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Abstract— Brain-computer interface (BCI) systems based on
code-modulated visual evoked potentials (c-VEP) stand out for
achieving excellent command selection accuracies with very
short calibration times. One of the natural steps to democratize
their use in plug-and-play environments is to develop early stop-
ping algorithms. These methods allow real-time detection of the
minimum number of code repetitions needed to provide reliable
selections. However, such techniques are scarce in the current
state-of-the-art for c-VEP-based BCI systems based on the clas-
sical circular shifting paradigm. Here, a novel nonparametric
early stopping method is proposed, which approximates the
distribution of unattended commands to a normal distribution
and issues a selection when the correlation of the command
is considered an outlier. The proposal has been evaluated
offline with 15 healthy users, achieving an average accuracy of
97.08% and a speed of 1.37 s/command. Likewise, the algorithm
has also been evaluated with an additional user in an online
way, as a proof of concept to validate its technical feasibility,
achieving an average accuracy of 96.88% with a speed of 1.67
s/command. These results suggest that the real time application
of the proposed algorithm is feasible, significantly reducing the
required selection time without compromising accuracy.

I. INTRODUCTION

Non-invasive brain-computer interface (BCI) systems use
electroencephalographic (EEG) signals to interpret the user’s
intentions and convert them into commands for external
devices or applications [1]. Decoding such intentions from
EEG is challenging, and requires the use of different control
signals; i.e., strategies that generate measurable changes in
the EEG when performing cognitive tasks (endogenous)
or processing external stimuli (exogenous) [1]. Among ex-
ogenous signals, code-modulated visual evoked potentials
(c-VEP) have recently been proposed as a new and promising
control signal to offer high performance with short calibra-
tion times.

Traditional c-VEP-based BCI systems employ a pseudo-
random binary code with perfect autocorrelation properties,
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enabling each command to be encoded using temporally
shifted versions of the same sequence [2]. In this paradigm,
known as circular shifting, a calibration template is calcu-
lated from the user’s EEG response to the visual stimulation.
The online decoding of the desired user’s command is then
possible by identifying the phase shift from the original
template [2]. This approach easily achieves accuracy over
90% and information transfer rates (ITR) of up to 100 bpm
with a calibration time of 10-30 s [3].

These c-VEP-based BCIs have shown potential to become
user-friendly technologies. In this sense, the implementation
of early stopping techniques would allow to optimize the
selection time for each command adaptively. In other words,
these methods would automatically determine the number of
code repetitions needed for a reliable selection in real-time.
Despite the impressive outcomes of c-VEP-based BCIs, early
stopping techniques remain limited [2], frequently being
incompatible with the circular shifting paradigm [4], [5],
or requiring classifier dependency (wrapper) or parameter
optimization (parametric) [6], [7]. Nevertheless, the use of
early stopping has been proven to improve system perfor-
mance, resulting in accuracy rates above 90% with command
selection times of 3.26 s [7], 4.2 s [5], or 6.17 s [8].

The objective of this pilot study is to propose a novel
early stopping technique for c-VEP-based BCI systems that
use circular shifting. To the best of our knowledge, our
method is the first one characterized by its independence
from any specific classifier (i.e., it is filter-based), and its lack
of necessity for parameter training (i.e., it is nonparametric).
Furthermore, it does not require additional EEG recordings
and can be applied in real time.

II. PARTICIPANTS

The proposed algorithm was assessed both offline using
15 healthy users (mean age: 28.80 ± 5.02 years, 10 males),
and online with 1 additional healthy user (29 years old,
male) as a proof of concept. All of them gave their informed
consent to participate in the study. The signal was recorded
by placing 16 active EEG electrodes at positions F3, Fz,
F4, C3, Cz, C4, CPz, P3, Pz, P4, PO7, POz, PO8, Oz, I1
and I2, grounded at AFz and referenced to the earlobe. A
g.USBamp equipment (g.Tec, Guger Technologies, Austria)
with a sampling rate of 256 Hz was used. Signal acquisi-
tion, real-time signal processing, and c-VEP paradigm were
programmed in MEDUSA©, a general-purpose ecosystem to
develop of Python-based BCIs and neuroscience experiments
(www.medusabci.com) [9]. The paradigm was displayed in
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Fig. 1. (a) Encoding of each command using shifted versions of the m-sequence with a step of τ = 4 samples. (b) Screenshot of the paradigm developed
in MEDUSA© during a stimulation cycle. Accumulated correlation is shown in the form of a green frame surrounding the commands.

a LED FullHD @ 144 Hz monitor, attached to a PC Intel
Core i9-11900KF @ 3.5 GHz, 64 GB RAM.

III. METHODS

A. Signal Processing and Paradigm

The encoding of the commands was achieved through
the use of a 63-bit binary maximum length sequence
(i.e., m-sequence), generated by a linear feedback shift
register (LFSR) using the polynomial x6 + x5 + 1 with
initial state 110000 [2]. The stimuli were displayed at
a rate of 120 Hz, so a complete cycle (i.e., repetition
of the m-sequence) lasted 525 ms. The c-VEP speller
paradigm, publicly available as an app of MEDUSA© plat-
form (www.medusabci.com/market/cvep speller), consisted
of 16 commands encoded with shifted versions of the original
m-sequence with delays of θi = iτ samples, where i
indicates the command index and τ = 4 was the step [2].
Command encoding and paradigm arrangement are shown in
Figure 1(a).

During the calibration stage, the participant is instructed to
focus on the command encoded by the original m-sequence
(i.e., θ = 0), which is repeated for k cycles. Following pre-
processing, which includes a bank of bandpass filters (1-
60Hz, 12-60Hz, and 30-60Hz) and a notch filter at 50Hz,
two versions of the EEG response are generated: (1) the
concatenated epochs A ∈ R[kNs×Nc], where Ns is the
number of samples of a complete cycle and Nc is the number
of channels; and (2) the epochs averaged over the k cycles
B ∈ R[Ns×Nc]. Next, a canonical correlation analysis (CCA)
is performed to identify the spatial filters that maximize
the correlation between the projections of A and B. The
spatial filter ωb that yields the maximum correlation between
the concatenated epochs and the average response is then
determined. The original signal is subsequently projected
using this filter to obtain the main template x0 = Bωb, while
the templates for the rest of the commands are obtained by
shifting the original θi = iτ samples, where i = 0 . . . 15
(for more information on this reference processing, see
[2]). To remove noisy epochs, calibration epochs exhibiting

a standard deviation three times greater than the average
standard deviation of all of them were discarded.

During the command selection (i.e., test) stage: (1) indi-
vidual epochs from each cycle are extracted and projected
using the spatial filter ωb; and (2) the correlation between
the resulting projection and all templates is computed, i.e. ρ.
The selected command corresponds to the index argmaxi(ρ)
that yields the highest correlation value.

B. Proposed Early Stopping Algorithm

An early stopping algorithm must make a dichotomous
decision each time a cycle is displayed: either (1) select the
most probable command, or (2) repeat the stimulation for one
additional cycle. With each cycle stimulation, a comparison
between the EEG response from the start of the visual
stimulation to the end of the current cycle and the command
templates yields a vector of correlations ρ ∈ R[1×16]. Upon
sorting the vector in descending order, ρ1 represents the
highest correlation, which is assumed to correspond to the
most likely command if the participant is indeed attending
to it. The remaining correlations, ρ2, ρ3, . . . , ρ16 can then be
considered as spurious correlations associated with unwanted
commands.

Additionally, we can broaden the distribution of spurious
correlations by determining the correlation of the EEG
response with all possible shifted versions of the m-sequence,
not just the 16 encoded commands (i.e., θj , where j =
1, 2, . . . , L, and L = 63 is the code length). After sorting
the correlations in descending order, the first correlation
ρ1 represents the most likely command, while ρspu =
[ρ2, ρ3, . . . , ρL] make up the distribution of spurious corre-
lations. Thus, we can conclude that ρ1 reliably corresponds
to the selected command if its value stands out as an outlier
from the distribution ρspu.

There are several metrics to detect outliers of a distribu-
tion, such as those based on the interquartile range or on
hypothesis testing. However, we propose the use of z-scores.
Under the assumption that the distribution of the spurious
values follows a normal distribution, i.e., ρspu ∼ N (µ, σ),
we can determine if ρ1 is an outlier by checking if ρ1−µ >
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Fig. 2. Distributions of the selected correlations ρ1 and the spurious distribution ρspu in the offline analysis for the calibration (blue and orange) and
offline test (green, red) data, as well as the 99.87% percentile for each one.

hσ, where h = 3. This equates to determining if ρ1 exceeds
the 99.87% percentile of the distribution. If the inequality
holds true, the command selection is made; otherwise, the
stimulation continues with the next cycle.

C. Evaluation Protocol

To assess the method’s feasibility and reliability, both an
offline and online analyses were conducted. In the offline
analysis, we assessed whether the distribution of unwanted
command correlations follows a normal distribution and
determined the average number of cycles required if the
proposed early stopping algorithm is used. The analysis was
based on the data collected from 6 healthy users, with 300
calibration cycles (6 runs × 5 trials × 10 cycles) and 320 test
cycles (2 runs × 16 trials × 10 cycles) per user. In each run,
the participants selected all the commands in lexicographic
order. In the online analysis, the proposed early stopping
algorithm was implemented in real time and evaluated using
data from an additional subject. The data consisted of 300
calibration cycles (6 runs × 5 trials × 10 cycles) and 32
online selection trials (where the number of cycles varies).

IV. RESULTS AND DISCUSSION

A. Offline Analysis

The results of the Kolmogorov-Smirnov test indicate that
the distributions of the target and spurious correlations for
both calibration and offline test data are normal (p-value <
0.01), as shown in Figure 2. Therefore, the 99.87% percentile
estimate when the z-score is h = 3 times greater than the
standard deviation of the data can be considered accurate.

The comparison of the distributions in the calibration and
offline test data reveals significant similarity (p-value <
0.01), which suggests that the value of h could be opti-
mized for each user without acquiring additional data. This
optimization could be performed by analyzing a receiver
operating characteristic (ROC) curve, by varying the value
of h and observing the separation of the target and spurious
distributions in the calibration.

Table I presents the accuracy results for each participant in
both offline and online analyses. The theoretical maximum
accuracy, calculated as the minimum number of cycles
required to achieve the highest accuracy, is also included for
the offline analysis. As shown, the use of the early stopping
algorithm resulted in an average accuracy of 97.08% with an
average of 2.61 cycles (equivalent to 1.37 s/command, ITR
of 161.84 bpm) in the offline analysis. The original accuracy
of 99.58% achieved with 10 cycles is higher (p-value <
0.05), but our early stopping method reduced selection time
per command significantly (p-value < 0.05), according to
Wilcoxon signed-rank tests. Despite a slight decrease in
accuracy to 97.08%, this average can be still considered an
excellent result for state-of-the-art non-invasive BCIs [2].

It is important to note that the theoretical maximum
suggests that a reduction to an average of 1.48 cycles is
possible, which would be significantly faster than our 2.61
cycles (p-value < 0.05). The additional cycle required by
our method is due to the indistinct target and spurious
distributions in the first stimulation cycle, as seen in Figure 1.
This phenomenon would result in an unreliable selection
during the initial cycle, often requiring to wait for the next



TABLE I
OFFLINE AND ONLINE PERFORMANCE

Early Stopping Theoretical Maximum
Acc. (%) Nc Acc. (%) Nc

Offline

U01 93.75 1.56 100.00 1.22
U02 96.88 2.09 100.00 1.34
U03 100.00 2.22 100.00 1.19
U04 100.00 1.38 100.00 1.06
U05 96.88 3.28 100.00 1.78
U06 100.00 1.97 100.00 1.56
U07 100.00 2.12 100.00 1.41
U08 96.88 2.62 100.00 1.22
U09 100.00 2.03 100.00 1.19
U10 96.88 2.66 100.00 1.31
U11 93.75 4.06 96.88 2.09
U12 96.88 5.47 96.88 2.00
U13 93.75 1.66 100.00 1.34
U14 93.75 3.75 100.00 2.16
U15 96.88 2.22 100.00 1.31

mean 97.08 2.61 99.58 1.48
STD 2.41 1.07 1.06 0.34

Online U16 96.88 3.19 n.a. n.a.
Acc.: accuracy, Nc: mean number of cycles, STD: standard deviation, n.a.:
not applicable.

one. Although we consider that our results (97.08% with 1.37
s/command) demonstrate the usefulness of the method, this
fact indicates that there is still room for improvement.

B. Online Analysis

Figure 1(b) displays a screenshot of the MEDUSA© app.
The app utilizes the Unity graphics engine for maintaining
a constant 120 Hz refresh rate and communicates with
MEDUSA© through TCP/IP protocol [9]. The application
provides feedback on the accumulated correlation of the early
stopping method in the form of a green frame surrounding
the commands. The intensity of the green color indicates the
correlation level associated with each command; the higher
the correlation, the more intense the green frame.

Table I also presents the results of the additional user
who tested the algorithm online as proof of concept. The
user achieved an accuracy of 96.88% with an average of
3.19 cycles (equivalent to 1.67 s/command, ITR of 131.76
bpm). The results demonstrate that the application of the
proposed algorithm in real time is feasible and beneficial
for the c-VEP-based BCI system, allowing to drastically
decrease the time required to perform a selection from 5.25s
(10 cycles) to 1.67 s (3.19 cycles) without compromising
accuracy. Also, the performance obtained for this user is
similar or exceeds the results of other studies, e.g., 3.26
s/command [7], 4.2 s/command [5], or 6.17 s/command [8].

C. Limitations and Future Lines

Despite the successful results of the proposed early stop-
ping algorithm, there are several avenues for future research
to enhance its efficacy and reliability. Firstly, it is crucial to
test the method with a larger sample size of healthy users
and/or motor-disabled individuals to increase the statistical
power of the results. Additionally, it would be beneficial to
modify the algorithm to detect the user’s attention to the

stimulation through an asynchronous stage. Currently, the
cumulative calculation of correlations makes the control state
detection challenging, as previous non-control cycles would
significantly impact real-time decision-making. Instead, an
asynchrony algorithm would ideally detect the attention in
single-trial. Another future line of research could be the
evaluation of the algorithm with a c-VEP-based BCI system
using non-binary m-sequences; or even sets of codes with
low cross-correlation (e.g., Gold codes, Kasami, etc.).

V. CONCLUSIONS

This study introduces a new early stopping algorithm for
c-VEP-based BCI systems that boasts several advantages.
The algorithm is (1) classifier-independent; (2) requires no
parameter optimization; (3) does not need additional EEG
signals; and (4) can be applied in real-time. The offline
analysis revealed that the algorithm reduces the selection
time from 5.25 s/command to 1.37 s/command while without
compromising accuracy (from 99.58% to 97.08%). These
findings are confirmed in the online proof of concept, achiev-
ing 96.88% accuracy with 1.67 s/command and an ITR of
131.76 bpm. It is concluded that the proposed algorithm is
robust and practical, allowing for real-time detection of the
number of cycles required for a selection without affecting
the performance of the BCI system.
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