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Abstract: Neurofeedback training (NFT) has shown promising results in recent years as a tool to
address the effects of age-related cognitive decline in the elderly. Since previous studies have linked
reduced complexity of electroencephalography (EEG) signal to the process of cognitive decline, we
propose the use of non-linear methods to characterise changes in EEG complexity induced by NFT.
In this study, we analyse the pre- and post-training EEG from 11 elderly subjects who performed
an NFT based on motor imagery (MI–NFT). Spectral changes were studied using relative power
(RP) from classical frequency bands (delta, theta, alpha, and beta), whilst multiscale entropy (MSE)
was applied to assess EEG-induced complexity changes. Furthermore, we analysed the subject’s
scores from Luria tests performed before and after MI–NFT. We found that MI–NFT induced a power
shift towards rapid frequencies, as well as an increase of EEG complexity in all channels, except for
C3. These improvements were most evident in frontal channels. Moreover, results from cognitive
tests showed significant enhancement in intellectual and memory functions. Therefore, our findings
suggest the usefulness of MI–NFT to improve cognitive functions in the elderly and encourage future
studies to use MSE as a metric to characterise EEG changes induced by MI–NFT.

Keywords: neurofeedback training (NFT); motor imagery (MI); sample entropy; multiscale entropy
(MSE); brain–computer interfaces (BCI); elderly people; age-relate cognitive decline; Luria adult
neuropsychological diagnosis (Luria-AND)

1. Introduction

Electroencephalography (EEG) is a non-invasive and portable method of monitoring
brain activity. This technique is based on recording the electrical activity from pyramidal
neurons of the cortex by placing a set of electrodes on the subject’s scalp [1]. Task-related
EEG patterns (e.g., visual stimuli or motor intentions) are used by brain–computer inter-
faces (BCI) to predict the user’s intentions and convert them into commands to control
an external device, without using muscles or peripheral nerves [1,2]. Through this direct
communication between the subject’s brain and an external device, BCI applications aim to
improve the quality of life of people with motor or cognitive disabilities [1,2]. Nevertheless,
assisting the disabled is not the only objective of BCI, but also the rehabilitation or recovery
of their motor and cognitive functions [3,4].

Neurofeedback training (NFT) is a therapy based on the hypothesis that, due to brain
plasticity, effects of neural disorders can be counteracted by inducing the appropriate
brain modulation that normalizes the patient’s deviant brain signal [5,6]. In this regard,
NFT users are encouraged to modulate their EEG signals (e.g., the power of a specific
frequency band or a ratio between band powers), which is expected to have beneficial
effects on their brain state and can lead to brain microstructural changes after training [7].
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To this end, BCI applications are employed to measure users’ EEG signals and then provide
a feedback stimulus that assists them in finding strategies to gain control of their brain
signal modulation. Hereafter, we will refer to this training paradigm as classical NFT. In
recent years, several studies have investigated NFT-induced neurological improvements in
patients with attention-deficit/hyperactivity disorder [8,9] or epilepsy [10], among others.
Moreover, age-related brain changes have been shown to lead a power shift from rapid
to slow rhythms in brain activity [11–14]. Thus, NFT has been proposed as a promising
strategy to prevent the progression of the effects of age-related cognitive decline [15]. Ac-
cordingly, NFT aims to normalize the deviated power spectral distribution of the patient in
order to enhance their cognitive functions [5]. In view of increasing life expectancy [16],
NFT could improve the social well-being of the growing elderly population in the future.
Previous classical NFT studies on healthy young adults showed significant changes in theta
(4–8 Hz) [17,18], alpha (8–13 Hz) [19–21], and beta (13–30 Hz) [21] band powers. These stud-
ies also reported significant improvements in the results of neuropsychological tests for the
assessment of memory-related [17,19,21], attention [17,21], and visuospatial functions [20].
Furthermore, several studies have been conducted on elderly subjects [15]. Such studies
reported significant differences in the theta [17,22,23], alpha [22–24], beta [22,25], and
gamma (>30 Hz) [25] band powers, as well as significant improvements in memory-related
functions [17,22–24,26] and attention [17,22–24,26] after the NFT.

On the other hand, EEG activity involved in mental motor imagery (MI) tasks is
associated with motor and cognitive functions [27,28]. These MI tasks are based on the
mental imagination of a movement without any peripheral muscle activation and produce
desynchronization and synchronization events in alpha and beta frequency bands over the
contralateral sensorimotor areas [29]. These events are called sensorimotor rhythms (SMR)
and can be used as control signals by BCI applications. Hence, some studies have proposed
the use of a MI-based NFT paradigm (MI–NFT), instead of classical NFT, as a promising
approach to achieve the desired modulation [3,4,30]. The MI–NFT paradigm is broadly
extended among studies focusing on neurorehabilitation of post-stroke patients [3,4,31–35].
This paradigm has proven to be effective in promoting functional and structural brain
plasticity and recovery of motor function [36]. Furthermore, in contrast to the classical NFT,
the MI–NFT paradigm allows to develop BCI applications with two degrees of freedom
(right hand vs. left hand MI). Therefore, the developed training interfaces can be more
complex. In this sense, studies have suggested that more gamified applications may be
beneficial for therapy outcomes [32,37]. In view of the results achieved by the MI–NFT
paradigm in neurorehabilitation studies of stroke patients, it is interesting to consider
this paradigm for cognitive training. Indeed, gaining control of SMR modulation may be
beneficial for patients, as previous research has suggested an active role of alpha brain
activity in cognitive functions, such as memory-related processes [38–40], intelligence [41],
executive functions [40], and attention-related functions [19,39,42], as well as a functional
role of beta oscillations in working memory [43,44], language comprehension [39,45], and
attention-related functions [19,44,46]. In particular, our previous work reported significant
EEG changes in alpha and beta bands, as well as an enhancement of visuospatial, language,
memory, and intellectual functions in healthy elderly people after 5 MI–NFT sessions [30].
Despite being a suitable approach to NFT-based cognitive training, there is a lack of research
on the impact of the MI–NFT paradigm on users’ brain activity and cognitive functions.

Even though the results from NFT-based cognitive training studies are encouraging,
as they reveal older people’s ability to control their own brain activity [15], further analysis
of NFT’s effects on the subject’s brain activity is lacking. That is, EEG changes induced by
NFT are mainly assessed by linear techniques based on spectral analysis. This may not
be enough to determine the overall impact that NFT can produce on the subjects’ brain
activity. In this regard, non-linear analysis methods have been proposed as a suitable
tool to give insight into brain dynamics due to its non-linear coupling between neuronal
populations [12]. Particularly, multiscale entropy (MSE) was proposed to analyse the
complexity of biological signals on multiple time scales [47]. This metric has proven useful
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for exploring changes in EEG complexity [48–51], which has been shown to be related to
cognition state [12,13]. Indeed, a recent study applied for the first time a variation of MSE
algorithm to assess the effects of classical NFT on the subject’s EEG complexity, showing
higher complexity values after training [52]. These results encourage further study of the
NFT’s influence on brain signal complexity.

To the best of our knowledge, changes in EEG complexity induced by MI–NFT in
the elderly have not yet been explored. In this sense, we hypothesize that the effects
of cognitive training based on the MI–NFT paradigm could also manifest themselves as
changes in the complexity of subject’s EEG signal. Thus, differences in complexity between
pre- and post-training measures could be expected to be found. To assess these changes,
we propose to apply MSE based on sample entropy (SampEn) due to its effectiveness in
analysing the irregularity and complexity of biological time-series [53]. Therefore, the
objective of the present study is two-fold: (i) to comprehensively evaluate EEG changes
induced in elderly subjects after an MI–NFT and (ii) to analyse the cognitive improvement
achieved by the subjects after performing the MI–NFT.

2. Materials and Methods
2.1. Experimental Protocol

To assess the changes in brain activity induced by a cognitive training based on
MI–NFT, we employed a dataset recorded in our previous work [30]. A scheme of the
experimental protocol is shown in Figure 1. The study involved 63 subjects over 60 years
recruited from ’Centro de Referencia Estatal de San Andrés del Rabanedo’ (León, Spain). All
subjects were healthy, free of psychotropic medication, and without previous psychiatric or
neurological disorders or substance abuse. None of them had previous experience in using
BCI. They were randomly divided into a control group (32 subjects) and an NFT group
(31 subjects). Participants from both groups carried out a Luria adult neuropsychological
diagnosis (Luria-AND) test [54] to analyse their neuropsychological status prior to NFT.

Figure 1. Scheme of the experimental protocol of the MI-based NFT study. An example of the
feedback from a MI task is shown.

In order to perform the training, a novel MI-based BCI tool was developed. Eight
active electrodes (F3, F4, T7, C3, Cz, C4, T8, and Pz) were used, placed in an elastic cap
according to the international 10-20 system distribution [55]. Ground electrode was located
at AFz channel, whilst the common reference was placed in the earlobe. Training tasks
were carried out using a g.USBamp amplifier (Guger Technologies OG, Graz, Austria).
EEG signals were acquired at 256 Hz sampling rate and processed in real time using the
BCI2000 general-purpose system [56]. The feedback stimulus was provided using the band
power of tree spectral bands centred on 12, 18, and 21 Hz, with bandwidth of 3 Hz.
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The training was performed only by NFT group and consisted of 5 sessions, with
an average duration of 90 min over 5 weeks [30]. Five MI tasks with a different level
of difficulty were designed. The MI–NFT paradigm allowed the development of tasks
with two degrees of freedom which combine the modulation of SMR and the use of
cognitive functions:

• Task 1: Subjects were required to imagine hand movements. Alternatively, a closed
door or a closed window was displayed on the screen. Then, the paradigm indicated
whether users had to perform right- or left-hand MI, respectively. If the user correctly
performed the exercise, the displayed object was opened. This task aimed to help
subjects learn to modulate their SMR.

• Task 2: A target randomly located on the right or the left of the screen was displayed
3 s prior to the start of the trial. In order to reach the target with a displayed cursor,
subjects had to continuously perform MI for a maximum duration of 10 s. The
target and the cursor were represented by different pairs of related pictures, such as
fish/fridge or person/house.

• Task 3: Subjects had to control a cursor in order to reach one of the two displayed
targets (one of them was a picture related to cursor’s picture, and the other was
unrelated to it) by performing MI. Targets were displayed 3 s prior to the start of the
trial, and subjects had to complete the task in a maximum time of 10 s. Therefore, this
task not only involves MI but also the use of logic.

• Task 4: A person walking forward continuously on a path was displayed. Through the
MI of their hands, subjects had to control the horizontal position in order to overcome
the different obstacles that appeared on the path. This task required the use of the
visuospatial function of the subjects. In each trial, the duration of the feedback period
was 18 s.

• Task 5: Two pairs of images were shown sequentially for 3 s each, so that one image
was common to both pairs. Subjects had to identify the image shown twice and move
the cursor towards it by performing MI. They had a maximum of 12 s to do so. Thus,
this activity also involved the use of memory.

The easiest tasks (i.e., Task 1 and Task 2) were performed at first and the difficulty was
increased gradually throughout the sessions. Examples of Task 3 and Task 4 are shown in
Figure 2. All subjects performed again the Luria-AND test after the training period to assess
possible changes in the different neuropsychological functions. A complete description of
the experimental protocol and EEG recording procedures can be found in [30].

Figure 2. Examples of training interface. Picture (A) shows sequences of screenshots from Task 3. In
the upper sequence, the cursor is displayed as fish, so the subject has to perform right hand MI to
reach the correct target (fridge on the right), while in the lower sequence, the cursor is displayed as
trousers, so the subject has to perform left hand MI to reach the correct target (cupboard on the left).
In picture (B), an example of Task 4 is depicted. The subject has to perform MI in order to overcome
the displayed obstacles in real time.



Entropy 2021, 23, 1574 5 of 19

2.2. Dataset

From the NFT group, pre- and post-training EEG recordings were performed in only
11 subjects (7 females; mean age = 69.4 ± 5.75 years). Therefore, the dataset employed in
this study is composed of EEG signals from these subjects. The recordings consisted of
two-minute EEG signals in resting state with eyes closed at the beginning of the first session
and at the end of the last training session. Detailed socio-demographic information about
the 11 NFT subjects under study is shown in Table 1. In addition, the Luria-AND scores
of these 11 subjects were used in order to assess their cognitive changes after MI–NFT.
A comprehensive analysis of Luria-AND scores of the remaining subjects can be found
in [30].

Table 1. Socio-demographic data of the population included in the study.

Socio-Demographic Data

Identifier Sex Age (Years)

U01 Female 70
U02 Female 65
U03 Female 65
U04 Male 71
U05 Male 68
U06 Female 73
U07 Male 81
U08 Male 65
U09 Female 75
U10 Female 70
U11 Female 60

2.3. Luria Adult Neuropsychological Diagnosis

Luria-AND [54] is composed of nine tests aimed at covering five different cognitive
functions: attention (attentional control test), intellectual (thematic draws and conceptual
activity test), memory (immediate memory and logical memory tests), oral language
(receptive speech and expressive speech tests), and visuospatial (visual perception and
spatial orientation tests) functions. Subjects under study performed the Luria-AND test at
the beginning and at the end of the protocol.

2.4. Signal Pre-Processing

A notch filter at 50 Hz was previously applied to the data to suppress power line
noise. DC component and high frequencies were reduced with a band-pass finite impulse
response (FIR) filter, employing a Hamming window in the frequency range 0.1–60 Hz.
The filtered EEG was divided into epochs of 10 s each, without overlapping. In this way,
visual inspection for artefacts could be carried out. After concluding the inspection of all
recordings, no epochs were found that had to be rejected due to the presence of artefacts.
This may be due to the fact that, during the 2 min EEG recording, users were asked to
avoid eye movement or jaw clenching, which could introduce noise into the signal.

2.5. Metrics for Assessing EEG Changes

In order to comprehensively assess EEG changes induced by an MI–NFT, both linear
(relative power) and a non-linear (MSE) analyses were applied.

2.5.1. Relative Power

The RP measurement gives information on the normalized weight of each band in
the spectral distribution. The spectral bands selected to assess the induced EEG changes
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were delta (0.1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), and beta (13–30 Hz). The lower
(l fi) and upper (u fi) frequency limits of each band were specified according to the classical
definitions of EEG bands [57]. The power spectral density (PSD) of the signal was calculated
by means of the Welch method [58]. A Hamming window of 16 s (4096 samples; spectral
resolution of 0.0625 Hz), along with a 90% of overlap and fast Fourier transform of 4096
points, was used. From this magnitude, the relative power (RP) of each band was estimated
as follows:

RPi =
∑

f = u fi
f = l fi

PSD( f )

∑
f = 60Hz
f = 0.1HzPSD( f )

, i = {Delta, Theta, Alpha, Beta} (1)

2.5.2. Multiscale Entropy

Traditional non-linear techniques, such as those based on entropy metrics, assess the
irregularity of a time series in terms of the presence of repeating patterns [53]. Therefore,
the highest values are assigned to random signals. Since complexity analysis methods
should reflect the dynamic richness of a system, these measures must assign lowest values
to both fully deterministic and fully random time series [53]. According to Costa et al. [53],
biological systems need to operate across multiple spatial and temporal scales, which is
also reflected in the complexity of their signals across scales. In this context, MSE is a
measurement of complexity that fulfils the aforementioned requirement [47,59] and focuses
on quantifying the information expressed by the physiologic dynamics over multiple
time scales [53]. This is accomplished through estimation of the entropy (i.e., irregularity)
on coarse-grained versions of the original signal. As a result of these calculations, MSE
curves are obtained and can be used to compare the complexity of time series. The MSE
curve whose entropy values are higher for the most of time scales is considered more
complex [47,53].

In this study, we used SampEn as an irregularity metric. In this respect, irregularity is
estimated as the negative logarithm of the conditional probability that two sequences of m
(embedding dimension) consecutive data points, which fulfil a tolerance criterion (i.e., are
considered similar), still meet the criterion when their lengths are increased in one sample
(Equation (6)). Therefore, the higher the self-similarity in the time-series, the lower the
estimation.

Formally, given N data points from a time-series X = {x1, x2, . . . , xN}, these steps
should be followed to estimate SampEn [60]:

1. Form N-m+1 template vectors of m consecutive data points {Xm(1), . . . , Xm(N−m + 1)},
where each template vector is defined by Xm(i) = {xi, . . . , xi+m−1}, i = {1, . . . , N−m + 1}.
These vectors represent m consecutive values of X commencing with the i-th sample.

2. Define the distance between Xm(i) and Xm(j), d[Xm(i), Xm(j)]. In this context, Cheby-
shev is the most common metric used to compute the distance between vectors [59],

d[Xm(i), Xm(j)] = maxk=1,...,m(|x(i + k− 1)− x(j + k− 1)|). (2)

3. Define a tolerance criterion in terms of the standard deviation (σ) of the time series,
R = r · σ, where r is a parameter to set. Thus, two template vectors, Xm(i) and Xm(j),
are considered similar if their distance is less than the tolerance value:

d[Xm(i), Xm(j)] < R. (3)

4. For each Xm(i), count the number of vectors Xm(j), given i 6= j, that fulfil the tolerance
criterion (Equation (3)). This count is denoted as Bi. Then, the frequency of patterns
similar to a given one of window length m is calculated by

Bm
i (r) =

Bi
N −m + 1

, i = 1, . . . , N −m + 1. (4)
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5. Define the probability that two sequences will match for m points as

Bm(r) =
1

N −m

N−m

∑
i=1

Bm
i (r) (5)

6. Increase the embedding dimension to m+1, and repeat steps 1 to 5 in order to calculate
Am+1(r) as the probability that two vectors, Xm+1(i) and Xm+1(j), given i 6= j, match
for m+1 points.

7. Then, we can estimate SampEn by computing:

SampEn(m, r, N) = − ln
[

Am+1(r)
Bm(r)

]
. (6)

SampEn is used to estimate the MSE because, unlike approximate entropy (ApEn)
algorithm, SampEn does not count self-matching, which introduces an inherent bias, and
the result provided is less dependent of time series length [53]. To obtain the τ-th time-
scaled version of the EEG, the original procedure was to divide the signal into N/τ
consecutive and non-overlapping segments of length τ and average the samples of each
segment [47]. Nevertheless, these calculations may cause aliasing [59]. Therefore, as
Martínez-Cagigal et al. [61] proposed, we estimated time-scaled versions by decimating
the original signal. For the τ-th time scale, we applied a low-pass least-squares linear-
phase FIR filter to the pre-processed EEG signals (∼120 s duration) in order to reduce high
frequencies. Then, we applied a downsampling procedure. That is, only every τ-th sample
was kept. Finally, the irregularity of different time-scaled signals was estimated by the
SampEn algorithm from original time series (i.e., τ = 1) up to the highest scale (τ = 20),
obtaining the MSE curves for each channel by plotting the results. In this regard, we
considered the scales that fulfil the Richman & Moorman criterion (i.e., N ≥ 10m) [60].

2.6. Statistical Analysis

The normality of the distributions of the pre- and post-training EEG measures, as
well as the pre- and post-training Luria-AND scores, were explored by applying the
Kolmogorov–Smirnov test. Neither EEG results (i.e., the spectral and complexity val-
ues) nor the neuropsychological scores fulfilled the parametric assumption. Thus, the
non-parametric Wilcoxon signed-rank test was performed in order to assess the statistical
differences between pre- and post-training EEG recordings, and analyse changes in cog-
nitive functions. Additionally, the possible relationship between changes in RP of each
frequency band and the change in EEG complexity after MI–NFT was analysed by Spear-
man’s rank correlation. In order to limit the number of comparisons, each MSE curve was
characterised by a single value. This was obtained from the median value of the 20 time
scales. We analysed each channel separately. Furthermore, to investigate the relationship
between changes in MSE and neuropsychological improvements after MI–NFT, Spear-
man’s rank correlation was calculated separately for each Luria-AND test that showed a
significant improvement. MSE curves were also characterised by estimating their median
value. Finally, it is worth noting that, to overcome the problem of false discoveries due to
multiple comparisons, the Benjamini–Hochberg false discovery rate (FDR–BH) correction
was applied [62].

3. Results
3.1. EEG Spectral Analysis

Pre- and post-training PSDs were averaged across channels and subjects. As can be
seen in Figure 3, a significant power increase (p < 0.05) is found in theta, alpha, and beta
frequencies, with a greater number of significant frequency bins in the alpha and beta
bands. Differences between pre- and post-training RPs of each frequency band, averaged
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across channels and subjects, are displayed in Table 2. As shown, RP increased in theta
(p < 0.01), alpha (p < 0.01), and beta (p < 0.01) bands, while RP decreased in delta band
(p < 0.01), which means a power shift towards higher frequencies after NFT.

Figure 3. The graph depicts the grand-average of the PSD across channels and subjects. Solid lines
indicate the averaged PSD for pre- (red), and post-training (blue); whereas shaded areas indicate the
95% confidence interval. Frequency bands are indicated by dashed lines (delta: δ; theta: θ; alpha: α;
beta: β). Wilcoxon signed-rank test p-values that show significant differences (p < 0.05) between pre-
and post-training PSD are shown in the bottom bar. FDR–BH correction was applied.

Table 2. Pre- and post-training RP values of each frequency band, averaged across channels, and its
standard deviation (std). The Wilcoxon signed-rank test p-values with FDR-BH correction are shown
in the last column.

Delta Theta Alpha Beta

Pre-NFT RP (mean ± std) 0.622 ± 0.154 0.060 ± 0.029 0.112 ± 0.068 0.132 ± 0.073
Post-NFT RP (mean ± std) 0.520 ± 0.131 0.073 ± 0.028 0.149 ± 0.077 0.175 ± 0.080

p-value 0.0013 0.0013 0.0013 0.0034

Figure 4 depicts the intra-channel comparison between pre- and post-training RP of
each frequency band. Significant changes are found in all bands, especially in delta, alpha,
and beta. Frontal channels (F3 and F4) show significant differences (p < 0.01) in these three
bands, whilst a significant increase (p < 0.05) is also found at F4 in theta band. In addition,
three other channels (C4, T8, and Pz) exhibit significant RP differences (p < 0.05) in three
out of the four frequency bands. It is noteworthy that all eight channels present significant
RP differences (p < 0.05) in at least one frequency band.
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Figure 4. Violin plots depict pre- (red, left side) and post-training (blue, right side) RP of delta (A), theta (B), alpha (C), and
beta (D) frequency bands. Significant differences are marked with * (p < 0.05) and ** (p < 0.01). p-values were corrected
with FDR–BH correction.

3.2. EEG Complexity Analysis

To estimate the MSE curves, parameter values were varied in accordance with com-
mon ranges used for biomedical signals: embedding dimension m = {1, 2} and tolerance
parameter r = {0.1, 0.15, 0.2, 0.25, 0.3} [60]. Hereafter, we focus our discussion on the MSE
curves obtained for m = 2 and r = 0.1 (i.e., R = 0.1 · σ), since these values are widely used
in the literature [60,63]. However, this selection of parameters did not influence the results
obtained, showing their consistency across the different values. MSE curves calculated for
the remaining parameter values can be found in the supplementary material.

MSE curves for each channel are displayed in Figure 5. Differences were evaluated
for each time scale in each channel. A general increase in SampEn values compared to
the pre-training ones is observed, except for Cz. Significant increases are found in five of
the eight channels: C4 and Pz (p < 0.05), and F3, F4, and T8 (p < 0.01). In this regard, it
is remarkable that the F3 and F4 channels show significant differences for all time scales
considered, whilst significant differences are found from τ = 3 onwards in C4, and from
τ = 5 onwards in T8. On the other hand, Pz curves show significant differences for all
time scales, except for τ = {1, 2, 8}.
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Figure 5. MSE values across channels (m = 2; r = 0.1). Lines with circle markers indicate pre- (red) and post-training
(grey) averaged sample entropy values. Significant differences (p < 0.05) for each time scale are shown in the bottom bars.
p-values were corrected with FDR–BH correction.

3.3. Correlation Analysis of Spectral and Complexity EEG Changes

Results obtained from Spearman’s rank correlation analysis are shown in Figure 6. A
strong negative correlation is found between delta power and increased MSE. Significant
results are obtained in C3 (ρ = −0.89, p < 0.01), Cz (ρ = −0.87, p < 0.01) and Pz (ρ = −0.73,
p < 0.05), whilst negative values are also found in F3, T7, C4, and T8 (ρ < −0.58, p = 0.07).
Moreover, the correlation analysis in the theta band shows only a significant result at
T7 (ρ = 0.78, p < 0.05). No positive results are found in the other channels (p > 0.05).
Regarding the analysis of the alpha band, a strong positive correlation is found in all
channels, among which the most significant are T7 (ρ = 0.83, p < 0.01), Cz (ρ = 0.92,
p < 0.001) and Pz (ρ = 0.90, p < 0.001). The rest of the channels also showed a significant
result (ρ > 0.7, p < 0.05), with the exception of C3 (ρ = 0.6, p > 0.05). Finally, beta band
correlation analysis yields significant and positive results for all channels. Specifically,
the results obtained are (ρ = 0.64, p < 0.05) in F3, (ρ = 0.75, p < 0.01) in F4, T7, and C3,
(ρ = 0.89, p < 0.001) in Cz, (ρ = 0.68, p < 0.05) in C4, (ρ = 0.81, p < 0.01) in T8, and (ρ = 0.9,
p < 0.001) in Pz.

3.4. Luria-AND Analysis

The difference between pre- and post-training scores of Luria-AND test was analysed
in order to assess cognitive changes achieved after performing NFT. In Table 3, differences
between pre- and post-training Luria scores for each subject are shown, as well as results
of the Wilcoxon signed rank test. As can be seen, subjects show significant improvement
in the thematic draws test, conceptual activity test, and logical memory test. That is, an
enhancement is found in two (intellectual and memory functions) of the five cognitive
functions assessed by Luria-AND test. The scores of the three Luria-AND tests that
showed a significant improvement were used to analyse the possible correlation between
cognitive improvement and increased EEG complexity after MI–NFT. Correlation values
were calculated for each of the eight channels used. However, no significant results
(p > 0.05) were extracted from the analysis.
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Figure 6. Topographic plots of Spearman’s rank correlation values between RP and MSE changes
for each channel. Each frequency band under study is presented separately. Positively correlated
channels are shown in red, while negatively correlated channels are shown in blue. Darker colours are
related to more positively (or negatively) correlated values. Channels that revealed significant results
are marked with * (p < 0.05) and ** (p < 0.01). p-values were corrected with FDR-BH correction.

Table 3. Differences between pre- and post-training Luria scores for each subject. Test score range is 0–90. Results from
statistical analysis of changes in Luria-AND scores are shown in the first column from the right. p-values were corrected
with FDR–BH. Significant values (p < 0.05) are in bold.

Test U01 U02 U3 U4 U5 U6 U7 U8 U9 U10 U11 Mean ± Std p-Value

Attentional control 0 0 5 −15 55 5 0 45 −5 5 0 8.6 ± 21.3 0.1310
Thematic draws 5 0 0 5 0 25 10 15 0 0 15 6.8 ± 8.4 0.0403

Conceptual activity 10 5 5 0 0 10 5 5 0 10 0 4.5 ± 4.2 0.0403
Immediate memory −5 0 0 20 10 10 20 0 0 −10 0 4.1 ± 9.7 0.1074

Logical memory −5 0 0 30 15 20 25 −5 15 10 20 11.4 ± 12.3 0.0403
Receptive speech 5 0 5 15 0 5 0 10 −10 5 10 4.1 ± 6.6 0.0655
Expressive speech 0 0 10 15 0 10 −15 10 10 5 0 4.1 ± 8.3 0.1102
Visual perception 5 0 25 30 35 20 −10 20 −10 5 0 10.1 ± 15.8 0.0590
Spatial orientation 0 −10 15 10 0 −5 15 15 15 −5 35 7.7 ± 13.1 0.0590

4. Discussion

In this study, we employed a dataset composed of resting state EEG signals from 11
healthy elderly subjects in order to comprehensively explore the EEG changes induced by
an MI–NFT aimed at cognitive enhancement. To this end, we applied linear and non-linear
analyses. In this regard, spectral and complexity analyses allowed us to quantitatively
assess the EEG changes from a broad point of view. Furthermore, to our knowledge, this
is the first study that measured both spectral and complexity EEG changes induced by
an MI–NFT in the elderly, as well as the correlation between these induced changes. The
increase found in the post-training MSE values supports our hypothesis that MI–NFT
can induce changes in EEG complexity and proves the effectiveness of MSE as a robust
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technique for assessing NFT outcomes in future studies. Moreover, the results of the
Luria-AND test showed an improvement in the intellectual and memory abilities of older
people after MI–NFT. This reinforces the idea that MI–NFT may be a suitable approach to
help the elderly counteract the effects of age-related cognitive decline.

4.1. Induced EEG Spectral Changes

In the present study, different spectral analyses were applied to assess EEG changes
in the frequency domain. Regarding trained bands, we observed a general increase in the
power of alpha (8–13 Hz) and beta (13–30 Hz) bands in the grand-average PSD analysis
(Figure 3). Concerning RP analysis (Table 2), the averaged power of both frequency
bands showed a significant increase (p < 0.01) after NFT. Therefore, our results suggest
the ability of aging brains to voluntarily regulate alpha and beta bands with the help
of an MI-based BCI tool. This is in line with reports of previous classical NFT studies.
For instance, Staufenbiel et al. [25] proposed a beta-enhancing NFT protocol. Although
significant differences in the beta band were not achieved at post-training resting EEG
measures, an increase in beta power was found at the end of the sessions compared to the
power at baseline, suggesting the trainability of the beta band in the elderly. Moreover,
Marlats et al. [23] studied the ability of elderly patients with mild cognitive impairment
(MCI) to stimulate their SMR, finding an increase in theta and alpha band powers after NFT.
On the other hand, it is worth noting that the increase we found in the power of trained
bands was achieved with only five MI–NFT sessions, with an average duration of 90 min,
which suggests that little training is necessary for older people to be able to gain control
over their brain activity by performing MI. With regard to RP changes across channels
(Figure 4), we found a significant increase in seven out of the eight channels in alpha band
and in five of the eight channels in beta band. The main increase was found in frontal
channels (F3 and F4). Increases in alpha and beta power in the frontal region after NFT
have been previously reported. Becerra et al. [24] proposed an NFT protocol based on the
reduction in abnormally high absolute theta power in an elderly healthy population. As a
result of this training, subjects exhibited a significant improvement in the RP of alpha band
in frontal, right-temporal, and occipital regions. Campos da Paz et al. [22] conducted an
NFT protocol in elderly patients based on SMR. An enhancement of the power was found
in theta and beta bands in the frontal region after NFT. Interestingly, the frontal region
has been associated with cognitive functions, such as working memory, attention, fluid
intelligence, or language comprehension [38,64–67]. Therefore, the significant increase
observed in frontal region in this study, as well as in the aforementioned ones, may reflect
a change in EEG patterns, which could lead to an improvement in these related cognitive
functions.

Regarding EEG changes in the slow frequency bands, an overall decrease in the
delta band power was found, as can be seen in Table 2. Thus, taking into account the
increase in alpha and beta bands, a power shift towards rapid frequencies was achieved
after the MI–NFT. Considering the EEG slowing process due to aging [11,12,14], it is
suggested that an MI–NFT may be helpful for older people to counteract the progression
of this phenomenon. In the intra-channel analysis (Figure 4), a significant decrease was
revealed in all channels except for C3. The main decrease (p < 0.01) was observed in
frontal channels. This, in view of the significant increase in alpha and beta power found
in the same channels, suggests a major effect of MI–NFT on the frontal region. On the
other hand, the theta band power was found to be increased after the MI–NFT (Table 2).
This can be seen in the power spectral distribution (Figure 3), where certain frequencies
showed a significant increase in power. However, the enhancement in theta power was less
remarkable in comparison to alpha and beta bands, as can be observed in the intra-channel
analysis (Figure 4). Our results are in line with the aforementioned study conducted by
Marlats et al. [23]. They reported an increase in the power of the theta band, although their
protocol was based on SMR enhancement and theta suppression. They suggested that the
increase in the theta band power may come from the decrease observed in delta power.
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This can be interpreted as an improvement due to the faster brain signals after NFT [23].
Even though an abnormal increase in the power of the theta band has been linked to
age-related cognitive decline [11,12,14], frontal theta activity has also been reported to play
a key role in the control of some cognitive functions, especially working memory [19,68,69].
For this reason, several studies have proposed to enhance this frequency band in their
NFT protocols [17–19]. In this sense, the need to up-regulate theta band (i.e., to achieve
cognitive enhancement) or, conversely, to down-regulate it (i.e., to counteract the power
shift caused by aging) is still uncertain.

Finally, it is interesting to note that the MI–NFT influenced delta and theta power,
although these bands remained untrained. In fact, previous NFT studies have reported
non-specific frequency changes in flanking frequency bands [18,23,70], supporting the
proposed interdependence between frequency bands [71]. Consequently, as suggested by
Jurewicz et al. [70], the effects in the untrained bands can be interpreted as a response to
the change achieved in the trained bands. This side effect could be aimed at balancing the
spectral power distribution of brain activity after training.

4.2. Induced EEG Complexity Changes

The results obtained from MSE curves (Figure 5) showed a general increase of SampEn
values (i.e., irregularity) at most time scales for seven out of the eight channels. According
to Costa et al. [53], the increase in irregularity values found at most time scales implies a
greater complexity of the post-training EEG signal. Hence, our findings in MSE analysis
support our hypothesis that MI–NFT is able to influence the brain signals of the elderly.
We consider this result to be relevant, as it reinforces the idea that the MI–NFT paradigm
can be a suitable approach for cognitive training studies based on neurofeedback. In
addition, it has been shown that complexity-based measures can characterise these EEG
changes. On the other hand, it is interesting to note that the increase in EEG complexity
was achieved with a reduced number of training sessions, suggesting that changes in brain
signal complexity can be induced with few MI–NFT sessions. It is also noteworthy that
the significant increase in EEG complexity was obtained for all combinations of parameter
values, as can be seen in the supplementary materials. This demonstrates the robustness of
the MSE as a complexity-based evaluation metric.

Previously, the MSE analysis has been applied in the estimation of EEG complexity in
AD and MCI patients [48,49,51,72]. These studies showed a lower complexity of the resting
state EEG signal in AD patients compared to control subjects. Their results are consistent
with the hypothesis that AD is characterised by a reduction of complexity [73], which has
been suggested to reflect a decrease in non-linear neural dynamics caused by a loss of
connectivity of local neural networks and/or neuronal death [12]. Moreover, MSE analysis
has been applied to explore the changes in EEG complexity throughout aging, showing a
prominent increase in EEG complexity from childhood to adolescence [74], and a lower
EEG complexity in elderly subjects compared to young ones [50]. Thus, in view of the
likely association between a reduced EEG complexity and the cognitive decline process, the
increase observed in our study post-MI–NFT may lead to a possible alleviation of the effects
of age-related cognitive decline. Furthermore, the most significant differences were found
in frontal channels (Figure 5). A similar result was also reported by Van Noordt et al. [74],
showing a main increase in EEG complexity located in fronto-central region. They suggest
that the increase observed may reflect a maturational change in underlying brain networks.

Finally, although non-linear analysis is widely used in the characterisation of EEG
changes throughout the process of cognitive decline [48–51,72], to the best of our knowl-
edge, MSE has not been generally considered as an evaluation metric in previous NFT
studies. That is, few NFT studies have applied MSE measurement in order to find NFT-
induced EEG changes [52,75]. In fact, to our knowledge, there is only one study that
reported the influence of classical NFT on EEG complexity in the elderly [52]. In this study,
an increase in EEG complexity located in fronto-central region was shown. Therefore,
based on these results and those obtained in our study, we propose the use of MSE to assess
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NFT outcomes, because it can supplement the information provided by linear methods.
Thus, combining spectral analysis with complexity-based analysis methods may help to
further develop the field of NFT by suggesting new ways to compare NFT results from
different studies.

4.3. Correlations between Spectral Power and EEG Complexity

The results obtained from the correlation analyses showed a significant correlation
between the increase in EEG complexity and the change in the RP of the frequency bands
after MI–NF. This correlation is notably prominent in delta, alpha, and beta bands. In the
theta analysis, only one significant result was obtained, in the T7 channel. This agrees with
the results obtained in the analysis of the RP change of each frequency band in each channel
(Figure 3). Therefore, these results suggest that the overall increase in EEG complexity
observed after MI–NFT is correlated with a homogeneous decrease in delta RP, as well as
an increase in alpha and beta RP. More specifically, with regard to frontal channels, which
showed the most prominent changes in both spectral and complexity analyses, significant
positive results were found in alpha and beta correlation analyses. This suggests that the
significant increase in complexity observed in these channels is correlated with the increase
in the RP of the trained bands by the MI–NFT paradigm. Therefore, changes observed in
these EEG features could be seen as evidence of the same phenomenon: an enhancement
of brain signal regulation induced by the MI–NFT. To our knowledge, correlation between
spectral and complexity EEG changes after MI–NFT have never been studied before. In
view of the results of previous studies, in which alpha and beta band activities were
related to different cognitive functions [19,38–46], as well as the aforementioned connection
between EEG complexity and cognitive state [48–51,72], it seems interesting to further
investigate these findings. Thus, this may help to better characterise the results of future
NFT studies, as well as provide a deeper insight into the NFT-induced EEG changes.

4.4. Changes in Neuropsychological Functions

The Luria-AND test was performed twice to study the possible influence of MI-based
NFT on the cognitive functions of the subjects. After a statistical analysis, significant
improvements were found in intellectual (i.e., thematic draws and immediate conceptual
activity tests) and memory functions (i.e., logical memory test). Thus, according to these
results, an MI-based NFT may be helpful to improve cognitive functions in elderly peo-
ple, such as those related to memory and intelligence. However, the correlation analysis
of cognitive enhancement and increased EEG complexity did not establish a significant
relationship between the two changes observed. The absence of significant results may
be due to the limited sample size available, as well as the high variability in the changes
of the Luria-AND scores. Despite this, our results highlight the importance of further
study of the relationship between EEG changes in the frontal region and improvements in
memory and intellectual functions. In fact, previous neuropsychological and neuroimaging
studies have described the role played by frontal region in human memory and intel-
ligence [38,64–67]. Furthermore, it has been suggested to be a correlation between the
performance of intelligence and memory-related functions in frontal cortex [67]. Therefore,
the fact that both spectral and complexity analysis showed a more prominent change in
EEG features in frontal channels encourages further research into its connection with the
cognitive improvements observed in subjects after MI–NFT sessions.

4.5. Limitations and Future Research Lines

Even though our results showed improvements in the subjects’ brain signals and in
certain cognitive functions, there are several limitations that must be taken into account.
Firstly, the study was conducted using a dataset composed of recordings from 11 subjects
and their scores from neuropsychological tests. Hence, our results should be interpreted
with caution, as it would be desirable to extend the sample size. However, it is also
necessary to highlight the existence of other studies in the literature that were carried
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out with a similar number of subjects. For instance, Angelakis et al. [76] carried out their
study with three subjects in the experimental group and 3 subjects in the control group.
Becerra et al. [24] conducted a study with seven subjects in the experimental group and
seven in the control group. Staufenbiel et al. [25] published a study in which two training
protocols were proposed, each of which was applied to 10 people, with no control group.
Campos da Paz et al. [22] published a study with 17 healthy subjects and without a control
group. This illustrates the difficulty of conducting NFT studies with a large sample size. In
this regard, not only must the process of collecting participants be taken into account, but so
should the limited time available for the studies and the logistical complications that may
arise. This is why, despite the small sample size used in the aforementioned studies, their
results constitute a knowledge base on which to build future studies of cognitive training
based on NFT. Therefore, we hope that the results we report will encourage future studies
to further investigate the influence of the MI–NFT paradigm on EEG features and the
neuropsychological state of users. Additionally, we were not able to establish a significant
correlation between increased EEG complexity and observed cognitive improvement in
memory and intellect functions. Therefore, further MI–NFT studies are needed in the future
to shed light on the possible relationship between EEG complexity in frontal channels and
the enhancement of cognitive functions such as memory or intelligence. Therefore, MSE
could be established as a suitable and helpful measure for the evaluation of NFT studies.
It is worth noting the need to further study the correlation between changes in RP and
changes in MSE values after MI–NFT. In addition, the influence of trained frequency bands
on untrained ones needs to be studied in depth in order to shed light on the issue. A clearer
understanding of this phenomenon would help to design better NFT protocols.

Secondly, we analysed the effects of the MI–NFT paradigm in cognitive training.
Although this training paradigm has shown promising results in stroke rehabilitation
studies [3,4,31–35], it has not yet been explored in depth in cognitive training studies based
on neurofeedback techniques. Since the MI–NFT paradigm allows for the development
of more engaging [32,37] and complex training tasks, as presented in Section 2.1, it is
interesting to further investigate the influence of the MI–NFT paradigm on the cognitive
state of users. It would also be desirable to conduct studies comparing the effectiveness of
the classical and MI–NFT training paradigms, as well as their influence on the motivation
of users of the training.

Finally, the inclusion of a placebo control group under study in future studies, as
recommended in [77], would help to distinguish both EEG changes and improvements in
neuropsychological tests induced by real MI–NFT from those due to non-specific effects.
Furthermore, the assessment of changes in cognitive functions was carried out immediately
after the end of the training. Nevertheless, since the aim of NFT is to lead to physiological
changes that reduce the effects of neural disorders [5], it would be desirable to perform a
longitudinal study of cognitive status of patients some time after the end of the training. For
instance, an MI–NFT study, aimed at restoring the neurological functions of stroke patients,
showed sustained improvements 6 months after the MI–NFT-based therapy ended [4].
Hence, by performing longitudinal studies, we could gain a better understanding of the
benefits of MI–NFT for the elderly.

5. Conclusions

RP and MSE changes in the EEG signal of 11 healthy elderly subjects after five sessions
of MI–NFT using a BCI system were investigated. Our results suggest that MI–NFT is a
suitable approach to induce changes in brain activity in the elderly, and furthermore, these
changes are not only shown as a power shift towards rapid frequencies, but also as an
increase in the complexity of the EEG signal. In fact, we have shown a correlation between
spectral changes and increased EEG complexity induced by MI–NFT. We can conclude
that a complexity analysis based on MSE is convenient for characterising the effects of
MI–NFT. Therefore, combining spectral analyses with non-linear methods may be useful
in future studies, as it provides a new perspective on the assessment of the MI–NFT effects
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and may be helpful to reach a deeper understanding of how neurofeedback affects the
brain after training. Furthermore, the analysis of scores from neuropsychological tests
showed an improvement in intellectual and memory functions in elderly people after MI-
based NFT. Accordingly, MI–NFT may help the elderly counteract the effects of age-related
cognitive decline.

Supplementary Materials: The following are available online at https://www.mdpi.com/1099-430
0/23/12/1574/s1, Figure S1: MSE values across channels (m = 1; r = 0.1). Lines with circle markers
indicate pre- (red) and post-training (grey) averaged sample entropy values. Significant differences
(p < 0.05) for each time scale are shown in the bottom bars. P-values were corrected with FDR-BH
correction. Figure S2: MSE values across channels (m = 1; r = 0.15). Lines with circle markers indicate
pre- (red) and post-training (grey) averaged sample entropy values. Significant differences (p < 0.05)
for each time scale are shown in the bottom bars. P-values were corrected with FDR-BH correction.
Figure S3: MSE values across channels (m = 1; r = 0.2). Lines with circle markers indicate pre- (red)
and post-training (grey) averaged sample entropy values. Significant differences (p < 0.05) for
each time scale are shown in the bottom bars. P-values were corrected with FDR-BH correction.
Figure S4: MSE values across channels (m = 1; r = 0.25). Lines with circle markers indicate pre-
(red) and post-training (grey) averaged sample entropy values. Significant differences (p < 0.05)
for each time scale are shown in the bottom bars. P-values were corrected with FDR-BH correction.
Figure S5: MSE values across channels (m = 1; r = 0.3). Lines with circle markers indicate pre- (red)
and post-training (grey) averaged sample entropy values. Significant differences (p < 0.05) for
each time scale are shown in the bottom bars. P-values were corrected with FDR-BH correction.
Figure S6: MSE values across channels (m = 2; r = 0.1). Lines with circle markers indicate pre- (red)
and post-training (grey) averaged sample entropy values. Significant differences (p < 0.05) for each
time scale are shown in the bottom bars. P-values were corrected with FDR-BH correction. Figure
S7: MSE values across channels (m = 2; r = 0.15). Lines with circle markers indicate pre- (red) and
post-training (grey) averaged sample entropy values. Significant differences (p < 0.05) for each time
scale are shown in the bottom bars. P-values were corrected with FDR-BH correction. Figure S8: MSE
values across channels (m = 2; r = 0.2). Lines with circle markers indicate pre- (red) and post-training
(grey) averaged sample entropy values. Significant differences (p < 0.05) for each time scale are
shown in the bottom bars. P-values were corrected with FDR-BH correction. Figure S9: MSE values
across channels (m = 2; r = 0.25). Lines with circle markers indicate pre- (red) and post-training
(grey) averaged sample entropy values. Significant differences (p < 0.05) for each time scale are
shown in the bottom bars. P-values were corrected with FDR-BH correction. Figure S10: MSE values
across channels (m = 2; r = 0.3). Lines with circle markers indicate pre- (red) and post-training (grey)
averaged sample entropy values. Significant differences (p < 0.05) for each time scale are shown in
the bottom bars. P-values were corrected with FDR-BH correction.
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