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Sleep apnea is a sleep disorder with a very high prevalence and many health 
consequences. As such it is a major health burden (Benjafield et al., 2019). 
Sleep apnea has been systematically explored only a little more than 40 years 
now (Guilleminault & Dement, 1978). Major impacts of sleep apnea are 
sleepiness and associated risks for accidents (Bonsignore et al., 2021). Major 
health impacts are cardiovascular risk and pathophysiological traits, even if 
this is currently much debated when focusing on the apnea-hypopnea index 
as the measure for sleep apnea severity (Arnaud et al., 2020). Sleep apnea is 
a disorder which is a chronic condition and can be treated successfully.

The disorders of sleep-disordered breathing have largely supported the 
growth of sleep medicine in general from a small specialty field to a major 
spectrum of disorders in the arena of medical specialties. This activity 
helped to convert the niche field of sleep research into sleep medicine, a 
clinical discipline with its own departments, its own center certification, 
physician certification, dedicated conferences, journals, and research activ-
ities. The recognition and importance have grown so much that the new 
International Classification of Disorders by WHO in its 11th version, being 
launched in 2022, has added a new section on sleep and wake disorders 
with its own range of codes. This worldwide recognition will enable the 
growth of medical education on sleep physiology, sleep pathology, and spe-
cific sleep disorders.

The diagnostic field for sleep disorders, and for sleep apnea specifically, 
is strongly linked to the development of new and recent methods, which 
allow long-term recording and analysis of physiological functions during 
sleep. Sleep and sleep apnea are not just identified by taking a single blood 
sample or by a single measurement by a physician at a visit, but sleep 
recording requires the continuous recording of biosignals. This is compa-
rable to monitoring of vital functions during anesthesia or intensive care. 
Because of this methodological challenge, biomedical engineering as well 
as new sensor and analysis technologies are closely linked to the develop-
ment of sleep apnea diagnosis. New technologies helped to a large extent 
develop new diagnostic and treatment modalities for sleep-disordered 
breathing. Sleep apnea diagnostic research is now linked to the develop-
ment of new wearables, nearables, and smartphone apps, and profits much 
from the ubiquitous development of photoplethysmography recording 
everywhere.
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Artificial intelligence is playing a very important role in analyzing sleep 
recordings and, particularly, in automatizing several of the stages of sleep 
apnea diagnosis. Since the generalization of computerized analysis in the 
1990s, automated processing of cardiorespiratory and neuromuscular signals 
from polysomnographic studies provided a number of indices able to assist 
sleep experts in the characterization of the disease (Shokoueinejad et  al., 
2017). Parameterization of the influence of apneic events on biological sys-
tem dynamics has relied on widely known techniques from the engineering 
field, such as spectral and nonlinear analysis. Currently, there is a demand for 
novel alternative metrics able to overcome the limitations of the standard 
apnea-hypopnea index concerning its low association with patient symptoms 
and outcomes (Malhotra et al., 2021). In this regard, signal processing and 
pattern recognition are going to play a key role. In addition, machine learning 
has also shown its usefulness in the last decades (Uddin et al., 2018) and, like 
many other areas in our society, sleep apnea diagnosis is rapidly entering the 
deep learning era (Mostafa et al., 2019) and big data. These new analytical 
techniques, along with the advances in health device development, are the 
main hope for reaching a reliable diagnostic paradigm shift. One that finally 
could cope with the disease prevalence, personalized interventions, and run-
away spending.

Beyond the widespread application of machine learning methods to auto-
mate polysomnography scoring and to provide sleep experts with tools for 
automated diagnosis, artificial intelligence has also the potential to signifi-
cantly improve the management of sleep apnea treatment. Recent advances in 
the framework of big data together with remote monitoring capability of 
novel treatment devices are able to promote conventional sleep medicine 
towards a real personalized medicine. Identification of refined clinical pheno-
types of patients will allow the development of precision interventions, 
enabling the quick identification of the treatment option that best fits the par-
ticular characteristics of a patient (Watson & Fernández., 2021). Similarly, 
machine learning is able to accurately model patient’s adherence from usage 
data (pressure setting, residual respiratory events, mask leaks) derived from 
portable treatment devices, improving the efficacy of available therapies 
(Goldstein et al., 2020). Thus, artificial intelligence is going to significantly 
change the management of sleep apnea treatment in the short term.

This volume gives a basis of current knowledge on sleep research, sleep 
medicine, and sleep apnea, with a strong focus on new challenges and new 
research directions in the diagnosis of sleep apnea and its treatment. The 
volume contains three sections: the first one is on physiology and pathophysi-
ology, the second one is on diagnostic advances, and the third one is on treat-
ment advances. Each chapter author was asked to not only describe the state 
of the art but also develop visions for future research as seen from their spe-
cial angle and viewpoint.
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As editors, we think that the volume can serve as an introduction to the 
field of sleep-disordered breathing, can serve as a basis for educating in sleep-
disordered breathing, and can immediately stimulate and trigger new research 
in physiology, clinical trials, and biomedical engineering for sensors and 
analysis methodologies.

Berlin, Berlin, Germany� Thomas Penzel
Valladolid, Spain� Roberto Hornero 

�References

Arnaud, C., Bochaton, T., Pépin, J.  L., & Belaidi, E. (2020). Obstructive sleep apnoea 
and cardiovascular consequences: Pathophysiological mechanisms. Archives of 
Cardiovascular Disease, 113:350—358

Benjafield, A. V., Ayas, N. T., Eastwood, P. R., Heinzer, R., Ip, M. S. M., Morrell, M. J., 
Nunez, C. M., Patel, S. R., Penzel, T., Pepin, J. L. D., Peppard, P. E., Sinha, S., Tufik, 
S., Valentine, K., & Malhotra, A. (2019). Estimating the global prevalence and burden 
of obstructive sleep apnoea: a literature-based analysis. Lancet Respiratory Medicine, 
7:687–698. 10.1016/S2213-2600(19)30198-5

Bonsignore, M.R., Randerath, W., Schiza, S., Verbraecken, J., Elliott, M. W., Riha, R., Barbe, 
F., Bouloukaki, I., Castrogiovanni, A., Deleanu, O., Goncalves, M., Leger, D., Marrone, 
O., Penzel, T., Ryan, S., Smyth, D., Teran-Santos, J., Turino, C., McNicholas, W. T. 
(2021). European Respiratory Society statement on sleep apnoea, sleepiness and driving 
risk. European Respiratory Journal, 57: 2001272 doi: 10.1183/13993003.01272-2020

Goldstein, C.  A., Berry, R.  B., Kent, D.  T., Kristo, D.  A., Seixas, A.  A., Redline, S., 
Westover, M.  B., Abbasi-Feinberg, F., Aurora, R.  N., Carden, K.  A., Kirsch, D.  B., 
Malhotra, R. K., Martin, J. L., Olson, E. J., Ramar, K., Rosen, C. L., Rowley, J. A., 
Shelgikar, A.  V. (2020). Artificial intelligence in sleep medicine: An American 
Academy of Sleep Medicine position statement. Journal of Clinical Sleep Medicine, 
16(4):605-607. 10.5664/jcsm.8288

Guilleminault, C., & Dement, W. C. (eds) (1978). Sleep apnea syndromes. New York: Alan 
R. Liss Inc.

Malhotra, A., Ayappa, I., Ayas, N., Collop, N., Kirsch, D., Mcardle, N., Mehra, R, Pack, 
A. I., Punjabi, N., White, D. P., & Gottlieb, D. J. (2021). Metrics of sleep apnea sever-
ity: beyond the apnea-hypopnea index. Sleep, 44(7):1-16. 10.1093/sleep/zsab030

Mostafa, S. S., et al. (2019). A systematic review of detecting sleep apnea using deep learn-
ing. Sensors, 19.22: 4934. 10.3390/s19224934

Shokoueinejad, M., Fernandez, C., Carroll, E., Wang, F., Levin, J., Rusk, S., Glattard, N., 
Mulchrone, A., Zhang, X., Xie, A., Teodorescu, M., Dempsey, J., & Webster, J. (2017). 
Sleep apnea: a review of diagnostic sensors, algorithms, and therapies. Physiol Meas, 
38:R204–R252 doi: 10.1088/1361-6579/aa6ec6

Uddin, M. B., Chow, C. M., & S. W. Su. (2018). Classification methods to detect sleep 
apnea in adults based on respiratory and oximetry signals: A systematic review. 
Physiological Measurement, 39.3: 03TR01. 10.1088/1361-6579/aaafb8

Watson, N.  F., & Fernandez, C.  R. (2021). Artificial intelligence and sleep: Advancing 
sleep medicine. Sleep Med Rev, 59:101512. 10.1016/j.smrv.2021.101512

Preface



ix

Part I � Physiology

	 1	 ��An Overview on Sleep Medicine �������������������������������������������������     3
Alex Iranzo

	 2	 ��Covering the Gap Between Sleep and  
Cognition – Mechanisms and Clinical Examples�����������������������     17
Javier Gomez-Pilar, Gonzalo C. Gutiérrez-Tobal,  
and Roberto Hornero

	 3	 ��Obstructive Sleep Apnoea: Focus on Pathophysiology �������������     31
Walter T. McNicholas

	 4	 ��Diagnosis of Obstructive Sleep Apnea in Patients  
with Associated Comorbidity�������������������������������������������������������     43
Félix del Campo, C. Ainhoa Arroyo, Carlos Zamarrón,  
and Daniel Álvarez

	 5	 ��Pediatric Obstructive Sleep Apnea: What’s in a Name?�����������     63
Allan Damian and David Gozal

	 6	 ��Treatment of Cheyne-Stokes Respiration in Heart Failure  
with Adaptive Servo-Ventilation: An Integrative Model�����������     79
Wen-Hsin Hu and Michael C. K. Khoo

Part II � Diagnostic Innovations

	 7	 ��Automated Scoring of Sleep and Associated Events �����������������   107
Peter Anderer, Marco Ross, Andreas Cerny,  
and Edmund Shaw

	 8	 ��Conventional Machine Learning Methods Applied  
to the Automatic Diagnosis of Sleep Apnea���������������������������������   131
Gonzalo C. Gutiérrez-Tobal, Daniel Álvarez,  
Fernando Vaquerizo-Villar, Verónica Barroso-García,  
Javier Gómez-Pilar, Félix del Campo, and Roberto Hornero

	 9	 ��Home Sleep Testing of Sleep Apnea���������������������������������������������   147
Martin Glos and Dora Triché

Contents



x

	10	 ��ECG and Heart Rate Variability in Sleep-Related  
Breathing Disorders���������������������������������������������������������������������   159
Hua Qin, Fernando Vaquerizo-Villar, Nicolas Steenbergen, 
Jan F. Kraemer, and Thomas Penzel

	11	 ��Cardiopulmonary Coupling���������������������������������������������������������   185
Mi Lu, Thomas Penzel, and Robert J. Thomas

	12	 ��Pulse Oximetry: The Working Principle, Signal Formation,  
and Applications ���������������������������������������������������������������������������   205
Timo Leppänen, Samu Kainulainen, Henri Korkalainen,  
Saara Sillanmäki, Antti Kulkas, Juha Töyräs,  
and Sami Nikkonen

	13	 ��Oximetry Indices in the Management of Sleep Apnea:  
From Overnight Minimum Saturation to the Novel  
Hypoxemia Measures�������������������������������������������������������������������   219
Daniel Álvarez, Gonzalo C. Gutiérrez-Tobal,  
Fernando Vaquerizo-Villar, Fernando Moreno,  
Félix del Campo, and Roberto Hornero

	14	 ��Airflow Analysis in the Context of Sleep Apnea�������������������������   241
Verónica Barroso-García, Jorge Jiménez-García,  
Gonzalo C. Gutiérrez-Tobal, and Roberto Hornero

	15	 ��Deep-Learning Model Based on Convolutional Neural  
Networks to Classify Apnea–Hypopnea Events  
from the Oximetry Signal�������������������������������������������������������������   255
Fernando Vaquerizo-Villar, Daniel Álvarez,  
Gonzalo C. Gutiérrez-Tobal, C. A. Arroyo-Domingo,  
F. del Campo, and Roberto Hornero

	16	 ��Tracheal Sound Analysis �������������������������������������������������������������   265
AbdelKebir Sabil and Sandrine Launois

	17	 ��Obstructive Sleep Apnea with COVID-19 ���������������������������������   281
Ying Huang, DongMing Chen, Ingo Fietze,  
and Thomas Penzel

Part III � Therapeutic Innovations

	18	 ��APAP, BPAP, CPAP, and New Modes of Positive  
Airway Pressure Therapy�������������������������������������������������������������   297
Karin G. Johnson

	19	 ��Adherence Monitoring Using Telemonitoring  
Techniques�������������������������������������������������������������������������������������   331
Sarah Dietz-Terjung, Martina Große-Suntrup,  
and Christoph Schöbel

Contents



xi

	20	 ��Innovations in the Treatment of Pediatric Obstructive  
Sleep Apnea�����������������������������������������������������������������������������������   339
Allan Damian and David Gozal

	21	 ��Hypoglossal Nerve Stimulation Therapy �����������������������������������   351
Philipp Arens, Toni Hänsel, and Yan Wang

	22	 ��Mandibular Advancement Splint Therapy���������������������������������   373
Anna M. Mohammadieh, Kate Sutherland,  
Andrew S. L. Chan, and Peter A. Cistulli

��Index�������������������������������������������������������������������������������������������������������   387

Contents



131

8Conventional Machine Learning 
Methods Applied to the Automatic 
Diagnosis of Sleep Apnea

Gonzalo C. Gutiérrez-Tobal, Daniel Álvarez, 
Fernando Vaquerizo-Villar, Verónica Barroso-
García, Javier Gómez-Pilar, Félix del Campo, 
and Roberto Hornero

Abstract

The overnight polysomnography shows a 
range of drawbacks to diagnose obstructive 
sleep apnea (OSA) that have led to the search 
for artificial intelligence-based alternatives. 
Many classic machine learning methods have 
been already evaluated for this purpose. In this 
chapter, we show the main approaches found 
in the scientific literature along with the most 
used data to develop the models, useful and 
large easily available databases, and suitable 
methods to assess performances. In addition, a 
range of results from selected studies are pre-

sented as examples of these methods. Very 
high diagnostic performances are reported in 
these results regardless of the approaches 
taken. This leads us to conclude that conven-
tional machine learning methods are useful 
techniques to develop new OSA diagnosis 
simplification proposals and to act as bench-
mark for other more recent methods such as 
deep learning.

Keywords

Sleep apnea · Machine learning · Sleep Heart 
Health Study · Childhood 
Adenotonsillectomy Trial · Classification · 
Regression · Biomedical signal processing · 
Airflow · Blood oxygen saturation · 
Electrocardiogram

8.1	� Introduction

The technical complexity, costs, and logistic-
associated problems in the diagnosis of obstruc-
tive sleep apnea (OSA) have driven the scientific 
community to search for new simpler and auto-
matic alternatives to standard polysomnography 
(PSG) (Ghegan et  al., 2006). One of the most 
common and ambitious approximations to 
achieve this goal has been the implementation of 
systems or algorithms based on the study of a 
reduced set of information from the PSG. Usually, 
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the automatic analysis of only a very small set of 
signals – out of a maximum of 32 recorded dur-
ing PSG – has been conducted, with the investi-
gation on a single one being a very frequent 
approach (Uddin et  al., 2018; Mendonça et  al., 
2019; Gonzalo C Gutiérrez-Tobal et al., 2021c). 
In this regard, overnight blood oxygen saturation 
(SpO2), airflow (AF), and electrocardiogram 
(ECG) are among the most analyzed signals 
(Uddin et  al., 2018; Mendonça et  al., 2019; 
Gutiérrez-Tobal et al., 2021c).

Since the beginning of the twenty-first cen-
tury, machine learning techniques have gained an 
increasing role when improving the performance 
of automatic health-related diagnostic tools, and 
OSA has not been an exception. A three-step 
methodology, the so-called feature engineering 
approach, has been traditionally applied to the 
problem (Vaquerizo-Villar et  al., 2021). This 
strategy begins with the “feature extraction” 
stage, in which the data  – usually an overnight 
signal  – are analyzed following one or several 
complementary analytical techniques, such as 
spectral, non-linear, or time-frequency methods. 
The purpose of this step is to characterize the sig-
nal or signals under study, so that the original raw 
or pre-processed data becomes information of 
interest for the problem. Then, an optional but 
useful automatic “feature selection” stage is con-
ducted to ensure that all the information extracted 
in the previous step is as relevant for your prob-
lem and as complementary to each other as pos-
sible (Guyon & Elisseeff, 2003). The third stage 
is what involves machine learning. It could be 
termed simply “machine learning” stage or, 
depending on the context, “classification” stage, 
“regression” stage, or, in a more general way, 
“pattern recognition” stage (Bishop, 2006).

Certainly, the latest deep learning methods are 
able to avoid the two first stages in the above-
described feature engineering approach (Ian 
et al., 2016). However, many traditional methods 
are still used nowadays in the context of OSA 
diagnosis and constitute a valid and very useful 
benchmark to compare the results obtained with 
any new approximation to the problem. 
Accordingly, this chapter aims at exposing the 
interested readers to a set of conventional 

machine learning tools that have proven their 
usefulness to help in the automatic OSA 
diagnosis. As shown in the next sections, it is not 
a minor challenge to outperform some of these 
methods, so any new algorithm must demonstrate 
that demanding an extra effort, on either data or 
computation, is justified.

This chapter continues with a data section, 
which is dedicated to briefly present the informa-
tion traditionally analyzed in the OSA diagnosis 
simplification. Then, a methods section explains 
the two main machine learning approaches (clas-
sification and regression) that have shown useful-
ness in this problem. It includes introducing some 
specific examples used in OSA context along 
with a brief explanation on their rationale, as well 
as appropriate references where the readers will 
be able to gain insight into these methods. Next, 
a results section shows some of the highest per-
formances achieved using them. Finally, the 
“Discussion and Conclusions” section analyzes 
the most important information included in this 
chapter.

8.2	� Data Analyzed 
in the Simplification of Sleep 
Apnea Diagnosis

Several chapters of this book are specifically 
devoted to describing useful sources of informa-
tion in the context of sleep apnea. Therefore, this 
section is only a short introduction on those that 
have been more frequently used along with 
machine learning approaches. These include 
some overnight biomedical signals recorded dur-
ing PSG and other clinical and demographic data. 
In addition, we present some popular public data-
bases that have been used in dozens of different 
studies to gain insight into sleep apnea in both 
adults and children.

8.2.1	� Typical Overnight Biomedical 
Signals

AF, SpO2, and ECG (including the ECG-derived 
heart rate variability or HRV) have been exten-

G. C. Gutiérrez-Tobal et al.
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sively analyzed in the context of simplifying 
OSA diagnosis in the last decades (Uddin et al., 
2018; Mendonça et  al., 2019; Gutiérrez-Tobal 
et al., 2021c). Usually, the recordings are acquired 
during the night with the same equipment used in 
the PSG, but there exist a substantial number of 
scientific studies using devices specifically dedi-
cated to acquiring each signal alone. In addition, 
the most common approach has focused on the 
analysis of single-channel signals, but some stud-
ies also analyzed the usefulness of automatically 
combining the information from two or more of 
them.

8.2.1.1	� Airflow (AF)
As explained in dedicated chapters of this book, 
one of the most important indicators of the pres-
ence and severity of OSA is the apnea-hypopnea 
index (AHI) (Iber et al., 2007; Berry et al., 2012, 
2017). AHI accounts for the number of apnea – 
complete cessation of the respiratory cycle – and 
hypopnea events, significant reduction of the 
respiratory amplitude, per hour of sleep (Berry 
et  al., 2012). These qualitative definitions of 
apneas and hypopneas are detailed in the rules for 
scoring respiratory events published and updated 
by the American Academy of Sleep Medicine 
(Iber et  al., 2007; Berry et  al., 2012, 2017). A 
reduction of 90% in AF is mandatory to annotate 
an apnea event (Berry et  al., 2012), showing a 
duration of a minimum of two respiratory cycles 
in pediatric patients and 10 seconds in adults. In 
the case of hypopneas, a 30% drop in AF suffices, 
but the event needs to be accompanied by either a 
3% drop in the SpO2 signal or an arousal (Berry 
et al., 2012). The minimum duration requirement 
of the AF drop is also two respiratory cycles for 
children and 10 seconds for adults. According to 
these definitions, in which AF plays a key role, 
the study of this signal is a natural choice to 
search for simpler OSA diagnostic alternatives.

When scoring these respiratory events, it is 
necessary to consider that apneas must be counted 
using an oronasal thermal sensor, whereas hypop-
neas are annotated using a nasal pressure sensor 
(Berry et al., 2012). This is because of the com-

plementary performances of these two kinds of 
probes when detecting each of the event types 
(Bahammam, 2004). This also needs to be con-
sidered when using machine learning techniques 
that only focus on detecting apneas and hypop-
neas. However, in machine learning approaches 
not conducting event detection, but full charac-
terization of the overnight AF signal, recent stud-
ies have shown similar performances using 
single-channel AF approaches regardless if ther-
mal or nasal pressure sensors were used 
(Gutiérrez-Tobal et  al., 2013; Gutierrez-Tobal 
et al., 2016).

8.2.1.2	� Blood Oxygen Saturation 
(SpO2)

Blood oxygen drops – or desaturations – are typi-
cal effects caused by apneic events (Iber et  al., 
2007; Berry et al., 2012, 2017). Actually, we have 
already shown that 3% desaturations are directly 
involved in the hypopnea definition. Additional 
important advantages need to be considered that 
have led SpO2 to be probably the most analyzed 
and successful signal when simplifying OSA 
diagnosis, in both adults and children. The first 
one is that it is easily acquired using a single-
channel pulse oximetry placed on a finger (or a 
toe in babies). This is very comfortable compared 
to all the channels required to conduct a full 
PSG. As a result, the associated portable technol-
ogy is highly developed, which facilitates to 
move the diagnostic test to patients’ homes. A 
second advantage is that the overnight blood oxy-
gen saturation gathers not only the information 
regarding the apneic events but also the health 
prognosis associated with the condition. In this 
regard, 3% and 4% oxygen desaturation indices 
(ODI3 and ODI4), cumulative time under 90% of 
saturation (CT90), or, more recently, hypoxic 
burden have been linked to different negative 
health consequences in OSA presence 
(Azarbarzin et  al., 2019; Karhu et  al., 2021). 
Finally, as shown in the next sections, the results 
reached when applying machine learning meth-
ods to SpO2 are among the highest in the related 
scientific literature.

8  Conventional Machine Learning Methods Applied to the Automatic Diagnosis of Sleep Apnea
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8.2.1.3	� Electrocardiogram and Heart 
Rate Variability (ECG/HRV)

The natural cardiorespiratory coupling is one of 
the main reasons behind the study of ECG to help 
simplify OSA diagnosis. This coordination has 
been found to increase during the night in the 
presence of sleep apnea (Riedl et al., 2014), being 
one of its expressions the occurrence of a clear 
bradycardia/tachycardia pattern following the 
apneic events (Penzel et al., 2003). Moreover, the 
ECG was one of the first biomedical signals stud-
ied, and it is still one of the most analyzed in dif-
ferent health contexts, which very often provides 
a comfortable scientific knowledge background 
on which to justify the interpretations of eventual 
results (Acharya et al., 2006). Similarly, OSA in 
adults is known to be significantly associated 
with cardiovascular morbidity (Newman et  al., 
2001). Together, these aspects have led to an 
intensive scientific activity regarding the simpli-
fication of OSA diagnosis based on ECG infor-
mation (Penzel et al., 2002). Particularly common 
has been the investigations on HRV, which offers 
a nexus between OSA and the autonomic nervous 
system (Acharya et  al., 2006). An additional 
advantage of the HRV information is that it can 
be surrogated in some contexts by the pulse rate 
variability signal (PRV) (Gil et al., 2010), which 
can be easily obtained from a pulse oximeter.

8.2.2	� Other Sources of Information

The clinical analysis of PSG is the result of the 
examination of a range of up to 32 biomedical 
channels. Consequently, it is not surprising that 
several approaches explored the combination of 
the information from two or three of the above-
mentioned biomedical signals along with the use 
of machine learning techniques (Garde et  al., 
2014; Álvarez et al., 2020; Jiménez-García et al., 
2020). In addition, other single- or combined-
channel approaches have been evaluated. In this 
regard, the use of overnight snoring sounds (Solà-
Soler et  al., 2012), thoracic and/or abdominal 
movements (Lin et al., 2017), photoplethysmog-
raphy (Gil et al., 2010; Lázaro et al., 2014), or the 
electroencephalography (Gonzalo C.  Gutiérrez-

Tobal, Gomez-Pilar, et al., 2021b), among others, 
have been also explored with promising results.

Moreover, machine learning has been also 
used with data other than those from 
PSG.  Demographic, social, clinical, and 
anthropometric variables have been also used as 
source of information to train machine learning 
models with ability to diagnose OSA (El-Solh 
et  al., 1999; Skotko et  al., 2017; Gonzalo C 
Gutiérrez-Tobal et al., 2021c). These have been 
used most often combined within them and with 
the information obtained from the PSG, such as 
overnight biomedical signals.

8.2.3	� Important Databases

Large and commonly used databases are very 
useful both to properly train and validate the 
machine learning models and to share a reference 
to which compare the performance from different 
methods. Unfortunately, freely available large 
databases are very uncommon in OSA context, if 
there exist. However, the National Research 
Sleep Resource offers several very large sleep-
related databases with only minor requirements 
to be accomplished. Here, we briefly introduce 
two of them that have been used in dozens of 
OSA-related studies from adults and children, 
namely, the Sleep Heart Health Study (SHHS) 
database and the Childhood Adenotonsillectomy 
Trial (CHAT) database, respectively.

8.2.3.1	� Sleep Heart Health Study 
(SHHS)

The SHHS was originally designed to evaluate 
whether OSA is an independent risk factor for the 
development of cardiovascular morbidity in 
adults (Newman et al., 2001). The database com-
prises at-home conducted PSGs from 5804 indi-
viduals older than 40 years who were recruited 
from several previous cohorts aimed at evaluat-
ing cardiovascular risks (Quan et al., 1997). It is 
divided into SHHS1, with a first round of sleep 
data and recordings from all the participants, and 
SHHS2, with a follow-up at-home PSG con-
ducted on 2647 participants 5  years later. 
Accordingly, longitudinal studies are possible 
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when using this database. In total, 8451 full PSGs 
are available to use it as source of information in 
machine learning-based studies, including anno-
tations such as respiratory events or sleep stages, 
along with a wide range of clinical, social, and 
anthropometric variables (Quan et  al., 1997; 
Newman et al., 2001).

8.2.3.2	� Childhood Adenotonsillectomy 
Trial (CHAT)

The aim of the CHAT randomized study was to 
analyze the effects of a treatment based on the 
removing of tonsils and adenoids in a cohort of 
OSA-affected children (Marcus et al., 2013). To 
assess these effects, PSGs from 1447 children 
between 5 and 9 years were conducted, from 464 
who were randomized to adenotonsillectomy 
treatment (206 children) or the alternative watch-
ful waiting with supportive care (198 children) 
(Marcus et al., 2013). Accordingly, these partici-
pants underwent a baseline PSG and a follow-up 
PSG 7 months later, once completing the treat-
ment or the alternative. A wide range of clinical, 
sociodemographic, cognitive, and anthropomet-
ric variables is also available (Marcus et  al., 
2013). As in the case of SHHS, the follow-up 
conducted on the children allows for longitudinal 
studies taking into account that there is a thera-
peutic intervention between the two PSGs. In 
addition to the randomized children, the PSGs 
from the non-randomizing are also available to 
develop the machine learning approaches. 
However, the set of additional variables is dra-
matically reduced compared to the randomized 
set.

8.3	� Methods: Classic Machine 
Learning Approaches 
in Sleep Apnea Diagnosis

In accordance with the purpose of automatically 
diagnosing OSA, supervised learning is the most 
common strategy followed in the scientific litera-
ture. Particularly, both classification and regres-
sion approaches have been frequently 
implemented. OSA presence and severity are 
routinely categorized by using AHI thresholds in 

clinical practice, which leads to classification 
methods. Moreover, AHI can be also directly 
estimated, thus leading to regression approaches. 
In this section, we also introduce the ways in 
which the performance of the OSA-related 
machine learning methods should be assessed for 
both classification and regression.

8.3.1	� Classification

There are two typical ways to implement classifi-
cation approaches in OSA diagnosis context: 
binary classification and multiclass classification. 
In addition, these may have different purposes. 
On the one hand, classification may focus on 
directly assigning subjects into two (presence vs. 
absence of OSA) or more (presence and severity 
of OSA) categories. This should be the final goal 
of any automatic diagnostic approach. On the 
other hand, however, classification may also 
focus on detecting apneic events, and this can be 
also implemented as binary classification (apneic 
vs. normal signal segments) or multiclass classi-
fication (apneas/hypopneas/normal or obstructive 
apneas/central apneas/normal, etc.).

8.3.1.1	� Binary Classification
Over the years, the clinicians have focused on 
AHI thresholds to assess whether a person suffers 
from OSA. Ten and 15 events per hour (e/h) have 
been commonly used in adults, and 1 e/h, 3 e/h, 
and 5 e/h in children, the exact cut-off evolving 
as the corresponding medical associations pro-
posed new rules (Iber et  al., 2007; Berry et  al., 
2012, 2017). In accordance with these thresholds, 
one of the machine learning approaches has 
focused on automatically detecting the presence 
of the illness, that is, classifying subjects into 
OSA positive (above or equal the AHI cut-off) or 
OSA negative (below the AHI cut-off). Different 
classic machine learning methods have been used 
to implement this approach. Linear discriminant 
analysis (LDA) is one of the most typical classi-
fication procedures (Bishop, 2006) and has been 
evaluated in both adults and children in OSA 
context. LDA assumes a linear relationship 
between the predictors (variables used as the data 
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to predict OSA) and the target (the variable con-
taining the OSA-positive and OSA-negative 
labels). Despite its relatively simplicity, LDA has 
reached promising results when discriminating 
OSA-positive and OSA-negative patients using 
information from SpO2 (Marcos et  al., 2009), 
SpO2  +  PRV (Garde et  al., 2014), and HRV 
(Martín-Montero et  al., 2021). Logistic regres-
sion (LR) (Hosmer & Lemeshow, 1989) is a stan-
dard in binary classification and has been also 
evaluated with SpO2 (Marcos et al., 2009; Álvarez 
et al., 2010, 2013) and AF (Barroso-García et al., 
2017), in both adults and children. LR uses the 
logistic formulae to transform the output result-
ing from a linear regression into a non-linear pos-
terior probability (Hosmer & Lemeshow, 1989), 
that is, given the predictors, the probability of 
belonging to the OSA-positive class – as defined 
by the AHI cut-off used. Accordingly, LR avoids 
the limitation of the linear relationship 
assumption.

This limitation can be also minimized with 
more complex and modern methods such as arti-
ficial neural networks (ANNs) and support vector 
machines (SVMs) (Bishop, 2006). SVMs are 
machine learning algorithms that transform the 
data into a higher-dimensional space so that the 
distance between data points with different 
labels – in this case, OSA positive and negative – 
is maximized (Bishop, 2006). This is equivalent 
to choosing a decision boundary between classes 
for which the distance to the closest data point, 
the so-called margin, is maximized (Bishop, 
2006). Accordingly, the decision boundary is 
defined by several of these data points termed 
support vectors. Some examples of SVM binary 
classification in OSA context can be found 
applied to SpO2 (Álvarez et al., 2013) and ECG 
(Khandoker et al., 2009; Chen et al., 2015). On 
the other hand, several ANNs have been evalu-
ated in OSA binary classification approaches 
(Marcos et  al., 2008; Morillo & Gross, 2013), 
being multi-layer perceptron (MLP) one com-
mon approach that has become one of the most 
successful machine learning methods in any 
problem. ANNs are algorithms inspired in the 
biological neural networks, such as the human 
brain. Accordingly, MLP arrange computing 

units, also known as perceptrons or neurons, in 
several massively connected layers: input, hid-
den, and output (Bishop, 2006). The input layer is 
composed of one neuron for each feature or vari-
able used as predictor. These input neurons are 
connected through weights with all the neurons 
in the next layer, which is part of the hidden lay-
ers. There can be as many hidden layers as the 
designers may consider appropriate. However, 
one single hidden layer is known to be able to 
provide universal approximations (Bishop, 
2006). This means that, provided that your data 
gather information enough for your problem, one 
single hidden layer should suffice to model the 
function that transform your predictors into your 
desired target. In any case, both the number of 
hidden layers and the number of neurons per hid-
den layer are hyperparameters of the model to be 
tuned during the training process. Finally, each 
neuron of the last hidden layer – if there is more 
than one – is connected to all the neurons in the 
output layer, which in the case of the binary clas-
sification approach is a single neuron that offers 
the posterior probability of belonging to the 
OSA-positive class. During the training process 
of the MLP (and other ANNs), all the weights 
connecting all the neurons of the network are 
optimized using the well-known backpropaga-
tion algorithm (Bishop, 2006), which is one of 
the most remarkable milestones of machine 
learning. Another feature of ANNs is that each 
neuron has an associated activation function that 
combines the outputs – including weights – from 
previous layers into a single output, being logis-
tic or softmax functions typically used in classifi-
cation and linear functions in regression problems 
(Bishop, 2006).

8.3.1.2	� Multiclass Classification
In recent years, as more sleep data has been avail-
able for scientific purposes, the focus of OSA 
diagnosis simplification has gone from binary 
classification to the determination of both OSA 
presence and severity, which naturally fits multi-
class classification. There exist AHI thresholds 
for the definition of OSA severity categories in 
both adults and children, being the latter much 
more restrictive. Nowadays, the most clinically 
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used ones are probably as follows (Flemons 
et al., 1999; Tan et al., 2014, 2017):

•	 Adults: no OSA if AHI < 5 e/h; mild OSA if 5 
e/h ≤ AHI < 15 e/h; moderate OSA if 15 e/h ≤ 
AHI < 30 e/h; and severe OSA if 30 e/h ≤ AHI

•	 Children: no OSA if AHI < 1 e/h; mild OSA if 
1 e/h ≤ AHI < 5 e/h; moderate OSA if 5 e/h ≤ 
AHI < 10 e/h; and severe OSA if 10 e/h ≤ AHI

As in the case of binary classification, several 
multiclass approaches have been already evalu-
ated in OSA context. LDA and LR models were 
also used in the multiclass problem along with 
SpO2 data (Gutiérrez-Tobal et al., 2019), the lat-
ter needing an additional “one-vs.-all” strategy to 
upgrade the binary approach. MLP and other 
ANNs have been also developed with both SpO2 
data (Gutiérrez-Tobal et  al., 2019), SpO2  +  AF 
data (Barroso-García et  al., 2021), and clinical, 
anthropometric, and demographic variables 
(Skotko et  al., 2017). In this regard, from an 
implementation point of view, only minor 
changes in the architecture are needed to develop 
multiclass ANNs instead of binary ones, such as 
equaling the number of output neurons to the 
number of classes. The interested readers should 
notice, however, that data requirements usually 
increase as more classes are targeted and that 
multiclass overall performance tends to be lower 
than the binary one.

Ensemble learning methods have been also 
used to address the multiclass problem. As 
deduced from its name, this family of machine 
learning methods conduct the classification task 
as the result of the combination of the classifica-
tion of several single models, typically termed 
“base classifiers.” These can be any of the above-
mentioned methods, but simpler ones are pre-
ferred to increase the generalization ability of the 
final classification (Witten et al., 2011). Bagging 
ensemble learning algorithms have been tested, 
including the remarkable random forest (RF) 
method used with SpO2 data (Deviaene et  al., 
2019). Bagging is the acronym for “bootstrap 
aggregating,” which indicates the basic method-
ology behind this method. In essence, the origi-
nal data is subsampled with replacement to form, 

typically, a high number of bootstrap replicates 
of these data (Kuncheva, 2014). A different clas-
sifier is trained for each of these replicates, and 
its decision is only one vote for the final classifi-
cation task, which is conducted based on the 
decisions from all classifiers. RF follows this 
elementary scheme using decision trees as base 
classifiers. In addition, RF includes more sources 
of variability in the training of its classifiers by 
randomly varying the features and the decision 
trees hyperparameters involved within each boot-
strap iteration (Kuncheva, 2014). Boosting 
ensemble learning methods have been also 
applied in OSA-related multiclass tasks, as is the 
case of the well-known AdaBoost (for “adaptive 
boosting”), used with SpO2 (Gutiérrez-Tobal 
et  al., 2019), AF (Gutierrez-Tobal et  al., 2016), 
and SpO2  +  AF (Jiménez-García et  al., 2020; 
Barroso-García et al., 2021). In contrast to bag-
ging, boosting methods are iterative algorithms 
in which each new classifier is trained using the 
same data, but accounting for the errors made by 
previous classifiers. In this regard, misclassified 
data points in previous iterations are weighted to 
give them more importance, thus increasing the 
chances to be rightly classified in the current and 
next iterations (Witten et al., 2011). Another dif-
ference with bagging is that the vote of each clas-
sifier is dependent on its error so that the ones 
with higher performance contribute more to the 
final decision (Witten et al., 2011).

8.3.2	� Regression

The automatic AHI estimation is another popular 
approach when simplifying OSA diagnosis. 
Instead of training machine learning methods to 
directly assign subjects (or epochs) into different 
OSA severity categories (or events), this strategy 
looks for assigning an AHI to each subject. As the 
clinical use of AHI thresholds has evolved over 
the years, and there are still some limitations 
regarding the OSA severity categories and the 
actual health state of the patients (Penzel et al., 
2015; Korkalainen et al., 2019), the AHI estima-
tion has the advantage of being relatively trans-
parent to future changes in thresholding criteria. 
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There exists an extensive literature focused on 
regression methods and OSA diagnosis simplifi-
cation. They focus on both simpler algorithms, 
such as multiple linear regression applied to clin-
ical data (Wu et  al., 2017) and more complex 
methods already mentioned such as MLP or 
SVM applied to clinical (El-Solh et  al., 1999), 
SpO2 (Marcos et al., 2012; Hornero et al., 2017; 
Rolón et al., 2017; Xu et al., 2019; Rolon et al., 
2020), AF (Álvarez et al., 2020; Barroso-García 
et al., 2021), and SpO2 + AF data (Álvarez et al., 
2020; Barroso-García et  al., 2021). Moreover, 
boosting ensemble learning methods have been 
also evaluated, such as least-square boosting 
(LSBoost) using SpO2 information (Gonzalo 
C. Gutiérrez-Tobal, Álvarez, et al., 2021a). In this 
regression task, rather than focusing on previ-
ously misclassified data points, the boosting 
algorithm LSBoost looks for computing the 
remaining residual error (between the actual and 
the estimated AHI) that was not able to be esti-
mated in previous iterations (Bühlmann & 
Hothorn, 2007).

8.3.3	� Machine Learning 
Performance Assessment 
and Validation

8.3.3.1	� Underfitting and Overfitting
Machine learning faces two main issues regard-
less of the problem and the approach considered. 
The first one, underfitting, relates to the inability 
of the method to learn the function it is intended 
for. Two aspects are often behind underfitting, 
unsuitable learning algorithm or unsuitable input 
information, the latter caused by either data scar-
city or low quality. However, provided that a 
proper study design has been conducted, under-
fitting is not the main drawback that machine 
learning may confront. Very often, overfitting is a 
much more challenging aspect. Overfitting refers 
to an excessive fitting of the machine learning 
algorithm to the training sample, thus resulting in 
poor generalization ability when evaluated in 
new (test) data (Bishop, 2006). Most of machine 
learning methods can be affected by overfitting. 
Accordingly, several strategies can be followed 

to minimize this effect. Increasing the size of the 
training set is a common option but it is not 
always possible. More usual are the methods 
based on “regularization.” Under this name, there 
are a wide range of strategies based on adding a 
penalty term to the learning of the method during 
the training process, so that it can model a more 
general function instead of adjusting to the par-
ticularities of the training data (Bishop, 2006). 
The interested reader should be aware that this is 
not an issue that can be obviated, especially when 
using relatively complex methods such as ANNs 
or SVM.  Even the ensemble learning methods, 
which have a natural well-known robustness 
against overfitting (Witten et al., 2011), can ben-
efit from using regularization techniques 
(Bühlmann & Hothorn, 2007).

8.3.3.2	� Validation Strategy
There exists an intimate relationship between 
overfitting and the way in which the machine 
learning models should be validated. As the risk 
for overfitting exists, evaluating the models using 
training data would most probably lead to over-
optimistic performance results (Bishop, 2006; 
Witten et  al., 2011). For the same reason, the 
hyperparameters needed for some of the above-
mentioned methods  – including the regulariza-
tion term – should be chosen based on the results 
from an independent dataset. Finally, a reliable 
performance should be derived from a third pre-
viously unseen (test) dataset. This would be a 
classic and robust validation strategy, which 
would include a training group for model param-
eter estimation, a validation group for hyperpa-
rameter tuning, and a test group for assessing the 
performance of the final model.

Ideally, there should be a validation group for 
each freedom degree of the machine learning 
method used, including hyperparameters and 
possible previous feature selection stages. 
However, data scarcity is very common in health-
care problems, and the use of only three groups 
(training/validation/test) is usually accepted. 
Several cautions need to be considered when dis-
tributing the data among these three groups. First, 
the more the data in your training set, the better 
the chances for developing a more accurate 
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model. Second, the data distribution of the vali-
dation and test groups should be as similar as 
possible. This means that if your test group has 
50% OSA-positive and 50% OSA-negative sub-
jects, your validation group should have similar 
proportions. Third, machine learning methods 
tend to favor the correct classification of the 
majority classes in classification problems, as 
well as the range of values more represented in 
regression problems. Consequently, provided 
that the classification of all your classes (or the 
estimation within all range of values) is equally 
important, it is also advisable that your training 
data is well-balanced. Finally, commonly used 
proportions in data distribution include 60–80% 
for training and 10–20% for each of the valida-
tion and test groups. However, in the rare cases in 
which data availability is not a problem, these 
proportions can vary if the other advice is 
considered.

A final consideration is needed regarding data 
scarcity. As mentioned above, healthcare-related 
machine learning problems tend to lack data, and 
OSA diagnosis simplification is not an exception 
(Gonzalo C Gutiérrez-Tobal et  al., 2021c). 
Accordingly, split data in three independent 
groups is not often possible. A usual solution is to 
emulate one of the groups (typically the valida-
tion or the test group) using statistical methodol-
ogies such as bootstrapping, jackknife, 
leave-one-out cross-validation, or k-fold cross-
validation (Bishop, 2006; Witten et al., 2011).

8.3.3.3	� Performance Statistics
Performance assessment in binary problems is 
based on different combinations of the number of 
true positive (TP), false negative (FN), true nega-
tive (TN), and false positive (FP) subjects or 
events. In this sense, sensitivity (Se, also known 
as recall), specificity (Sp), and accuracy (Acc) 
are important metrics to evaluate the percentage 
of positive, negative, and total number of sub-
jects/events rightly classified, respectively:

	
Se

TP

TP FN
�

�
�100

	
(8.1)

	
Sp

TN

TN FP
�

�
�100

	
(8.2)

	
Acc

TP TN

TP TN FN FP
�

�
� � �

�100.
	

(8.3)

Useful statistics are also positive and negative 
predictive values (PPV, also known as precision, 
and NPV), which account for the percentage of 
success when assigning a data point within one 
class (e.g., positive) or the another (e.g., 
negative):

	
PPV

TP

TP FP
�

�
�100

	
(8.4)

	
NPV

TN

TN FN
�

�
�100.

	
(8.5)

Moreover, positive and negative likelihood 
ratios (LR+ and LR−) account for the ratios of 
the true positive rate to the false positive rate and 
the false negative rate to the true negative rate, 
respectively. In the next definitions, Se and Sp are 
also taken as rates instead of percentages:

	
LR

Se

Sp
� �

�1 	
(8.6)

	
LR

Se

Sp
� �

�1
.
	

(8.7)

These metrics, however, are affected by class 
imbalance to some extent. Therefore, they are 
often complemented with the receiver-operating 
characteristics (ROC) analysis (Zweig & 
Campbell, 1993). ROC is based on a plot repre-
senting Se vs. 1-Sp (in unit proportion) com-
puted for a range of possible decision thresholds 
from the same output, which in the case of 
binary machine learning could be the posterior 
probability of belonging to the class of interest. 
One possible application of this analysis is the 
estimation of a suitable threshold to act as a 
trade-off between Se and Sp (Zweig & 
Campbell, 1993), i.e., the threshold that mini-
mizes biases due to class imbalance. Other pos-
sible uses include to measure the overall 
performance of a model and, in turn, the com-
parison of the performance of different models. 
In this sense, the perfect performance would be 
achieved by a machine learning model that 
reaches the point of the plot Se = 1 and 1-Se = 0. 
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To properly quantify the overall performance, 
however, it is common to estimate the area 
under the ROC curve (AROC), which may range 
between 0 and 1, showing AROC = 0.5 the less 
discriminative power (Zweig & Campbell, 
1993).

All the abovementioned metrics can be also 
used for evaluating the performance of a multi-
class classification approach in each of the 
thresholds used to determine OSA severity cate-
gories. In addition, specific statistics can be used 
to assess the overall performance in the multi-
class problem. Cohen’s kappa, which can be also 
used in binary classification, is one of the most 
helpful as it measures the agreement between the 
actual and the estimated class by correcting it by 
the agreement occurred by chance (Witten et al., 
2011). Values closer to 1 (or 100%) mean higher 
agreement, whereas values closer to 0 indicate 
lower agreement. Acc adapted to the number of 
classes is another useful metric to evaluate multi-
class performance.

As the definition of OSA severity classes, 
either binary or multiclass, is conducted based on 
AHI, the corresponding assessing metrics can be 
also used to evaluate regression approaches pro-
vided that the estimated AHI is properly trans-
formed into the OSA-related classes. Moreover, 
there exist specific analytical tools to evaluate the 
similarity between the estimated and the actual 
AHI. One typical example is the intraclass cor-
relation coefficient (ICC) (Chen & Barnhart, 
2008), which measures the agreement between 
continuous variables. Accordingly, values closer 
to 1 indicate higher degree of agreement, whereas 
values closer to 0 mean lower degree of agree-
ment. However, contrary to other statistics such 
as Pearson’s correlation, ICC accounts for sys-
tematic errors to estimate agreement (Chen & 
Barnhart, 2008). Finally, a typical and very use-
ful method to graphically assess the agreement in 
AHI estimations is the Bland-Altman plot (Bland 
& Altman, 1986). This method shows the differ-
ence between the estimated and the actual con-
tinuous variable against the mean of the two 
values (Bland & Altman, 1986). In addition, it 
provides possible bias for the estimation (the 
mean of the differences of all data points) and the 

limits of the agreement (mean  ±  1.96*standard 
deviation of the differences of all data points). 
These limits are useful to evaluate whether the 
estimation can be used as a surrogate for the 
actual continuous variable (Giavarina, 2015).

8.4	� Selected Results 
from the Literature

Table 8.1 displays some results selected from the 
literature regarding classic machine learning per-
formance in OSA diagnosis simplification. 
Showing as many approaches as possible has 
been one important objective when selecting the 
results to be included in the table. Accordingly, 
there are studies focused on adults and children, 
using different overnight signals (alone and com-
bined) and clinical data, and up to eight different 
machine learning methods. Validation strategies 
also vary among studies. In addition, these works 
are divided into the three main approaches 
explained above: binary classification, multiclass 
classification, and regression. The metrics 
included in the table have been chosen as a trade-
off between those reported in the studies and 
those highlighted as important in the previous 
sections. An interesting point is the range of 
methods that can be used to evaluate performance 
in each machine learning approach. Whereas 
binary classification is limited to very specific 
statistics, multiclass classification and, specially, 
regression approaches can be assessed with an 
increasing number of methods, thus providing a 
more complete picture of their performance. 
Unfortunately, not all the studies provided data to 
show or estimate all the statistics. Moreover, in 
some of the studies, the machine learning task 
focuses on the subjects, whereas in others it 
focuses on the apneic events. However, as we 
think that the most valuable approach implies to 
provide a final diagnosis, we only show those 
results that end up assigning subjects into one 
OSA class, regardless the specific purpose of the 
machine learning method.

As observed, very high diagnostic perfor-
mance can be achieved using classic machine 
learning methods. Similarly, all the data involved 
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in the studies can reach high statistics. The reader 
should notice that the results from those works 
with higher number of participants  – and more 
independent groups in the validation strategy  – 
should be initially considered as more robust. We 
kindly invite them to examine the original studies 
to evaluate whether this assumption is true. It is 
also observed that those studies focused on chil-
dren achieved lower diagnostic performances. 
The reader can also check in the literature that 
this is not an effect due to the non-systematic 
selection of the studies, but a general tendency. 
Traditionally, the study of pediatric OSA has 
gathered much less attention than adult OSA. 
Consequently, efforts, resources, and data have 
been scarce, thus resulting in lower knowledge 
compared to adult OSA. In addition, the AHI 
rules for establishing pediatric OSA are tighter. 
All these limitations have favored that there is 
still a gap between the performances reached in 
adults and children.

Among the studies, Martin-Montero et  al. 
(Martín-Montero et  al., 2021) involve the non-
randomized group of the CHAT database along 
with a private database from the University of 
Chicago, USA.  Similarly, Deviaene et  al. and 
Gutiérrez-Tobal et  al. (Deviaene et  al., 2019; 
Gonzalo C.  Gutiérrez-Tobal, Álvarez, et  al., 
2021a) involved the SHHS database. For the sake 
of simplicity, only results from 5793 subjects (the 
SHHS1 subgroup) are shown. However, the stud-
ies also reported diagnostic results from the fol-
low-up subgroup (SHHS2) with 2647 recordings 
and, in the case of Gutiérrez-Tobal et al., a high 
pre-test probability subgroup with 322 record-
ings from Hospital Universitario Rio Hortega 
from Valladolid, Spain.

8.5	� Discussion and Conclusions

In this chapter, we focused on the most typical 
classic machine learning approaches involved in 
OSA diagnosis simplification, thus setting aside 
deep learning techniques. We have shown spe-
cific machine learning methods, the data regu-
larly used with them, as well as large and easily 
available adult’s and children’s databases. We 

have also exposed useful strategies to measure 
and validate the performance of the machine 
learning methods, and we have shown a variety 
of studies in which this performance is high.

One first take-away idea to be highlighted is 
that there exists a wide range of successful 
machine learning methods applied to OSA diag-
nosis simplification. They covered both classifi-
cation (either binary or multiclass) and regression 
approaches, the latter being more easily evalu-
ated in depth. Other interesting key point is that 
many of the data from the PSG (SpO2, AF, 
ECG/HRV, etc.) gather information enough to 
obtain accurate machine learning methods, as 
reflected by the high diagnostic performances 
shown in the studies involved in Table 8.1, and in 
many others referenced within this chapter. This 
implies that those methods to be evaluated in the 
future would need to not only justify a possible 
increase in the performance but also the eventual 
rise in data requirements and computational 
costs.

The studies we chose as examples also reflect 
a lack of homogeneity in the validation strategy. 
This is an issue that is also present in the scien-
tific literature (Gonzalo C Gutiérrez-Tobal et al., 
2021c) and hinders the comparison between the 
different methods. As mentioned in the past sec-
tions, the ideal training/validation/test strategy is 
greatly influenced by data scarcity. Accordingly, 
the problem is closely related to the different 
sample sizes of the studies, which involve a num-
ber of subjects ranging from moderate (102) to 
high (5793). This underlines the need to make 
available for the scientific community large data-
bases such as CHAT and SHHS.

The previous idea is particularly important in 
the case of pediatric OSA. The gap between the 
machine learning performance in adults and chil-
dren can be partially attributed to the more 
restrictive diagnosis rules for children. However, 
large samples such as CHAT can be very useful 
to increase the knowledge of pediatric OSA and 
develop more accurate machine learning 
models.

Finally, despite the high performance shown 
in several of the studies referenced in this chap-
ter, it is very difficult to find machine learning-

8  Conventional Machine Learning Methods Applied to the Automatic Diagnosis of Sleep Apnea
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based systems implemented in real clinical 
environments. One possible reason for this issue 
is that clinicians and healthcare providers and 
managers perceive these methods as a black box, 
thus preventing them from completely relying on 
their predictions (Gonzalo C Gutiérrez-Tobal 
et al., 2021c). Accordingly, the machine learning 
designers who expect their work to be finally 
implemented will need to put extra efforts in 
explaining the decisions taken by their automatic 
models (Adadi & Berrada, 2018).

To sum up, traditional machine learning meth-
ods have proven to be very useful in the auto-
matic OSA diagnosis simplification. Accordingly, 
they are still valid options both to develop new 
proposals and to act as benchmark for future 
methods.
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