption that those electrodes may carry sim-
ilar noise patterns, but without the relevant signal
(e.g. Laplacian spatial filtering) [1]. Therefore, most
of the studies (58/70) included in this review fol-
low a multi-channel approach. These multi-channel
studies typically used spatial filtering approaches
discussed in section 3.12. A method for finding a
minimum number of suitable channels and optimal
montages (including sensor pairing) was proposed
by Ahmadi et al [91].

3.12. Alternative spatial filters
As shown in section 3.2, CCA is the most popular
(42/70) algorithm to generate spatial filters for multi-
channel c-VEP-based BCIs [14, 23, 24, 26, 29–31, 45,
47, 52–54, 56–58, 60, 67, 69, 70, 72–75, 80, 82–84,
88–91, 94, 95, 97, 98]. However, some authors pro-
posed other algorithms to (1) supplement CCA (e.g.
filter banks,multiple weighted components), or to (2)
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replace it with alternative spatio-temporal filters or
encoding models (section 3.13).

Filter banks (4/70) are arrays of bandpass fil-
ters that separate the input signal into multiple com-
ponents, each one carrying a sub-band of the ori-
ginal signal. Gembler et al [83, 86, 92] proposed a
3-length filter bank over 8–60 Hz, 12–60 Hz, and
30–60 Hz. The EEG signal is filtered with the bank,
and the traditional processing pipeline (detailed in
section 3.2) is then applied for each sub-band; i.e.
computing its own CCA spatial filter. In the end,
a total of 3 correlation vectors ρ1,ρ2, and ρ3 are
obtained. A weighted [83, 86] or simple [84] aver-
age can be used to obtain a unique ρ vector and pro-
ceed to determine the selected command as usual.
The addition of filter banks reached a higher accuracy
(97%) than standard CCA (92%), possibly because
the 10 Hz visual α band was less dominant in clas-
sification [83]. Another promising approach is to use
a combination of canonical variables, instead of only
one. As explained in section 3.2, the first column of
Wb is used as spatial filter. However, Mondini et al
[104] recently hypothesized that relevant informa-
tion might be spread over more than one coefficient.
For that reason, several studies opted to concatenate
the projected responses of n filters wb1,wb2, . . . ,wbn

before computing the correlation coefficient with the
template [83, 86].

In recent years, some alternative spatio-temporal
filters have been proposed as substitute of CCA. For
instance, spatio-temporal beamformers (stBF) (3/70)
[45, 66, 71], which add temporal information by aver-
aging epoch segments. Shirzhiyan et al [45] reported a
significantly higher accuracy using stBF (94.0%) than
CCA (91.1%). Dimitriadis et al [71] proposed the
use of δ-α phase-amplitude coupling (PAC) estim-
ates after stBF, reaching significant improvements in
accuracy and speed in comparison withWittevrongel
et al [66]. Some authors also performed regression
with neural networks (NN) (2/70) [65, 88] and least
mean square error with lasso regularization (1/70)
[65] to create alternative spatio-temporal filters that
outperformed CCA in several studies (lasso: 94.1%,
NN: 93.5% CCA: 92.1 % [65]; NN: 96.0%, CCA:
95.0% [88]). Over the years, other methods such as
principal component analysis (PCA) or independ-
ent component analysis (ICA) have been tested, but
results could not compete against the gold standard
(PCA: 24.0%, ICA: 62.0%, CCA: 95.0%) [88].

3.13. Modeling c-VEP responses
Recently, some studies (8/70) took the regres-
sion approaches to another level by inferring EEG
responses to simple events (e.g. flashes) with the
aim to predict the c-VEP responses to different bit-
sequences [22, 24, 26, 82, 93, 97–99].

Thielen et al [24] proposed reconvolution, a linear
generativemodel composed by two stages: (1) decom-
position, in which the EEG response to a training

bit-sequence is decomposed into one or several flash
VEPs (e.g. one for each possible flash duration); and
(2) composition, where the response to a poten-
tially unknown bit-sequence is predicted by com-
bining these VEP responses. The combination of
this method and CCA (trained with 36 Gold codes)
achieved a mean online accuracy of 86.0% in a speller
encoded by a different set of 36 Gold codes [24].
An important aspect of this encoding model is that
the averaging, which is normally done at the level
of full bit-sequences (i.e. cycles), is done at the level
of individual events (e.g. flashes). Specifically, bit-
sequences are sequences of non-periodically placed
flashes. Assuming the linear superposition hypothesis
it is possible to model the response to a sequence of
events as the linear addition of the responses to the
individual events. Recently, reconvolutionwas embed-
ded in a CCA so that it simultaneously optimizes a
spatial filter as well as a temporal filter (i.e. the transi-
ent responses to individual events) [25, 93]. Further-
more, it was hypothesized that such encoding model
can limit the calibration data to less than a minute
up to none at all [22]. In fact, an adaptive version
of reconvolution was proposed to investigate whether
a zero-calibration c-VEP system is feasible [22]. Res-
ults showed that the proposed approach reached the
same speed and accuracy as a supervised calibrated
version, with the benefit of already selecting selected
several commands while the traditional approach was
still calibrating [22].

Nagel et al [26, 97, 98] employed linear ridge
regression models based on sliding windows to
develop: (1)EEG2Code, which takes the EEG response
and predicts the code used to generate it; and (2)
Code2EEG, which takes a sequence and predicts
the associated EEG response. Responses to com-
mands encoded with random sequences were used
to calibrate both models. Results of EEG2Code com-
bined with CCA reached performances around 90%
when predicting 1000 different random stimuli. In
online experiments, their approach achieved mean
accuracies of 97.8% [97] and 99.3% [98] when dis-
criminating among 32 classes.

Yasinzai and Ider [82] studied single-edge VEP
responses (i.e. 1–0 and 0–1 transitions) and the pos-
sibility to predict the complete c-VEP response to bit-
sequences using the superposition of these individual
events. Correlations between predicted and real EEG
responses to some bit-sequences were not sufficient
to ensure an adequate control of the BCI (e.g. m-
sequence ρ: 0.46). However, they found a series of
constraints that, provided they aremet, allow generat-
ing handcrafted superposition optimized pulse (SOP)
sequences that achieve high correlations between the
real and predicted c-VEP responses (e.g. ρ: 0.79).
They tested the performance of a proposed 120-bit
SOP sequence in a 35-target c-VEP-based speller,
achieving an average of 95.9% online accuracy and
57.19 bpm. They concluded that, although there are

10



J. Neural Eng. 18 (2021) 061002 V Martínez-Cagigal et al

nonlinear interactions in the way the response to a
bit-sequence is generated, a linear superposition of
individual events could lead to acceptable predictions
for previously optimized bit-sequences.

Note that all these methods used linear models
(i.e. linear in their parameters) to predict unknown
c-VEP templates. Although assuming linearity in the
composition of single events into c-VEP templates
has proven to be sufficient for modeling these visual
responses, it is well-known that the brain behaves
as a nonlinear dynamic system [23, 82]. In fact, the
actual recognition of a specific event pattern in the
stimulus (which triggers the response) is a nonlin-
ear aspect of these approaches [24]. In this context,
Nagel and Spüler [99] combinedEEG2Codewith deep
learning, allowing the integration of nonlinear rela-
tionships between events and c-VEP responses. The
architecture, based on a convolutional neural net-
work (CNN) and trained with 384 s of data, achieved
an offlinemean accuracy of 84%when discriminating
between 500 000 different simulated random codes.
In an offline analysis, the model achieved an accur-
acy of 98.5% using a speller composed of 32 targets.
Although results are promising, an additional online
analysis with more users is suggested to validate these
preliminary findings.

3.14. Alternative classification
As shown in section 3.2, finding the maximum
correlation coefficient between the spatially filtered
EEG responses and the c-VEP templates is the most
common ‘classification’ approach (54/70) to identify
the selected command in real-time. However, some
authors employed alternative classification methods
for this purpose, such as direct correlation of the EEG
responses with the bit-sequences [46], support vec-
tor machines (SVM, 5/70) [59–61, 68, 85], one-class
SVM (OCSVM, 5/70) [50, 52, 53, 57, 70], linear dis-
criminant analysis (LDA, 4/70) [30, 78, 79, 85], or
naïve Bayesian classifiers [48] (1/70).

Even though there are some studies that used
multi-class linear SVMs [59–61, 85] or LDAs [30, 78,
79, 85] to discriminate between c-VEP targets, per-
formances typically decrease when the number of
commands increase. For that reason, the recommen-
ded approach is to apply OCSVM and use distances
between margins as a direct substitute for a correl-
ation comparison [50, 52, 53, 57, 70]. Once CCA
is trained, individual calibration epochs are aver-
aged and projected using wb (see section 3.2). Sub-
sequently, the projected epochs are processed by the
OCSVM, which creates a hyper-sphere that encloses
a given percentage of data, which makes it less sens-
itive to outliers than the simple averaging method
of the reference pipeline (section 3.2). The center of
the sphere is used as a template, creating templates
for the rest of commands by shifting it. When an
online epoch arrives, Euclidean distances between the
returned OCSVM score and the centers of each target

are calculated, selecting the command that yields the
minimum distance. Spüler et al [52] obtained a sig-
nificant improvement in decoding accuracy using the
OCSVM and Euclidean distance (92.32%) compared
to the standard averaging and correlations (89.90%).

3.15. Calibration
In comparison with other BCIs, except SSVEP-based,
c-VEP-based systems do not require an excessive
amount of training trials to calibrate the signal pro-
cessing pipeline. As stated in section 3.3, SSVEP-
based systems do not require a mandatory calibra-
tion, although recommended. P300-based BCIs, on
the other hand, require a copy-spelling stage of sev-
eral words, which usually lasts between 15 and 20min
[8, 9]. Even though many of the reviewed studies
recorded a large number of cycles to train their mod-
els to perform offline analyses, it is well-known that
c-VEP based BCIs can yield a high accuracy with
reduced calibration times. For instance,Mohebbi et al
[87], who achieved an average accuracy of 95.1%with
12.5 s of calibration; Spüler et al [50], reaching 95.0%
with 1:08 min; or Gembler et al [72], that achieved
91.7% with 1:24 in, among others.

Despite that the duration of the calibration is
drastically reduced in comparison with other types of
BCIs, some authors proposed algorithms to eliminate
it completely [22, 53, 54]; i.e. unsupervised calibra-
tion algorithms toward plug-and-play devices. Spüler
et al [53, 54] proposed to use only two targets with
a great delay between them. After applying k-means
over the scores of OCSVM, two different clusters are
expected to be found. A cross-validation procedure is
continuously applied to detect the cluster that belongs
to each command, contributing to train the OCSVM
classifier without knowing the labels a priori. How-
ever, only two targets are available until enough train-
ing trials are recorded to create representative tem-
plates. Although the achieved accuracy (85.1%) was
lower than using the typical supervised calibration
(94.43%), authors claimed the method might be use-
ful for completely locked-in patients [53, 54]. More
recently, Thielen et al [22, 25] proposed an adapt-
ive version of reconvolution to investigate whether it is
feasible in zero-calibration contexts. Using the struc-
ture matrices of each class, the label of an online
epoch is determined by maximizing the explained
variance among all models. They also used an early
stopping algorithm to vary the duration of each trial,
which decreases as the unsupervised calibration goes
by. Results showed that users achieved an online
accuracy of 99.6% with an average selection time of
4.2 s (using 12 s in the first trial), demonstrating that
a zero-calibration scenario is possible [22].

Although not calibration in a strict sense, Spüler
et al [50] also proposed an unsupervised adaptation
of the classifier using error potentials (ErrP); i.e. a
predicted label is considered correct unless an ErrP
is detected. Using these unlabeled data to update the
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templates proved beneficial for the system, as long as
the previous supervised calibration is appropriate.

Another interesting research line is the use
of transfer learning, which involves using models
trained in one setting and applying them in another
setting (e.g. inter-user, within users, etc). One of the
most common approaches involves training a model
with a set of users and testing it to unseen users.
Then, a refining of the model is applied to each user
for optimizing user-specific performances [12]. In
spite of the popularity of this technique nowadays,
only two studies tried to apply transfer learning using
LDA and SVM models. However, reported results
were not adequate to achieve a suitable generalization
[79, 85]. Whether deep learning based approaches
such as EEG2Code [99] are able to make transfer
learning feasible for c-VEP-based BCIs is still an open
question.

3.16. Early stopping and asynchrony
Many of the reviewed studies (18/70) applied adapt-
ive early stopping techniques to dynamically choose
in real-time the time required to perform a selection
in online mode [14, 22, 24, 25, 50, 57, 67, 72, 74, 75,
80, 83, 84, 86, 89, 93, 98, 99]. All of these studies based
their approaches on threshold comparisons, deliver-
ing the selected command when an optimized meas-
ure surpassed a predefined value.

These measures are usually derived from the cor-
relation coefficients ρ between the online trials and
the templates, such as direct comparison with ρmax

[14, 43, 44, 67, 72, 74, 80, 83, 84, 86, 87], cumulat-
ive correlation [75], logistic regression models [89],
comparisons between ρmax and a Beta distribution
fitted to the rest of coefficients [22, 25], or trans-
formations into p-values [98, 99]. Others used a
margin criterion: difference between the first and
second highest correlation [24, 93] or classmargins in
OCSVM hyperplanes [57]. Generally, a properly cal-
ibrated early stopping technique is beneficial for the
overall system performance to the point of yielding
an adequate accuracy without a drastic extension of
the selection time [67] (e.g. accuracies over 90% have
been achieved using a mean of 3.17 s [14], 3.26 s [74],
or 5.17 s [72] per trial).

Interestingly, some of these studies (11/70) [14,
22, 24, 72, 74, 83, 84, 86, 93, 98, 99] applied their
algorithms under a sliding window strategy. The great
advantage of this approach is that it is not necessary
to wait to the end of a cycle to perform a selection,
but the system constantlymakes decisions whenever a
buffer of EEG data is received. This could even lead to
correct classifications before completing a sequence
cycle [14]. Furthermore, two of these algorithms were
improved toward an automatic threshold calibration,
making them completely unnoticeable to the user
[14, 22].

Early stopping techniques could also be applied
to provide a self-paced control of the system. BCIs

are inherently synchronous systems; i.e. they are
constantly translating EEG activity into commands,
even without a voluntary intention from users. This
mode is unpractical in real contexts, as it requires
an expert to setup and control the application flow.
An asynchronous (i.e. self-paced, brain switch) sys-
tem would give the user the control of when trials
should start. This may be achieved by a non-control
state detection stage to monitor user’s attention and
detect whether the user wants to deliver a selection
or not [8, 9]. In this context, some of the studies
adapted their algorithms to provide an asynchron-
ous stage, avoiding command selections if threshold
is not surpassed [14, 30, 43, 44, 57, 72, 74, 83, 86, 87,
98, 99]. However, more efforts should be devoted to
develop filter methods (i.e. independent of the clas-
sification stage) to guarantee robustness against the
inter-session variability due to the non-stationarity
of the EEG [10, 105]. Note that static thresholds
are wrapper methods that are prone to be invalid
whenever slightly different data from training arrives,
and must be also re-trained when the decoding clas-
sifier is updated.

3.17. Dry electrodes
During the last years, several companies have attemp-
ted to reduce hardware limitations that prevent BCIs
from being adopted commercially. A typical limita-
tion is the need of gel to improve the contact between
the scalp and the EEG sensors; i.e. to reduce the elec-
trode impedance [1]. Although necessary, gels are
not ideal for long-term recording because they even-
tually dry out; nor are they practical, because users
rely on experts to set up the system. As an alternat-
ive to wet electrodes, several materials have been pro-
posed to achieve dry (e.g. metal pins, spring-loaded)
or semi-dry (e.g. polymer wick-based) non-invasive
recordings, at the cost of normally exhibiting worse
SNRs [106]. In principle, the inherent robustness of
c-VEP stimulation would allow the use of these types
of electrodes (eventually at the expense of trial dura-
tion). Of note, the non-stationarity of the electrode-
skin impedance would still need to addressed, e.g.
by recalculating the spatial filtering [1]. In this con-
text, active electrodes where pre-amplification is per-
formed locally at each electrode can perform well in
environments with noise and/or high electrode-skin
impedance [1].

In this context, Spüler [67] studied whether dry
electrodes are adequate for c-VEP-based BCIs. He
achieved an average accuracy of 75.9% (13.63 s per
trial) using a 15-channel dry system, observing a large
inter-user variability in performance. The accuracy,
however, was substantially lower than those reported
in previous studies with wet electrodes. Although a
direct comparison using the same user pool is neces-
sary to quantify this decrease in performance, the
author claimed that dry electrodes might be accept-
able for c-VEP-based BCIs.
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3.18. Applications and portability
During the literature review, we have identified
c-VEP-based BCIs with different applications, such as
control of robots [30, 43, 44, 87], virtual agents [57],
virtual keyboard and mouse to control any Microsoft
Windows program [63], or even performing of psy-
chological experiments [78, 79]. However, most of
the studies have been devoted to provide spellers for
alternative communication purposes (for a compre-
hensive review of speller BCIs, see [107]). Some of
these implemented virtual keyboards with word sug-
gestions using n-gram language models, favoring the
communication speed for final users [64, 72, 74, 83].
Of note, most of these applications required a com-
puter to display the stimuli or process the EEG signal.
Among the reviewed studies, only two opted to imple-
ment a solution in a completely portable system such
as an iPad Pro (Apple Inc.) [22, 93].

3.19. Long-term use
An important but frequently ignored research line in
BCIs is the analysis of long-term viability of classifi-
ers. Owing to the high inter-session variability and
non-stationarity of the EEG, BCI classifiers should
be re-calibrated frequently in P300 or SMR-based
BCIs [12]. Gembler et al [86] studied whether c-VEP
templates are still useful two weeks after the cal-
ibration. They found that 8 out of 10 participants
could control the system with an average accuracy
of 97.1%. They observed a slight non-significant
decrease in accuracy (first session: 98.5%), claim-
ing that c-VEP re-calibration from session to ses-
sion might not be needed for most users. Simil-
arly, Yasinzai and Ider [82] demonstrated that VEP
responses to single flashes do not show a signific-
ant inter-session variability two weeks apart. Interest-
ingly, no studies have focused on analyzing the influ-
ence of user-learning on the decoding performance.

3.20. Covert visual, auditory and tactile
Although systems based on P300, SSVEP and c-VEP
have been traditionally considered dependent BCIs
(i.e. depending on user’smuscle-based control of gaze
direction), some studies showed that this statement
is not entirely true [1]. Recently, researchers have
developed paradigm variations for controlling P300
and SSVEP-based BCIs using covert attention; i.e.
attending to a target stimulus, while not gazing dir-
ectly at it [1]. Even though performances are gener-
ally higher when using a typical overt control, covert
attentionmight be appropriate for userswho lack reli-
able gaze control [1].

For c-VEP-based BCIs, to date only one study by
Waytowich and Krusienski [56] designed an altern-
ative paradigm to explore non-foveal gaze fixation.
They proposed a ring-based distribution of 4 stimuli
encoded with an m-sequence (τ = 15), where com-
mands were slightly displaced from the stimulus loc-
ations (2◦–5◦ of visual angle from foveal center).

Although direct foveal fixation reached a higher
accuracy (99.4%) than parafoveal fixation (89.7%), it
is claimed that covert control is feasible. Nevertheless,
further research should be conducted to validate these
findings and study how the distance between stimuli
and targets affects system performance, as well as to
give insight into how many targets can be decoded.

Furthermore, so far only one study explored
another sensorymodality other than vision. Farquhar
et al [27] explored the use of noise-tagging, the stimu-
lus paradigm behind code-modulated evoked poten-
tials, within the auditory domain. Participants were
simultaneously presented with two stimuli, one to
each ear, and had to attend to either one of them. For
a total of three HU, they found an accuracy higher
than chance (about 56.3%), which was lower than
using frequency-tagging (about 64.3%); i.e. the stim-
ulus protocol underlying SSVEP. To our knowledge,
the tactile sensory modality has not been explored
yet with noise-tagging. The exploration of these aud-
itory, tactile and covert visual attention may be an
important future research direction to make code-
modulated BCIs generally accessible.

3.21. Motor-disabled users
Despite BCIs are generally developed with the aim of
improving the quality of life of motor-disabled users,
studies often fail to test their systemswith target users.
In fact, among the 70 studies included in this review,
only two studies tested their c-VEP-based BCIs with
people with disabilities [19, 93]. In 1992, Sutter tested
an invasive ECoG system with an ALS patient, reach-
ing speeds of 10-12 words per minute [19]. Recently,
a study from Verbaarschot et al [93] tested an EEG-
based speller based on c-VEP composed by 29 com-
mands with a population of 20 HU (12 young, <35
years; 10 old, ⩾35 years) and 10 ALS patients. Copy-
spelling results showed that theALS patientswere able
to control the system (79.3%, 20.3 bpm), although
achieving lower overall performances than the HU
(young: 94.3%, 24.8 bpm; old: 88.3%, 21 bpm). Of
note, ALS results were more heterogeneous, since 2
of them could not control the full keyboard. In gen-
eral, the use of c-VEP-based systems by ALS patients
seems feasible and promising to provide an alternat-
ive device for communication in the early andmiddle
stages of the disease [93].

The rest of the studies (68/70) validated their
BCIs with healthy users, making it impossible to infer
their viability in a real-world context. Although the
c-VEP responses for ALS patients have been shown
to be very similar to those of HU [93], it has been
widely documented that people with disabilities tend
to reach lower BCI performances than control users.
This issue may be due to problems inherent to the
disease [93], and/or indirect such as mental disab-
ilities, essential tremors, nystagmus, etc [8, 9, 11].
Thus, c-VEP systems have been shown to provide
an excellent level of control for healthy participants;
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Table 3. Available public databases of c-VEP-based BCI studies.

Article Reference Data type Users Nc

Sampling
ratea Sequence rate

Bit-sequence
(s)

Thielen et al
(2015)

[24] Raw 12 HU 64 2048 Hz 120 Hz 65 Gold codes
(126 bits)b

Wittevrongel
et al (2017)

[66] Pre-processed 17 HU 32 100 Hz 60 Hz M-sequence
(63 bits)

200 Hz 120 Hz M-sequence
(63 bits)

Nagel and
Spüler
(2019)

[98] Pre-processed 10 HU 32 600 Hz 60 Hz 150 random
codes (15 bits)b

Ahmadi et al
(2019)

[91] Pre-processed 5 HU 256 360 Hz 60 Hz 65 Gold codes
(126 bits)b, 1

10 HU 8 360 Hz 60 Hz 65 Gold codes
(126 bits)b, 2

Thielen et al
(2021)

[22] Raw 41 HU 8 512 Hz 60 Hz 65 Gold codes
(126 bits)b

a EEG sampling rate.
b The full set of codes was not used, only the required subset to encode each command with a unique sequence. Nc : number of recorded

channels, HU: healthy users. Direct links: Thielen et al (2015) [https://doi.org/10.34973/1ecz-1232], Wittevrongel et al (2017) [https://

kuleuven.app.box.com/v/CVEP], Nagel and Spüler (2019) [https://doi.org/10.6084/m9.figshare.7611275.v1], Ahmadi et al (2019) [1:

https://doi.org/10.34973/psaf-mq72, 2: https://doi.org/10.34973/ehq6-b836] Thielen et al (2021) [https://doi.org/10.34973/9txv-z787].

however, more efforts should be devoted to validate
these systems with target populations and to study its
feasibility outside the laboratory.

3.22. Public databases
Five of the included studies (5/70) have made avail-
able their datasets to the public [22, 24, 66, 91, 98].
Details of these databases are summarized in table 3.
Note that two of them offer raw data [22, 24], while
the other two provide pre-processed data [66, 91, 98].
To the best of our knowledge, these are the only open
datasets available for c-VEP-based BCIs, helpful for
other researchers to develop and benchmark novel
methodologies to improve the performance of these
systems. Additionally, we encourage researchers to
open up their analysis scripts alongside their data to
improve open science.

4. Discussion

Throughout the manuscript, a comprehensive liter-
ature review on c-VEP-based systems since its incep-
tion (1984) until today (2021) has been performed.
In section 3, the main aspects of 70 related stud-
ies have been analyzed in 22 subsections. In the fol-
lowing, all of these are taken into account to discuss
the level of development of current state-of-the-art
c-VEP BCIs, the immediate challenges and promising
research lines.

4.1. State-of-the-art c-VEP systems
Over the years, c-VEPs have been consolidated as
a robust control method to achieve reliable and
high-speed BCIs. In the early studies, c-VEPs were

validated as a suitable alternative to P300 and SSVEP-
based BCIs [13, 19], even to eye tracking devices
[56]. Soon, multi-channel single circularly shifted
m-sequence CCA-based approaches became estab-
lished as the preferred signal processing pipeline
[47]. Although other classification alternatives such
as OCSVM were proposed [50], traditional tem-
plate matching correlation-based methods prevailed.
Frame rate (often limited by the display hardware)
was also identified as a trade-off between perform-
ance and speed, finding that presentation rates in
the range of 60–120 Hz maintain a suitable balance
between both variables [73, 76]. Regarding sequence
generators, system performances did not vary signi-
ficantly in real EEG data as long as adequate auto-
correlation properties were guaranteed [44, 45]. Of
note, filter banks [83] and stBF [66, 71] also arose
as promising supplements and alternatives to CCA,
respectively.

Even though c-VEP-based BCIs were able to reach
high performances when using a single-sequence, its
length restricts the number of commands that can be
decoded (e.g. using a 63-bit sequence: 16 for τ = 4,
32 for τ = 2). Thus, multi-sequence systems emerged
to increment the maximum number of discriminat-
ive classes [23, 95]. Due to the need to consider not
only appropriate auto-correlation properties, but also
minimal cross-correlation between sequences, BCI
performances were prone to decrease [23]. In order
to encode more commands, some authors opted to
implement nested selection matrices [72], or con-
trol a ‘virtual mouse’ over the keyboard layout [64].
Recently, modeling c-VEP responses using linear
regression [22, 98] and deep learning [99] has made
it possible to discriminate random flashing codes.
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The possibility to decode more than 500 000 differ-
ent simulated classes has also suggested a change in
the paradigm and a possible solution to decode a large
number of commands [99].

Once performances in terms of accuracy and
speed are guaranteed even for systems that encom-
pass a great amount of different classes, efforts
might be focused to improve other practical aspects
such as adaptation, asynchrony or user-friendliness.
For instance, plug-and-play c-VEP-based BCIs are
becoming a reality due to the development of cutting-
edge zero-calibration algorithms [22]. Early stopping
techniques based on sliding windows have also been
shown to be beneficial to adapt the selection time
[14, 22, 99], as well as to provide an asynchronous
control of the system [14, 99]. Informing the user
about the adaptive confidence of the classifier in real-
time via colored frames [24] or progress bars [74]
makes the experience more immersive and may favor
the user to attend to the stimuli. Another simple but
effective recent proposal is to correct for raster laten-
cies, which can degrade the overall system perform-
ance if not corrected [70].

Reducing user-fatigue has also been a priority
in recent years. Under the assumption that tradi-
tional c-VEP-based systems do not depend signific-
antly on the type of sequence provided a low auto-
correlation is guaranteed, some authors proposed
hand-crafted sequences with tuned spectral compon-
ents that aremore pleasant to the user [45, 96].Higher
presentation rates have also been repeatedly shown
to be less fatiguing for users, although the aforemen-
tioned trade-off concerning accuracy should be taken
into account [62, 69, 73, 76]. In this context, non-
binary sequences emerged as a promising approach
to reduce user-fatigue, since encoding different labels
with shades of greys would substantially reduce sub-
jective discomfort caused by flicker patterns [84].
In addition to the intensity levels, the use of colors
instead of a simple black and white contrast is prom-
ising, although results are not conclusive.

Owing to the increase of wireless EEG equipment,
the possibility of developing completely portable
c-VEP-based systems lays on the table. Most smart-
phones and tablets work on 60 Hz rates, although
there are some on the market that are able to reach
120 Hz. Favoring portability is a key aspect for prac-
tical BCIs, however, only one study implemented the
system on a tablet [22]. Note that because of the ubi-
quity of the Internet nowadays, a client/server archi-
tecture would solve any computational cost issue that
might arise with regards to signal processing [108].

As shown, the exponential increase in c-VEP-
based studies in the last decade has led to a substantial
advance in the field. Nowadays, the implementation
of the aforementioned ideas and algorithms would
guarantee a high control accuracy and speed. There-
fore, it is suggested that research in the next few years

could be more focused toward practical use of these
systems in real word scenarios.

4.2. Current challenges and future directions
4.2.1. Bit-sequences
Arguably, one of the most important aspects of
a c-VEP-based BCI is the choice of stimulation
sequence(s) used to evoke the c-VEP. As demon-
strated throughout this review, the original stud-
ies as well as many studies after have used a single
m-sequence that exhibits a favorable autocorrelation
function [13]. By circularly shifting the m-sequence,
the stimulation sequences of the other commands are
created. As discussed in section 3.5, this circular shift-
ing approach is also used with other bit-sequences
such as APA, Barker, de Bruijn, Golay, Gold, and
Kasami sequences. Alternatively, several studies util-
ized Gold and Kasami sets, which present low cross-
correlation properties. In general, the reason for using
these types of bit-sequences is to exploit the low cor-
relation between them, which is assumed to lead to
low cross-talk between the evoked c-VEP responses,
which in turn should optimize decoding accuracy
[22]. Note that the circular-shifting approach requires
a reliable timing signal between stimulus presentation
and EEG acquisition; whereas the use of code famil-
ies (e.g. Gold, Kasami) does not require such an exact
synchronization, since they can be detected regardless
of time shifts.

Despite all of them having good correlation prop-
erties, several studies have investigated whether the
choice of bit-sequences and code families can sub-
stantially affect the decoding accuracy. Although
some studies found that most of them yield a similar
accuracy [43–45], Torres and Daly [88] claimed that
de Bruijn, Golay, and APA sequences outperformed
m-sequences, Gold codes, and Kasami sequences in
simulated EEG data. Additionally, other studies have
investigated custom made bit-sequences [45, 82, 96].
For example, random bit-sequences showed a similar
performance as m-sequences [26]. In a subsequent
study, a non-significant increase was observed for
slightly optimized bit-sequences taking into account
a specific number of bit-changes versus the ran-
dom bit-sequences [97]. Furthermore, chaotic codes
were shown to yield a similar accuracy as compared
to m-sequences while reducing user-fatigue [45].
Similarly, codes that were optimized by taking into
account some aspects of the visual system physiology
increased the accuracy as compared to m-sequences
[82, 96]. In general, further research is needed to
study which predefined or manually optimized bit-
sequences yield the best performance, and what are
the properties that make one bit-sequence favorable
over another.

Apart from reaching higher decoding perform-
ance, care should be taken to make the stimula-
tion patterns as convenient for the user as possible.
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Throughout the literature, we have identified several
attempts to make the flash patterns less irritating and
fatiguing. For instance, modulating any bit-sequence
to limit low-frequency content [24], using alternat-
ive colors than the high-contrast black-white [58, 62],
or using higher presentation rates [58, 66, 69]. Addi-
tionally, care must be taken on the size and proxim-
ity of the different commands in the speller grid [29].
Furthermore, within other paradigms than c-VEP,
the appearance of the stimuli has been shown to
substantially affect ERP components and the decod-
ing performance, such as the use of checkerboards
[17], specific overlays such as famous faces [109], or
motion-onset [110], among others. Again, additional
research is required to make the external stimulation
that is necessary to evoke c-VEP responsesmore prac-
tical and optimal for robust and long-term adoption
of these BCIs.

Finally, in section 3.9, we showed that many stud-
ies apply the principle of equivalent neighbors [19],
assuming that c-VEP responses to the outer com-
mands are sufficiently different to entail a decrease in
accuracy with respect to the inner commands. How-
ever, this assumption has never empirically tested
to be true or not, despite its widespread use in the
literature. The use of equivalent neighbors severely
limits the choice of stimulus parameters and might
increase confusion, butmay potentially increase over-
all decoding performance. Additionally, this setup is a
opportunity that arises when using the circular shift-
ing method to homogenize time-shifts throughout
the matrix, which is argued to require a better time
synchronization than paradigms that do not rely on
circular shifting.

4.2.2. Signal processing pipeline
Another important ingredient in the design of a
c-VEP-based BCI is the decoding stage. As discussed
in this review, many of the studies rely on a type of
template-matching algorithm in which, by some sim-
ilarity (e.g. Pearson’s correlation) or distance metric
(e.g. Euclidean), the current EEG is compared to cer-
tain learned templates (i.e. the c-VEP responses to
each candidate bit-sequence underlying each poten-
tial command). These templates are either built by
some standard pooling approach (e.g. an average), or
by means of a modeling approach (e.g. reconvolution,
EEG2Code). Additionally, most studies used CCA to
optimize spatial filters to combine the information
obtained from multiple EEG channels. But still, sev-
eral exciting future directions to improve the signal
processing pipeline are identified below.

Firstly, deep learning has shown its poten-
tial in common domains like image classification
and language processing, and is starting to be
adopted in the BCI community as well (see e.g.
[12, 111, 112]). Within c-VEP-based BCIs, the typ-
ical CNN architecture that performs both spatial and
temporal convolutions has been explored aswell, with

positive results over standard regression approaches
[99]. Aside its nonlinear characteristic, applying deep
learning in this context has the benefit of integrating
all components that are otherwise optimized sequen-
tially. Specifically, these networks are designed to
optimize both a spatial filter as well as a cascade of
temporal filters and a hierarchical classification in an
end-to-end fashion.

Since deep learning is a rapidly progressing field,
many of its novel developments are ready to be adop-
ted in the BCI field to improve performances. One
concrete future direction would be to explore the
temporal characteristics of the c-VEP response. Spe-
cifically, currently models predict whether an on-
state (or a flash) happened or not. Given the highly
nonlinear nature of the brain (i.e. neuronal adapta-
tion, habituation, neural entrainment), incorporat-
ing temporal structure might benefit the decoding,
e.g. by adopting recurrent neural networks. A second
concrete example concerns transfer-learning. Despite
that c-VEP templates show a low inter-session vari-
ability [82, 86] and calibration is not as tedious as for
other types of BCIs, it would be interesting to study
whether applying cross-subject transfer learning (e.g.
using deep learning) is feasible, providing enough
data is available. In that case, a pre-trained network
might serve any newuser, employing an unsupervised
adaptive strategy to refine the classifier as more trials
are recorded. Furthermore, it would be also interest-
ing to evaluate the influence of user-learning on the
overall decoding performance of the system.

Another important aspect in the classification
pipeline, related to the aforementioned, is the adop-
tion of adaptive methods. First and foremost, EEG
is a non-stationary signal, reflected in changing data
distribution over time that may be caused by many
factors such as loss of electrode connectivity, user-
learning, as well as user-fatigue. Additionally, con-
sidering a pre-trained cross-subject classifier, adapt-
ation and fine-tuning to the current user might be an
important aspect to take into account.

In spite of their excellent decoding perform-
ances, some of the modeling approaches introduced
in section 3.13 also allow to give insight about the
underlying generation of c-VEPs [22, 82, 99]. The
sliding window mechanism of EEG2Code [99] and
reconvolution [22] try to mimic the actual behavior
of our brains in response to noise-like bit-sequences.
In particular, reconvolution learns responses to indi-
vidual events that constitute the bit-sequence, instead
of learning responses to the full time series. Apart
from the benefit of reducing the amount of train-
ing data toward a zero-calibration system [22], the
framework also poses a fundamental neuroscientific
question: what is the basic element (i.e. event) that
the brain responds to? Several open questions around
the assumption of linearity still remain. Specific-
ally, is it possible to model the c-VEP response by
the convolution of one basic flash VEP, or should
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the duration of the flash be considered to take into
account neural adaptation? In particular, Yasinzai
and Ider [82] have exploited the influence of basic
VEP linear superpositions in generating full c-VEP
responses to bit-sequences, although they stated that
nonlinear interactions appear to play an important
role in this process. Giving answers to these ques-
tions would be of importance to those models which
typically predict flash versus no-flash, as they could
predict the length of a flash as well. The applica-
tion of explainable deep learning on models such as
EEG2Code [99] could be also an interesting future
research line to give insight into the presumably non-
linear generation of the c-VEP response.

Finally, several aspects along the signal processing
pipeline tend to remain on the background. For
instance, CCA is a linear subspace method that finds
linear projections of the data to achieve maximal cor-
relation between two variables. Like any other sub-
space method, CCA returns multiple components,
which in CCA are orthogonal. Typically, in a c-VEP
classification pipeline, only the first component is
used as spatial filter, while the other components
might contain relevant information [83, 86]. Analyz-
ing the relevance of these components could also pose
an interesting research line.

4.2.3. Toward practical plug-and-play BCIs
Apart from the limitations of non-invasive record-
ings, which c-VEPs try to bypass as control signals to
reach suitable performances, EEG equipment should
ideally not require gel, be comfortable, cheap, easy
to setup, portable, robust to movements and per-
form well in real-world environments. Even though
some studies focused on developing c-VEP-based
BCIs without calibration [22], with reduced user-
fatigue [84], fully portable and using water-based
[22] or dry electrodes [67], more efforts should be
made to propose final self-paced systems that can be
applied in a real context without intervention of an
expert. Although out of the scope of this manuscript,
EEG hardware improvements should play an essential
role in making BCIs commercially interesting. Fur-
ther endeavors could also be directed to develop prac-
tical applications with low-cost hardware. Due to the
robustness of c-VEPs against inter-session variability
[82, 86] and poor signal quality [67], as well as the
possibility to accurately decode them using a single
EEG channel [13]; the use of wireless EEG equip-
ment with reduced channel sets [91] appears to be
feasible.

Furthermore, to make c-VEP-based BCIs prac-
tical, a considerable effort should be made to make
the exogenous stimulationmore user-friendly. As dis-
cussed above and owing to the fact that increasing
the presentation rate (>120 Hz) seems to affect to
the system performance negatively [73], non-binary
sequences have emerged as promising alternatives
to reduce visual fatigue [84]. Another interesting

research line to improve users comfort could be
focused on testing systems with different p-ary
sequences, such as non-binary Golay pairs, or m-
sequences over GF(p).

Additionally, a fully practical BCI setup should
include an asynchronous stage (e.g. non-control
detection) so that the user can use the system when
needed, avoiding false selections to bemadewhenever
the user gazes away from the application [44, 86, 98].
Ideally, the asynchronous detection method should
rely on filter-based approaches (i.e. independent of
the classification stage) to favor the robustness of the
BCI against the inter-session variability of the EEG.

Finally, current c-VEP-based BCIs are mostly
gaze-dependent, implying some form of muscle con-
trol (i.e. directing one’s gaze) is required. Develop-
ing alternative covert paradigms, e.g. by using cov-
ert visual attention or other sensory modalities such
as auditory or tactile BCIs; might be required to
make c-VEP-based BCIs accessible to late-stage ALS
patients or any disease that impair gaze control. We
identified only two studies that attempted to use
c-VEP with covert visual attention [56] or auditory
responses [27]. Typically, decoding accuracy suffers
substantially when these types of interaction are used,
which emphasizes the need for further research.

4.2.4. Applications
From the onset of the research field, most BCI applic-
ations were focused on improving the quality of life of
severely disabled people, e.g. locked-in patients, ALS,
multiple sclerosis, cerebral palsy, stroke, etc. How-
ever, although the majority of the reviewed stud-
ies emphasizes this objective to justify the relevance
of their proposals, only two studies validated the
system with disabled users [19, 93]. As it is well-
known that performances tend to decline in motor-
disabled populations [8, 9, 93], ensuring the robust-
ness of these systems with target users is currently
essential to take the leap from laboratories to real
applications. Particularly, the study of Verbaarschot
et al [93] demonstrated that the use of non-invasive
c-VEP-based spellers by ALS patients is feasible. We
would like to encourage new research applied in target
populations to analyze the viability of c-VEP decod-
ing in other diseases, as well as to reaffirm these
findings.

Of note, noise-like sequences are not only used in
the BCI field to effectively encode commands. Many
of these sequences are used in telecommunication
domains because of their error correcting charac-
teristics. Additionally, they have shown their value
in measuring stimulus responses in complex non-
linear dynamical systems. For instance, narrow-band
and broad-band noise have been used to characterize
hearing abilities or to select appropriate parameters of
hearing-aids [113]. Furthermore, the use of noise-like
patterns have greatly improved the assessment of
the eye and the optic tract with multifocal VEP
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[114]. The estimation of specific evoked responses
has been shown to benefit a randomization based
on m-sequences [103], and to estimate impulse
responses in general [115]. Finally, a general frame-
work that allows the characterization of VEPs with
continuous signals was devised (unlike the discrete
ones in this review) in the visual domain, known
as visually evoked spread spectrum response poten-
tial [116]; and in the auditory domain, the auditory
evoked spread spectrum response potential [117]. In
general, these noise-like methods facilitate the estim-
ation of evoked potentials, which can be exploited for
various applications.

Finally, we would like to encourage new research-
ers to open up their data and analysis pipelines, as
well as to use the currently available open datasets
[22, 24, 66, 91, 98] to serve as benchmark for offline
analyses. In such a way, new research can easily be
compared quantitatively to favor improvements in
existing algorithms and the development of novel
proposals. In addition, proper results reports would
allow for furthermeta-analyses to combine the results
of different studies and draw joint conclusions about
the state-of-the-art in c-VEP-based BCIs.

5. Conclusion

The ability of c-VEPs to achieve reliable high-speed
control is well-known in the non-invasive BCI com-
munity. In this manuscript, a comprehensive liter-
ature review of 70 studies since its inception (1984)
until today (2021) has been performed, including
journal publications, conferences, book chapters and
non-indexed documents. As a result, multi-channel
circularly shifted m-sequence CCA-based systems
were identified as the preferred approach in most
studies. However, this reference pipeline might be
improved by implementing c-VEP response model-
ing, raster latency correction, adaptive calibration,
or early stopping approaches. Recently, some studies
have also devoted efforts to make c-VEP-based BCIs
more user-friendly, e.g. reducing visual fatigue using
high-frequency stimulation, hand-crafted codes or
non-binary sequences. A detailed table of all the
included studies is available in the supplementary
material.

Nowadays, most of the initial challenges of
c-VEP-based BCIs have been overcome. The imple-
mentation of some of the discussed cutting-edge
algorithms allows to provide a reliable control of a
BCI with a large number of commands, high selec-
tion speeds and even without calibration. Although
this technology is beginning to make the leap to its
commercialization, a general lack of validation with
motor-disabled populations was observed. Therefore,
future research should focus on developing c-VEP-
based BCIs toward real applications, emphasizing
their portability, asynchrony, and validation with tar-
get users.
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Hornero R 2017 An asynchronous P300-based

18

https://orcid.org/0000-0002-3822-1787
https://orcid.org/0000-0002-3822-1787
https://orcid.org/0000-0002-3822-1787
https://orcid.org/0000-0002-6264-0367
https://orcid.org/0000-0002-6264-0367
https://orcid.org/0000-0002-6264-0367
https://orcid.org/0000-0002-7688-4258
https://orcid.org/0000-0002-7688-4258
https://orcid.org/0000-0002-2999-3216
https://orcid.org/0000-0002-2999-3216
https://orcid.org/0000-0002-2999-3216
https://orcid.org/0000-0001-9915-2570
https://orcid.org/0000-0001-9915-2570
https://orcid.org/0000-0001-9915-2570
https://doi.org/10.3233/NRE-172394
https://doi.org/10.3233/NRE-172394
https://doi.org/10.1007/s11517-016-1454-4
https://doi.org/10.1007/s11517-016-1454-4
https://doi.org/10.1088/1361-6579/aad57e
https://doi.org/10.1088/1361-6579/aad57e
https://doi.org/10.1080/10447318.2019.1612213
https://doi.org/10.1080/10447318.2019.1612213
https://doi.org/10.1016/S1388-2457(99)00141-8
https://doi.org/10.1016/S1388-2457(99)00141-8
https://doi.org/10.3390/s120201211
https://doi.org/10.3390/s120201211


J. Neural Eng. 18 (2021) 061002 V Martínez-Cagigal et al

brain–computer interface web browser for severely disabled
people IEEE Trans. Neural Syst. Rehabil. Eng. 25 1332–42

[9] Martínez-Cagigal V, Santamaría-Vázquez E, Gomez-Pilar J
and Hornero R 2019 Towards an accessible use of
smartphone-based social networks through
brain–computer interfaces Expert Syst. Appl. 120 155–66

[10] Santamaría-Vázquez E, Martínez-Cagigal V, Gomez-Pilar J
and Hornero R 2019 Asynchronous control of ERP-based
BCI spellers using steady-state visual evoked potentials
elicited by peripheral stimuli IEEE Trans. Neural Syst.
Rehabil. Eng. 27 1883–92

[11] McCane L M et al 2015 P300-based brain–computer
interface (BCI) event-related potentials (ERPs): people
with amyotrophic lateral sclerosis (ALS) vs. age-matched
controls Clin. Neurophysiol. 126 2124–31

[12] Santamaría-Vázquez E, Martínez-Cagigal V,
Vaquerizo-Villar F and Hornero R 2020 EEG-inception: a
novel deep convolutional neural network for assistive
ERP-based brain–computer interfaces IEEE Trans. Neural
Syst. Rehabil. Eng. 28 2773–82

[13] Bin G, Gao X, Wang Y, Hong B and Gao S 2009 VEP-based
brain–computer interfaces: time, frequency and code
modulations IEEE Comput. Intell. Mag. 4 22–26

[14] Gembler F, Stawicki P, Saboor A and Volosyak I 2019
Dynamic time window mechanism for time synchronous
VEP-based BCIs-Performance evaluation with a
dictionary-supported BCI speller employing SSVEP and
c-VEP PLoS One 14 e0218177

[15] Combaz A et al 2013 A comparison of two spelling
brain–computer interfaces based on visual P3 and SSVEP
in locked-in syndrome PLoS One 8 e73691

[16] Peters B et al 2020 SSVEP BCI and eye tracking use by
individuals with late-stage ALS and visual impairments
Front. Hum. Neurosci. 14 595890

[17] Vialatte F-B, Maurice M, Dauwels J and Cichocki A 2010
Steady-state visually evoked potentials: focus on essential
paradigms and future perspectives Prog. Neurobiol.
90 418–38

[18] Sutter E E 1984 The visual evoked response as a
communication channel Proc. IEEE Symp. Biosensors
pp 95–100

[19] Sutter E E 1992 The brain response interface:
communication through visually-induced electrical brain
responses J. Microcomput. Appl. 15 31–45

[20] Moher D et al 2009 Preferred reporting items for systematic
reviews and meta-analyses: the PRISMA statement PLoS
Med. 6 e1000097

[21] Holmes J K 2007 Spread Spectrum Systems for GNSS and
Wireless Communications (Norwood: Artech House, Inc.)

[22] Thielen J, Marsman P, Farquhar J and Desain P 2021 From
full calibration to zero training for a code-modulated visual
evoked potentials brain–computer interface J. Neural Eng.
18 056007

[23] Wei Q et al 2018 A novel c-VEP BCI paradigm for
increasing the number of stimulus targets based on
grouping modulation with different codes IEEE Trans.
Neural Syst. Rehabil. Eng. 26 1178–87

[24] Thielen J, Van Den Broek P, Farquhar J and Desain P 2015
Broad-band visually evoked potentials: re(con)volution in
brain-computer interfacing PLoS One 10 e0133797

[25] Thielen J, Marsman P, Farquhar J and Desain P 2017
Re(con)volution: accurate response prediction for
broad-band evoked potentials-based brain–computer
interfaces Brain-Computer Interface Research (Berlin:
Springer) pp 35–42

[26] Nagel S, Rosenstiel W and Spüler M 2017 Random visual
evoked potentials (rVEP) for brain–computer interface
(BCI) control 7th Graz Brain–Computer Interface Conf.
pp 1–7

[27] Farquhar J, Blankespoor J, Vlek R and Desain P 2008
Towards a noise-tagging auditory BCI-paradigm Proc. 4th
Int. BCI Workshop and Training Course (Graz, Austria)
pp 50–55

[28] Härdle W and Simar L 2007 Canonical correlation analysis
Applied Multivariate Statistical Analysis 2nd edn (Berlin:
Springer) pp 321–31

[29] Wei Q, Feng S and Lu Z 2016 Stimulus specificity of
brain–computer interfaces based on code modulation
visual evoked potentials PLoS One 11 e0156416

[30] Kapeller C, Hintermuller C, Abu-Alqumsan M, Pruckl R,
Peer A and Guger C 2013 A BCI using VEP for continuous
control of a mobile robot Proc. Annual Int. Conf. IEEE
Engineering in Medicine and Biology Society (EMBS)
pp 5254–7

[31] Volosyak I, Rezeika A, Benda M, Gembler F and Stawicki P
2020 Towards solving of the illiteracy phenomenon for
VEP-based brain–computer interfaces Biomed. Phys. Eng.
Express 6 035034

[32] Volosyak I, Cecotti H and Gräser A 2009 Optimal visual
stimuli on LCD screens for SSVEP based brain–computer
interfaces 2009 4th Int. IEEE/EMBS Conf. on Neural
Engineering, NER ’09 pp 447–50

[33] Volosyak I, Valbuena D, Lüth T, Malechka T and Gräser A
2011 BCI demographics II: how many (and what kinds of)
people can use a high-frequency SSVEP BCI? IEEE Trans.
Neural Syst. Rehabil. Eng. 19 232–9

[34] Nezamfar H, Salehi S S M, Higger M and Erdogmus D 2018
Code-VEP vs. eye tracking: a comparison study Brain Sci.
8 130

[35] Kadioglu B, Yildiz I, Closas P, Fried-Oken M B and
Erdogmus D 2019 Robust fusion of c-VEP and gaze IEEE
Sens. Lett. 3 2019–22

[36] Golomb S W 2017 Shift Register Sequences: Secure and
Limited-Access Code Generators, Efficiency Code Generators,
Prescribed Property Generators, Mathematical Models
(Singapore: World Scientific)

[37] Gold R 1967 Optimal binary sequences for spread spectrum
multiplexing (corresp.) IEEE Trans. Inf. Theory 13 619–21

[38] Kasami T 1966 Weight distribution formula for some class
of cyclic codes Coordinated Science Laboratory Report No.
R-285

[39] Barker R H 1953 Group sysnchronizing of binary digital
systems Communication Theory (New York: Academic
Press) pp 273–87

[40] Golay M 1961 Complementary series IRE Trans. Inf. Theory
7 82–87

[41] Wolfmann J 1992 Almost perfect autocorrelation sequences
IEEE Trans. Inf. Theory 38 1412–8

[42] De Bruijn N G 1946 A combinatorial problem Proc. K. Ned.
Akad. Wet. 49 758–64

[43] Isaksen J, Mohebbi A and Puthusserypady S 2016 A
comparative study of pseudorandom sequences used in a
c-VEP based BCI for online wheelchair control Proc.
Annual Int. Conf. IEEE Engineering in Medicine and Biology
Society (EMBS) vol 2016 (IEEE) pp 1512–5

[44] Isaksen J L, Mohebbi A and Puthusserypady S 2017
Optimal pseudorandom sequence selection for online
c-VEP based BCI control applications PLoS One
12 e0184785

[45] Shirzhiyan Z et al 2019 Introducing chaotic codes for the
modulation of code modulated visual evoked potentials
(c-VEP) in normal adults for visual fatigue reduction PLoS
One 14 e0213197

[46] Momose K 2007 Evaluation of an eye gaze point detection
method using VEP elicited by multi-pseudorandom
stimulation for brain–computer interface 29th Annual Int.
Conf. IEEE Engineering in Medicine and Biology Society vol
3 pp 5063–6

[47] Bin G, Gao X, Wang Y, Li Y, Hong B and Gao S 2011 A
high-speed BCI based on code modulation VEP J. Neural
Eng. 8 025015

[48] Nezamfar H, Orhan U, Purwar S, Hild K, Oken B and
Erdogmus D 2011 Decoding of multichannel EEG activity
from the visual cortex in response to pseudorandom binary
sequences of visual stimuli Int. J. Imaging Syst. Technol.
21 139–47

19

https://doi.org/10.1109/TNSRE.2016.2623381
https://doi.org/10.1109/TNSRE.2016.2623381
https://doi.org/10.1016/j.eswa.2018.11.026
https://doi.org/10.1016/j.eswa.2018.11.026
https://doi.org/10.1109/TNSRE.2019.2934645
https://doi.org/10.1109/TNSRE.2019.2934645
https://doi.org/10.1016/j.clinph.2015.01.013
https://doi.org/10.1016/j.clinph.2015.01.013
https://doi.org/10.1109/TNSRE.2020.3048106
https://doi.org/10.1109/TNSRE.2020.3048106
https://doi.org/10.1109/MCI.2009.934562
https://doi.org/10.1109/MCI.2009.934562
https://doi.org/10.1371/journal.pone.0218177
https://doi.org/10.1371/journal.pone.0218177
https://doi.org/10.1371/journal.pone.0073691
https://doi.org/10.1371/journal.pone.0073691
https://doi.org/10.3389/fnhum.2020.595890
https://doi.org/10.3389/fnhum.2020.595890
https://doi.org/10.1016/j.pneurobio.2009.11.005
https://doi.org/10.1016/j.pneurobio.2009.11.005
https://doi.org/10.1016/0745-7138(92)90045-7
https://doi.org/10.1016/0745-7138(92)90045-7
https://doi.org/10.1371/journal.pmed.1000097
https://doi.org/10.1371/journal.pmed.1000097
https://doi.org/10.1088/1741-2552/abecef
https://doi.org/10.1088/1741-2552/abecef
https://doi.org/10.1109/TNSRE.2018.2837501
https://doi.org/10.1109/TNSRE.2018.2837501
https://doi.org/10.1371/journal.pone.0133797
https://doi.org/10.1371/journal.pone.0133797
https://doi.org/10.1371/journal.pone.0156416
https://doi.org/10.1371/journal.pone.0156416
https://doi.org/10.1088/2057-1976/ab87e6
https://doi.org/10.1088/2057-1976/ab87e6
https://doi.org/10.1109/TNSRE.2011.2121919
https://doi.org/10.1109/TNSRE.2011.2121919
https://doi.org/10.3390/brainsci8070130
https://doi.org/10.3390/brainsci8070130
https://doi.org/10.1109/LSENS.2018.2878705
https://doi.org/10.1109/LSENS.2018.2878705
https://doi.org/10.1109/TIT.1967.1054048
https://doi.org/10.1109/TIT.1967.1054048
https://doi.org/10.1109/TIT.1961.1057620
https://doi.org/10.1109/TIT.1961.1057620
https://doi.org/10.1109/18.144729
https://doi.org/10.1109/18.144729
https://doi.org/10.1371/journal.pone.0184785
https://doi.org/10.1371/journal.pone.0184785
https://doi.org/10.1371/journal.pone.0213197
https://doi.org/10.1371/journal.pone.0213197
https://doi.org/10.1088/1741-2560/8/2/025015
https://doi.org/10.1088/1741-2560/8/2/025015
https://doi.org/10.1002/ima.20288
https://doi.org/10.1002/ima.20288


J. Neural Eng. 18 (2021) 061002 V Martínez-Cagigal et al

[49] Nezamfar H et al 2011 On visually evoked potentials in
EEG induced by multiple pseudorandom binary sequences
for brain–computer interface design IEEE Int. Conf.
Acoustics, Speech and Signal Processing (IEEE) pp 2044–7

[50] Spüler M, Rosenstiel W and Bogdan M 2012 Online
adaptation of a c-VEP brain–computer interface (BCI)
based on error-related potentials and unsupervised
learning PLoS One 7 e51077

[51] Nakanishi M and Mitsukura Y 2012 Periodicity detection
for BCI based on periodic code modulation visual evoked
potentials IEEE Int. Conf. Acoustics, Speech and Signal
Processing (ICASSP) (IEEE) pp 665–8

[52] Spüler M, Rosenstiel W and Bogdan M 2012 One class
SVM and canonical correlation analysis increase
performance in a c-VEP based brain–computer interface
(BCI) ESANN 2012 Proc., 20th European Symp. Artificial
Neural Networks, Computational Intelligence and Machine
Learning pp 103–8

[53] Spüler M, Rosenstiel W and Bogdan M 2013 Unsupervised
online calibration of a c-VEP Brain-Computer Interface
(BCI) ICANN 2013: Artificial Neural Networks and Machine
Learning vol 8131 pp 224–31

[54] Spüler M, Rosenstiel W and Bogdan M 2013 Unsupervised
BCI calibration as possibility for communication in CLIS
patients? Proc. 5th Int. Brain-Computer Interface Meeting
2013 pp 10–12

[55] Riechmann H, Finke A and Ritter H 2013 Hierarchical
codebook visually evoked potentials for fast and flexible
BCIs Proc. Annual Int. Conf. IEEE Engineering in Medicine
and Biology Society, EMBS pp 2776–9

[56] Waytowich N R and Krusienski D J 2015 Spatial decoupling
of targets and flashing stimuli for visual brain-computer
interfaces J. Neural Eng. 12 036006

[57] Riechmann H, Finke A and Ritter H 2016 Using a
cVEP-based brain-computer interface to control a virtual
agent IEEE Trans. Neural Syst. Rehabil. Eng. 24 692–9

[58] Aminaka D, Makino S and Rutkowski T M 2015 Chromatic
and high-frequency cVEP-based BCI paradigm Proc. 37th
Annual Int. Conf. IEEE Engineering in Medicine and Biology
Society (EMBC 2015) (IEEE) pp 1906–9

[59] Aminaka D, Makino S and Rutkowski T M 2015 EEG
filtering optimization for code–modulated chromatic
visual evoked potential-based brain–computer interface
Int. Workshop on Symbiotic Interaction pp 1–6

[60] Aminaka D, Makino S and Rutkowski T M 2015 SVM
classification study of code-modulated visual evoked
potentials 2015 Asia-Pacific Signal and Information
Processing Association Annual Summit and Conf., APSIPA
ASC 2015 (Asia-Pacific Signal and Information Processing
Association) pp 1065–70

[61] Aminaka D, Makino S and Rutkowski T M 2015
Classification accuracy improvement of chromatic and
high–frequency code–modulated visual evoked
potential–based BCI Int. Conf. Brain Informatics and Health
pp 275–84

[62] Nezamfar H, Salehi S S M and Erdogmus D 2015 Stimuli
with opponent colors and higher bit rate enable higher
accuracy for c-VEP BCI 2015 IEEE Signal Processing in
Medicine and Symp. (IEEE)

[63] Spüler M 2015 A brain-computer interface (BCI) system to
use arbitrary windows applications by directly controlling
mouse and keyboard Proc. Annual Int. Conf. IEEE
Engineering in Medicine and Biology Society (EMBS) vol
2015 pp 1087–90

[64] Nezamfar H, Salehi S S M, Moghadamfalahi M and
Erdogmus D 2016 FlashTypeTM: a context-aware
c-VEP-based BCI typing interface using EEG signals IEEE J.
Sel. Top. Signal Process. 10 932–41

[65] Sato J I and Washizawa Y 2016 Neural decoding of code
modulated visual evoked potentials by spatio-temporal
inverse filtering for brain computer interfaces Proc. Annual
Int. Conf. IEEE Engineering in Medicine and Biology Society
(EMBS) vol 2016 pp 1484–7

[66] Wittevrongel B, Van Wolputte E and Van Hulle M M 2017
Code-modulated visual evoked potentials using fast
stimulus presentation and spatiotemporal beamformer
decoding Sci. Rep. 7 15037

[67] Spüler M 2017 A high-speed brain-computer interface
(BCI) using dry EEG electrodes PLoS One 12 e0172400

[68] Aminaka D and Rutkowski T M 2017 A sixteen-command
and 40 Hz carrier frequency code-modulated visual evoked
potential BCI Brain-Computer Interface Research: A State-
of-the-Art Summary 6 (Heidelberg: Springer) pp 97–104

[69] Gembler F, Stawicki P, Rezeika A, Saboor A, Benda M and
Volosyak I 2018 Effects of monitor refresh rates on c-VEP
BCIs Int. Workshop Symbiotic Interaction (Springer
International Publishing) pp 53–62

[70] Nagel S, Dreher W, Rosenstiel W and Spüler M 2018 The
effect of monitor raster latency on VEPs, ERPs and
brain–computer interface performance J. Neurosci.
Methods 295 45–50

[71] Dimitriadis S I and Marimpis A D 2018 Enhancing
performance and bit rates in a brain–computer interface
system with phase-to-amplitude cross-frequency coupling:
evidences from traditional c-VEP, fast c-VEP and SSVEP
designs Front. Neuroinform. 12 1–19

[72] Gembler F et al 2018 A dictionary driven mental typewriter
based on code-modulated visual evoked potentials (cVEP)
2018 IEEE Int. Conf. Systems, Man and Cybernetics (SMC)
(IEEE) pp 619–24
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