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Sleep apnea is a sleep disorder with a very high prevalence and many health 
consequences. As such it is a major health burden (Benjafield et al., 2019). 
Sleep apnea has been systematically explored only a little more than 40 years 
now (Guilleminault & Dement, 1978). Major impacts of sleep apnea are 
sleepiness and associated risks for accidents (Bonsignore et al., 2021). Major 
health impacts are cardiovascular risk and pathophysiological traits, even if 
this is currently much debated when focusing on the apnea-hypopnea index 
as the measure for sleep apnea severity (Arnaud et al., 2020). Sleep apnea is 
a disorder which is a chronic condition and can be treated successfully.

The disorders of sleep-disordered breathing have largely supported the 
growth of sleep medicine in general from a small specialty field to a major 
spectrum of disorders in the arena of medical specialties. This activity 
helped to convert the niche field of sleep research into sleep medicine, a 
clinical discipline with its own departments, its own center certification, 
physician certification, dedicated conferences, journals, and research activ-
ities. The recognition and importance have grown so much that the new 
International Classification of Disorders by WHO in its 11th version, being 
launched in 2022, has added a new section on sleep and wake disorders 
with its own range of codes. This worldwide recognition will enable the 
growth of medical education on sleep physiology, sleep pathology, and spe-
cific sleep disorders.

The diagnostic field for sleep disorders, and for sleep apnea specifically, 
is strongly linked to the development of new and recent methods, which 
allow long-term recording and analysis of physiological functions during 
sleep. Sleep and sleep apnea are not just identified by taking a single blood 
sample or by a single measurement by a physician at a visit, but sleep 
recording requires the continuous recording of biosignals. This is compa-
rable to monitoring of vital functions during anesthesia or intensive care. 
Because of this methodological challenge, biomedical engineering as well 
as new sensor and analysis technologies are closely linked to the develop-
ment of sleep apnea diagnosis. New technologies helped to a large extent 
develop new diagnostic and treatment modalities for sleep-disordered 
breathing. Sleep apnea diagnostic research is now linked to the develop-
ment of new wearables, nearables, and smartphone apps, and profits much 
from the ubiquitous development of photoplethysmography recording 
everywhere.
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Artificial intelligence is playing a very important role in analyzing sleep 
recordings and, particularly, in automatizing several of the stages of sleep 
apnea diagnosis. Since the generalization of computerized analysis in the 
1990s, automated processing of cardiorespiratory and neuromuscular signals 
from polysomnographic studies provided a number of indices able to assist 
sleep experts in the characterization of the disease (Shokoueinejad et  al., 
2017). Parameterization of the influence of apneic events on biological sys-
tem dynamics has relied on widely known techniques from the engineering 
field, such as spectral and nonlinear analysis. Currently, there is a demand for 
novel alternative metrics able to overcome the limitations of the standard 
apnea-hypopnea index concerning its low association with patient symptoms 
and outcomes (Malhotra et al., 2021). In this regard, signal processing and 
pattern recognition are going to play a key role. In addition, machine learning 
has also shown its usefulness in the last decades (Uddin et al., 2018) and, like 
many other areas in our society, sleep apnea diagnosis is rapidly entering the 
deep learning era (Mostafa et al., 2019) and big data. These new analytical 
techniques, along with the advances in health device development, are the 
main hope for reaching a reliable diagnostic paradigm shift. One that finally 
could cope with the disease prevalence, personalized interventions, and run-
away spending.

Beyond the widespread application of machine learning methods to auto-
mate polysomnography scoring and to provide sleep experts with tools for 
automated diagnosis, artificial intelligence has also the potential to signifi-
cantly improve the management of sleep apnea treatment. Recent advances in 
the framework of big data together with remote monitoring capability of 
novel treatment devices are able to promote conventional sleep medicine 
towards a real personalized medicine. Identification of refined clinical pheno-
types of patients will allow the development of precision interventions, 
enabling the quick identification of the treatment option that best fits the par-
ticular characteristics of a patient (Watson & Fernández., 2021). Similarly, 
machine learning is able to accurately model patient’s adherence from usage 
data (pressure setting, residual respiratory events, mask leaks) derived from 
portable treatment devices, improving the efficacy of available therapies 
(Goldstein et al., 2020). Thus, artificial intelligence is going to significantly 
change the management of sleep apnea treatment in the short term.

This volume gives a basis of current knowledge on sleep research, sleep 
medicine, and sleep apnea, with a strong focus on new challenges and new 
research directions in the diagnosis of sleep apnea and its treatment. The 
volume contains three sections: the first one is on physiology and pathophysi-
ology, the second one is on diagnostic advances, and the third one is on treat-
ment advances. Each chapter author was asked to not only describe the state 
of the art but also develop visions for future research as seen from their spe-
cial angle and viewpoint.

Preface



vii

As editors, we think that the volume can serve as an introduction to the 
field of sleep-disordered breathing, can serve as a basis for educating in sleep-
disordered breathing, and can immediately stimulate and trigger new research 
in physiology, clinical trials, and biomedical engineering for sensors and 
analysis methodologies.

Berlin, Berlin, Germany� Thomas Penzel
Valladolid, Spain� Roberto Hornero 
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2Covering the Gap Between Sleep 
and Cognition – Mechanisms 
and Clinical Examples

Javier Gomez-Pilar, Gonzalo C. Gutiérrez-Tobal, 
and Roberto Hornero

Abstract

A growing number of studies have shown the 
strong relationship between sleep and differ-
ent cognitive processes, especially those that 
involve memory consolidation. Traditionally, 
these processes were attributed to mechanisms 
related to the macroarchitecture of sleep, as 
sleep cycles or the duration of specific stages, 
such as the REM stage. More recently, the 
relationship between different cognitive traits 
and specific waves (sleep spindles or slow 
oscillations) has been studied. We here present 
the most important physiological processes 
induced by sleep, with particular focus on 
brain electrophysiology. In addition, recent 
and classical literature were reviewed to cover 
the gap between sleep and cognition, while 
illustrating this relationship by means of clini-
cal examples. Finally, we propose that future 

studies may focus not only on analyzing spe-
cific waves, but also on the relationship 
between their characteristics as potential bio-
markers for multiple diseases.

Keywords

Sleep · Cognition · Sleep spindles · Slow 
oscillations · Slow waves

2.1	� Why We Need to Sleep?

Surprisingly, after decades of research, there is 
still no consensus or a clear answer to this ques-
tion. This is probably not due to a lack of knowl-
edge of the sleep functions, but to the number of 
functions it performs both for the brain and for 
the whole body. Finally, after multiple studies, 
we are now able to understand some of them.
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More than 40 years ago, the famous researcher 
Allan Rechtschaffen, accepted that sleep func-
tions should be of unquestionable utility, since “if 
sleep does not serve an absolutely vital function, 
then it is the biggest mistake the evolutionary pro-
cess has ever made”. Although Rechtschaffen’s 
intuition was correct, he probably did not imagine 
the number of functions of sleep, which include 
the elimination of toxins (Xie et al., 2013), regula-
tion of glucose level (Van Cauter et al., 2008) and 
endocrine functions (van Cauter et  al., 2007), 
stimulation of immune function (Ganz, 2012), 
modulation of emotional brain processes (Walker, 
2009), or reinforcement of learning and memory 
mechanisms (Antony et  al., 2019; Fang et  al., 
2019; Fernandez & Lüthi, 2020; Schabus et  al., 
2004), among others (see the review from Assefa 
and colleagues (ZAssefa et al., 2015) for different 
theories of the sleep functions).

In this chapter, we are interested in addressing 
one of these sleep functions, in particular delving 
into the proven relationship between sleep and cog-
nition across the lifespan (Murawski et al., 2018; 
Ohayon et  al., 2004; Reynaud et  al., 2018; Yaffe 
et al., 2014), as well as its link with a large number 
of diverse pathologies (Ferrarelli & Tononi, 2017; 
Gutiérrez-Tobal et al., 2021; Vgontzas & Pavlović, 
2018; Weng et al., 2020). Accordingly, it is essen-
tial to mention sleep spindles as a mechanism that 
plays a central role in cognitive processes, such as 
memory consolidation (Fogel, Albouy, et al., 2017; 
Fogel & Smith, 2011; Fogel, Vien, et  al., 2017). 
Therefore, our main aim is to provide a synthesis of 
the role of sleep, with special focus on sleep spin-
dles, and the relationship between sleep abnormali-
ties and diverse pathologies.

2.2	� Sleep Electrophysiology

2.2.1	� Acquisition 
of the Electroencephalogram

The usual way to acquire the neuronal electrical 
signal is the use of the electroencephalogram 
(EEG). The equipment usually used is between 8 
and 64 channels, although there are already sys-

tems with more than 1000 electrodes (ref). The 
sampling frequency depends on the equipment 
but is usually not less than 128 Hz or more than 
1000 Hz. Although these are the usual character-
istics, the acquisition of the EEG during sleep is 
usually performed in specialized Sleep Units, 
where many other signs are usually acquired, 
such as those from a polysomnography (PSG) 
(Jafari & Mohsenin, 2010).

Given the great variability of acquisition char-
acteristics, the American Academy of Sleep 
Medicine (AASM) suggests minimum character-
istics for EEG acquisition during sleep (Iber 
et  al., 2007). Among them, they recommend a 
desirable sampling rate of 500  Hz, establishing 
the minimum into 200 Hz. In this way, according 
to Nyquist’s theorem, it is possible to analyze fre-
quencies up to 100 Hz. However, for clinical util-
ity a high-frequency filter of 35  Hz is also 
recommended. Additionally, electrode imped-
ance must keep under 5 KΩ and the minimum 
resolution should be 12 bits per sample.

2.2.2	� Sleep Stages and the Cyclical 
Sleep

Sleep is far from uniform. Conversely, it is essen-
tially cyclical, with cycles lasting about 90 min-
utes on average. However, the duration of each 
cycle is highly variable, increasing its duration 
throughout the night (Březinová, 1974). During a 
typical 8-hour restful sleep, there are usually 
between four to six cycles chained in a row 
(Keenan, 1999). Within these cycles, there are 
different stages of sleep that, according to the lat-
est version of the AASM guide (Iber et al., 2007), 
are divided into two main periods: rapid eye 
movement (REM) and non-rapid eye movement 
(NREM). While REM stage is not divided into 
other subphases, NREM, in turn, consists of three 
different stages: N1, N2, and N3.

It is known that the duration of these sleep 
stages is not constant with age. In particular, as 
we get older, there is an increasing percentage of 
sleep in N1 and N2 stages, while the percentage 
of time in N3 and REM is decreased, resulting in 

J. Gomez-Pilar et al.
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less restful sleep and, sometimes, increased age-
related cognitive decline (Feinsilver, 2003; 
Ohayon et  al., 2004). It seems, therefore, that 
each stage of sleep has a specific function and 
that small percentual alterations in their duration 
have a great influence in both the short and the 
long term.

If we take a closer look at what happens in 
each of the stages of sleep, we can see that each 
one has well-differentiated characteristics:

N1) Stage 1 is essentially a transition stage from 
“wake” to “sleep” states, and it usually lasts 
just one to five minutes (Březinová, 1974). 
During N1 sleep, the body starts to slow down, 
giving rise to periods of brief and sudden 
movements (hypnogogic jerks) (Vetrugno & 
Montagna, 2011). Brain activity slows down 
too, and the alpha frequencies (in adults) are 
no longer the most dominant (Iber et  al., 
2007). As sleep cycles occur, phase N1 serves 
as a reset to restart a new cycle, but an uninter-
rupted sleep may not spend much more time 
in N1 throughout the night.

N2) During N2, the body reduces its temperature, 
relaxes the muscles, and slows the heart and 
breathing rates. At the same time, eye move-
ment stops, and brain waves lower their domi-
nant frequency relative to N1 (Schönauer & 
Pöhlchen, 2018). At this time, brief bursts of 
activity, characteristic of this stage, begin to 
emerge: the sleep spindles (Schönauer & 
Pöhlchen, 2018). Among the various func-
tions of spindles (some of them are addressed 
in the next subsection), it is known that they 
help resist being woken up by external stimuli 
(Walker, 2009). Although the N2 stage can 
last from 10 to 25  minutes during the first 
sleep cycle, it lengthens as the night pro-
gresses, reaching approximately half of the 
total sleep time (Březinová, 1974).

N3) Stage 3 is also known as deep sleep. During 
this stage it is more difficult to wake someone 
up. Muscle tone, pulse, and respiratory rate 
decrease further (Diekelmann & Born, 2010). 
Something similar occurs with brain activity: 
thalamocortical neurons fall into a hyperpo-
larized state, resulting in slow waves (SW) 

between 0.5 and 4.5  Hz (i.e., delta activity) 
(Bernardi et  al., 2018). During the first few 
sleep cycles, the N3 stages typically last 
between 20 and 40  minutes. As one goes 
through the cycles, this stage gets shorter, and 
more time is spent in REM sleep instead.

REM) Paradoxically, during REM sleep, brain 
activity increases, reaching levels of complex-
ity that resemble activity during wakefulness, 
or at least N1 (Zilio et  al., 2021). The body 
experiences atony except for the eyes that 
move rapidly, reason why this stage receives 
its name. Although dreams can occur at any 
stage of sleep, they are more common and 
intense in REM sleep, which is believed to be 
related to certain cognitive functions such as 
memory, learning, and creativity (Cai et  al., 
2009). REM stages are lengthened, especially 
in the second half of the night, lasting up to an 
hour.

The cyclical repetitions of the sleep phases 
described above are chained in a repeating 
pattern, which is usually represented by a hyp-
nogram (see Fig. 2.1). Although with certain 
limitations, there are various automatic meth-
ods to identify the sleep phases from the EEG 
signal (Boostani et al., 2017), so it is common 
in clinical practice that this identification is 
not carried out manually (Aboalayon et  al., 
2016).

2.2.3	� The Nested Hierarchy 
of Electrophysiological Waves 
during Sleep

In each of the sleep stages, there is a dominant 
oscillation activity easily measurable by means 
of the EEG signal. This dominant signal is funda-
mentally slower than the EEG during wakeful-
ness. Nonetheless, there is a complex 
microarchitecture, comprising both slow and fast 
non-stationary burst events (Gorgoni et al., 2020). 
Thus, while some networks such as visual, audi-
tory, somatomotor, and the default mode remain 
almost unchanged during sleep relative to wake-
fulness (Larson-Prior et al., 2009), different brain 
waves, such as slow oscillations (SOs), spindles 

2  Covering the Gap Between Sleep and Cognition – Mechanisms and Clinical Examples
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Fig. 2.1  Hypnogram. Representation of sleep stages as a 
function of time. This hypnogram shows typical sleep 
architecture with the majority of slow-wave sleep (N3) in 

the first half of the night, while REM sleep majority is in 
the last half, with progressive longer durations

and ripples, are generated through activation of 
rhythmic neuronal thalamocortical connections. 
These waves do not occur in isolation, but are 
elicited within a well-defined nested hierarchy, 
where SOs are thought to have a relevant role in 
their organization (Gomez-Pilar et  al., 2021; 
Staresina et al., 2015).

SOs are oscillations around 0.75  Hz that, 
during their up-state, facilitate the production 
of spindles (Ngo et  al., 2019; Staresina et  al., 
2015), which are easily recognized as burst 
between 11 and 16  Hz (Antony et  al., 2019), 
i.e., signa band (see Fig. 2.2 for an example of 
the nesting between SOs and spindles). In turn, 
sleep spindles facilitate the firing of ripples in 
the hippocampus, high frequency bursts around 
100 Hz (Axmacher et al., 2008; Staresina et al., 
2015).

Although the function of these neuronal trig-
gering chain reactions is still not fully under-
stood, the dynamic interaction of these waves is 
believed to be closely related to the exchange of 
information between distributed cortical regions, 
promoting various cognitive functions (Axmacher 
et  al., 2008; Ngo et  al., 2019; Staresina et  al., 
2015).

2.3	� Memory Consolidation – 
The Role of Sleep Spindles

Memory processes begin with the neural encod-
ing of experiences, which results in storage 
“within” the brain (Harrison & Horne, 2000; Poh 
& Chee, 2017; Stickgold & Walker, 2005). 
However, without post-encoding memory pro-
cesses, this initial encoding does not persist over 
time. Therefore, the so-called memory consolida-
tion is necessary for long-term storage.

Thanks to sleep deprivation studies, it is 
known that sleep plays an important role in the 
encoding processes during wakefulness 
(Drummond et al., 2000). Even more interesting 
are some recent studies that have shown that 
sleep strongly influences memory consolidation 
(Fogel, Albouy, et al., 2017; Hahn et al., 2019). 
Although the precise underlying processes are 
still unknown, we have gained valuable clues 
about them.

Traditionally, a link between REM and mem-
ory has been stablished both in human (Siegel, 
2001) and animal studies (Pearlman, 1979). More 
recently, NREM sleep has been associated with 
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Fig. 2.2  Oscillatory hierarchy nested during sleep. The 
upper panel shows the EEG signal at the Cz electrode dur-
ing a spindle event (during N2). The lower panel repre-
sents the signal filtered to show the slow oscillation (low 

pass filtering between 0 and 1  Hz) and show the sleep 
spindle (bandpass filtering between 11 and 16 Hz). It can 
be seen how, just after the up-state of the slow oscillation, 
the spindle is elicited

memory consolidation, especially the stages 
related to the appearance of sleep spindles 
(Cairney et al., 2018). These memory consolida-
tion processes during NREM stages are based on 
the strengthening of particular memory pathways 
through the delivery of auditory cues (Cairney 
et  al., 2017), a procedure known as targeted 
memory reactivation (TMR) (Cairney et  al., 
2018). Interestingly, the time window that coin-
cides with spindle activity overlaps with the TMR 
process (Cairney et al., 2018). This fact, together 
with the positive correlation between spindle 
density and cognitive performance (Fogel & 
Smith, 2011), procedural memory (Fogel & 
Smith, 2006), or IQ (Fang et al., 2017), highlights 
the role of sleep spindles in the service of mem-
ory consolidation.

2.4	� Is There Room for Slow 
Oscillations?

As previously stated, sleep spindles are not iso-
lated events. Changes in electrophysiological 
activity are often mediated by an external stimu-
lus, varying from ongoing activity to task-related 
activity elicited by external stimulus. However, 
this transition between states can also be medi-
ated by “internal stimulus”, eliciting what is 
known as internally evoked activity (i.e., 
internally-guided cognition) (Nakao et al., 2012). 
Sleep spindles could be considered an example of 
this internal evoked activity triggered by SOs and 
elicited during their up-state.

This relationship was evidenced in a recent 
study in which pre-spindle and spindle activity 
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strong correlations were reported (Gomez-Pilar 
et  al., 2021). Curiously, these correlations were 
stronger than wake-related evoked activity (Wolff 
et al., 2019). In other words, this suggests that the 
brain dynamics associated with SOs determine 
with great fidelity the characteristics of the fol-
lowing spindle. Whether SOs and the posterior 
spindle interact with the sleep spindles following 
an additive (Arieli et  al., 1996) or non-additive 
(Huang et al., 2017) model remains unclear. Non-
additive models are based on the assumption that 
there is a nonlinear superposition between the dif-
ferent waves of the brain activity, which is 
between SOs and sleep spindles. It would be asso-
ciated with higher uniformity of the activity, 
which facilitates the information processing in the 
cortex (Monier et al., 2003; White et al., 2012). 
This increased stability would lead to a more 
structured dynamics enhancing the data predict-
ability (Gershenson & Fernández, 2012). Being 
aware of the repetitive and uniform patterns in 
closed loop between the thalamus, reticular 
nucleus, and the neocortex during SOs and spin-
dle generation (Schönauer & Pöhlchen, 2018), 
this stability would play a fundamental role for 
sending information units to distributed neocorti-
cal sites for long-term storage. Therefore, a non-
additive model in which SOs have a fundamental 
role is, in principle, presented as a more likely 
model during sleep for memory consolidation. 
This is supported by a previous study focused on 
boosting SOs through transcranial stimulation 
(Marshall et al., 2006), instead of stimulating the 
generation of spindles (Berner et  al., 2006; 
Ladenbauer et al., 2017). However, future work is 
required to support this hypothesis.

2.5	� Consequences of Poor Sleep 
Quality – Illustrative 
Examples

At this point, we can be confident of the relevant 
role that sleep has not only in a number of cogni-
tive processes, especially those related to encod-
ing and memory consolidation processes, but 
also in metabolic processes (van Cauter et  al., 
2007; Van Cauter et al., 2008). Then, it is worth 

asking what effects may arise related to patholo-
gies that cause a reduction in the quality of sleep. 
Or, in the opposite direction, a poor quality of 
sleep can increase the probability of developing 
(or worsening) certain diseases?

The number of diseases in which a close rela-
tionship with sleep has been found is far from 
negligible, and it seems to be constantly increas-
ing, such as sleep apnea, migraine, Alzheimer’s 
disease, schizophrenia (all the above are 
explained below in this section), schizoaffective 
disorders (Castelnovo et  al., 2018), Parkinson 
(Latreille et  al., 2015), or Asperger’s syndrome 
(Godbout et  al., 2000), among others. We here 
present some illustrative examples about the 
importance of sleep quality and health. Although 
in some cases the consequences of poor sleep 
quality that are not related to cognition are men-
tioned, the main focus is cognition from a neuro-
physiological point of view.

2.5.1	� Non-pathological or Quasi-
Pathological Consequences

The effects of a poor sleep quality on behavior 
and cognition have been fundamentally assessed 
by sleep deprivation studies. These cognitive  – 
and metabolic  – deficits are accentuated if the 
poor quality of sleep is prolonged in time, with-
out the affected individual being fully aware of it 
(Goel et al., 2009).

The causes for sleep deprivation, or at least a 
reduction in its quality, that are not directly 
related to any pathology are very diverse and 
range from individual lifestyle to specific shifting 
in sleep period in relation to the circadian cycle 
(e.g., due to shift work) (Orzeł-Gryglewska, 
2010). If sleep deprivation is total, the conse-
quences depend largely on the number of sleep-
less nights (Orzeł-Gryglewska, 2010). However, 
there is great interindividual variability that sug-
gests the influence of genetic alleles associated 
with differential cognitive vulnerability to sleep 
loss (Goel et al., 2009). The consequences range 
from tremor and increased muscle tone (when 
sleep deprivation is for a single night) to distur-
bances in reasoning and orientation, visual and 
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tactile hallucinations, fatigue, irritability, and 
delusions, when sleep deprivation is for 4 or 
5 days (Orzeł-Gryglewska, 2010).

Although sustained total sleep deprivation is 
not common in healthy individuals, sleep prob-
lems constitute a global epidemic that threatens 
the health and quality of life of around 40% of the 
adult population (Ohayon & Partinen, 2002). 
This prevalence is similar in children (Fricke-
Oerkermann et al., 2007) and is even increased in 
the elderly (Foley et al., 1995). These problems 
often do not have a direct tangible effect, but the 
long-term consequences are of paramount impor-
tance, highlighting obesity, diabetes mellitus, 
hypertension, and decreased cognitive perfor-
mance, among others (Calhoun & Harding, 2010; 
Van Cauter & Knutson, 2008).

2.5.2	� Sleep Apnea and Cognitive 
Consequences

Obstructive sleep apnea (OSA) is probably one 
of the pathologies that most obviously affects 
healthy and restorative sleep. OSA is mainly 
characterized by repetitive pharyngeal collapse 
during sleep, leading to intermittent interruptions 
of breathing (apnea) (Malhotra & White, 2002). 
This usually leads to arousals that disrupt the 
cyclical architecture of sleep (Ferreira et  al., 
2020; Korkalainen et al., 2021).

Interestingly, recent studies have reported that 
OSA also has effects on specific oscillations, such 
as the progressive slowdown of SOs directly related 
to the severity of the disease (Gutiérrez-Tobal et al., 
2021). It has been suggested that this deceleration 
could be due to an inhibitory effect on thalamus 
produced by OSA (Gutiérrez-Tobal et  al., 2021). 
Previous studies in rats have shown that suppression 
of the role of the thalamus leads to a deceleration of 
the typical frequency of SO, leading to cortical 
attempts to substitute the role of the thalamus 
(David et al., 2013). Together, although speculative, 
we hypothesize that OSA directly influences the 
neural underpinning involved in the SOs generation 
(Gutiérrez-Tobal et al., 2021).

As previously stated, SOs are precursors and 
facilitators of the generation of spindles. 

Therefore, if SOs are affected, it seems reason-
able to think that there would be alterations in the 
density of spindles beyond the interruptions of 
the sleep cycle. This is supported by previous 
studies that show alterations in the spindles in 
patients with OSA, both in the pediatric popula-
tion (Brockmann et  al., 2018; Weichard et  al., 
2016), as well as in adults (Ahuja et al., 2018).

The effects on different cognitive processes 
(especially those related to memory consolida-
tion) that patients with OSA may develop due to 
hypoxia and sleep fragmentation are still not 
entirely understood. What is clear, however, is 
that the fastest intellectual changes happen dur-
ing school-age (Fry & Hale, 2000), which 
explains the focus of the increasing number of 
OSA studies and its related changes in micro and 
macro sleep architecture in this population 
(Brockmann et  al., 2018; Gruber et  al., 2013; 
Gutiérrez-Tobal et al., 2021).

2.5.3	� Migraine and Sleep – 
A Bidirectional Relationship?

The relationship between sleep and migraine 
can be interpreted as a bidirectional relation-
ship. In fact, insomnia can be seen as both a 
cause and a consequence of migraine (Vgontzas 
& Pavlović, 2018). This leads researchers to 
think that migraine and sleep problems are “two 
sides of the same coin”, that is, that they both 
have a common underlying pathophysiology 
(Vgontzas & Pavlović, 2018). In the outstanding 
review of Vgontzas and Pavlović (2018), the 
glymphatic system was proposed as a possible 
common mechanism. This system is responsible 
for macroscopic waste removal, primarily active 
during sleep (Iliff et  al., 2012). On the other 
hand, cortical spreading depression – a wave of 
excitation followed by inhibition in cortical 
neurons that may be a direct cause of aura phase 
that precedes migraine headache  – has been 
shown to cause impaired glymphatic flow 
(Schain et al., 2017). Therefore, a deterioration 
in this system could produce an accumulation of 
waste products that would contribute to later 
migraine attacks.
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2.5.4	� The Role of Glymphatic 
System and Sleep Spindles 
in Alzheimer’s Disease

The accumulation of amyloid-β peptide in the 
brain appears to be the trigger for a series of 
events that lead to Alzheimer’s disease (Ju et al., 
2014). Given that sleep deprivation increases the 
amyloid-β peptide concentrations, glymphatic 
system  – in charge of removing this toxic sub-
stance (Iliff et al., 2012) – seems to be the link 
between sleep Alzheimer’s disease (AD).

Nonetheless, this does not appear to be the 
only link between AD and sleep. It is well-known 
that AD is a disease characterized by memory 
impairments. On the other hand, we have previ-
ously shown a number of studies that link sleep 
spindles functions and memory consolidation. 
With these precedents, previous studies have 
searched for a direct relationship between spin-
dles and AD (see (Weng et al., 2020) for a recent 
review). As might be expected, it is observed that 
a higher density of spindles is inversely related to 
the evolution of AD (Gorgoni et  al., 2016; Liu 
et al., 2019). Even more noticeable, a recent posi-
tron emission tomography (PET) study showed 
that the nesting hierarchy between SOs and spin-
dles was altered and predicted accumulated tau 
levels in the medial frontal cortex (Winer et al., 
2019), which is significantly more hyperphos-
phorylated in AD than in the normal adult brain 
(Iqbal et al., 2010). Therefore, albeit speculative, 
the alterations in SOs and spindles produced by 
OSA could be a potential underlying mechanism 
for the well-known relationship between OSA 
and AD (Kheirandish-Gozal et al., 2016). These 
findings in AD support our previous hypothesis 
about the importance of the relationship between 
SOs and spindles (and not spindles alone) for 
memory consolidation processes.

2.5.4.1	� Sleep Spindles as Biomarker 
of Schizophrenia

Sleep disorders have been associated with the 
onset of psychosis (Benson, 2015; Zhang et al., 
2020). These disorders are unrelated to pharma-
cological treatment since this association has 
been reproduced in patients with schizophrenia 

without antipsychotic medication (Chouinard 
et al., 2004). Sleep disturbances in schizophrenia 
patients do not only correspond to alterations in 
its macroarchitecture (Poulin et al., 2003; Yang & 
Winkelman, 2006) (i.e., the distribution of time 
spent in different sleep stages), but also in its 
microarchitecture (Ferrarelli et al., 2007; Göder 
et  al., 2015) (i.e., characteristics of the waves 
associated with each stage of sleep). This concor-
dance could have a genetic origin, since both 
sleep fingerprints, such as spindles (Goldschmied 
et al., 2021), and schizophrenia (Cao et al., 2019) 
appear to be highly heritable and share common 
aspects. For example, the risk gene in schizo-
phrenia that encodes a calcium channel (Lubeiro 
et al., 2020), CACNA1I, plays a critical role in 
the generation of spindles in the thalamus 
(Steullet et al., 2018).

Among the abnormalities found in the sleep 
microarchitecture in schizophrenia, the reduction 
in the density of spindles stands out (Ferrarelli 
et al., 2007). The production of spindles begins 
with the inhibition of the thalamocortical neurons 
mediated by the gabaergic inhibition of the retic-
ular nucleus (Berry et al., 2012; Steriade, 2003). 
This process is followed by glutamatergic 
rebound peaks that cause cortical neurons to 
oscillate at the typical spindle frequency 
(Contreras & Steriade, 1996). Therefore, spindle 
production depends entirely on the inhibitory 
onset of the reticular nucleus, which is known to 
show structural and biochemical abnormalities in 
schizophrenia (Court et  al., 2002; Smith et  al., 
2001; Steullet et al., 2018). Furthermore, spindle 
production is governed by an orchestrated orga-
nization of inhibitory (gabaergic) and excitatory 
(glutamatergic) neurons. This excitatory-
inhibitory balance is altered in schizophrenia 
(Kehrer, 2008; Northoff & Gomez-Pilar, 2021), 
especially affecting the thalamus, as has recently 
been discovered (Quiñones et al., 2021).

Together, these findings show that the spindle 
generation process in schizophrenia is disrupted, 
reducing the density of spindles and likely pro-
ducing other changes in sleep architecture. 
Therefore, spindles are postulated as a noticeable 
biomarker of increasing importance in 
schizophrenia.
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2.6	� Conclusion

As new studies appear, the relationship between 
restful sleep and health is increasingly evident. In 
this relationship, the role of spindles has gained 
much relevance due to its proven importance 
with memory consolidation processes. However, 
recent studies have shown that SOs are at least 
equally important in many of these processes. 
Future studies should be directed to analyze 
whether the relationship between SOs and spin-
dles is altered in different sleep-related patholo-
gies – and not just the spindles themselves. If so, 
changes in their relationship could shed new light 
on the pathophysiological mechanisms involved.
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