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a b s t r a c t

The intersession non-stationarity in electroencephalogram (EEG) data is a major issue to robust
operation of brain–computer interfaces (BCIs). The aim of this paper is to propose a semi-supervised
classification algorithm whereby the model is gradually enhanced with unlabeled data collected online.
Additionally, a processing stage is introduced before classification to adaptively reduce the small
fluctuations between the features from training and evaluation sessions. The key element of the
classification algorithm is an optimized version of kernel discriminant analysis called spectral regression
kernel discriminant analysis (SRKDA) in order to meet the low computational cost requirement for
online BCI applications. Four different approaches, SRKDA and sequential updating semi-supervised
SRKDA (SUSS-SRKDA) with or without adaptive processing stage are considered to quantify the
advantages of semi-supervised learning and adaptive stage. The session-to-session performance for
each of them is evaluated on the multiclass problem (four motor imagery tasks: the imagination of
movement of the left hand, right hand, both feet, and tongue) posed in the BCI Competition IV dataset
2a. The results agree with previous studies reporting semi-supervised learning enhances the adaptability
of BCIs to non-stationary EEG data. Moreover, we show that reducing the inter-session non-stationarity
before classification further boosts its performance. The classification method combining adaptive
processing and semi-supervised learning is found to yield the highest session-to session transfer results
presented so far for this multiclass dataset: accuracy (77%) and Cohen's kappa coefficient (0.70). Thus,
the proposed methodology could be of great interest for real-life BCIs.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The aim of electroencephalogram (EEG)-based brain–computer
interface (BCI) research is to design systems that enable humans to
interact with their surroundings, without the involvement of
peripheral nerves and muscles, by using control signals generated
from EEG activity [1]. BCIs create an alternative non-muscular
communication channel that directly translates brain activity into
sequences of control commands for external devices such as
computers, speech synthesizers, assistive appliances, and neural
prostheses amongst many others.

EEG-based BCIs utilize some control signals such as visual
evoked potentials, P300 evoked potentials, slow cortical rhythms,
or sensorimotor rhythms to know the users' intentions [1]. The
detection and classification of sensorimotor rhythms has attracted
growing attention in BCI research [2–4]. These control signals
make it possible to design endogenous BCIs, as well as convey
continuous commands. However, the applicability of motor ima-
gery based-BCIs (MI-BCIs) in real environments is still limited by
low transfer rates [5]. MI-BCIs are usually built to discriminate
just two brain states: left and right hand movements. Hence,
extending the number of recognizable motor brain states has been
researched to speed up the communication. Ehrsson et al. [6]
showed that motor activity from different body parts such as
fingers, toes, and tongue are mapped into different locations in
the primary motor cortex and, therefore, the spatial patterns
generated can be discriminated. Boosting transfer rates by means
of multiclass paradigms is an ongoing research that challenges
the discrimination capability of current BCI systems. Attempts
to increase the number of tasks naturally suffer from higher
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misclassification rate because there is a trade-off between the
number of motor tasks and the accuracy [5]. In this context, to
enhance the performance of multiclass MI-BCIs, several studies
have been conducted either in the feature extraction [7–11] or
classification [12,13] stages, to cite only a few examples. This paper
focuses on improving the performance of multiclass MI-BCIs
introducing a novel adaptive classification methodology. To the
best of our knowledge, no adaptive classifier has been evaluated so
far in multiclass settings.

BCI systems can be seen as pattern recognition systems that
identify the user's intentions on the basis of a set of features that
characterizes the brain activity. They are usually calibrated by
supervised learning during training sessions. The user is asked to
perform different tasks and brain signals together with their class
labels are stored. The recorded data serve as the training dataset
for the BCI. After the calibration session, the machine is assumed
to be able to detect the patterns of brain signals recorded in the
subsequent online sessions. However, EEG signals are naturally
non-stationary and usually very noisy. Diverse behavioral and
mental states continuously change the statistical properties of
brain signals [14]. Furthermore, they are contaminated with non-
stationary artifacts such as electromyogram (EMG) and electro-
oculogram (EOG) [15]. Patterns observed during calibration ses-
sions may be different from those recorded during online sessions.
Hence, non-stationarity can result in degraded performance since
the supervised machine learning algorithms implicitly assume
stationary data.

Semi-supervised learning is becoming more important in an
attempt to improve the adaptability and robustness of BCI systems,
as well as reduce the labeled data needed to calibrate. Such approach
uses both labeled and unlabeled data to train the classification
model. The more often-used semi-supervised methods include:
expectation-maximization, transductive support vector machines
(TSVM), self-training, and co-training, amongst others (see Zhu [16]
for a review). In BCI research, the expectation-maximization algo-
rithm was used for the unsupervised readjustment of a Gaussian
mixture model (GMM) [17] or a classifier based on linear discrimi-
nant analysis (LDA) [18], as well as adaptive extraction and classifica-
tion of common spatial pattern (CSP) features [19]. TSVM was
proposed to classify three different mental tasks [20]. Also, self-
training algorithms based on support vector machines (SVM) were
successfully applied in motor imagery [21] and P300-based BCIs [22].

Although semi-supervised approaches are capable of increasing
the performance of BCIs even with small labeled training datasets
and non-stationarity signals [23], it might not be the best
approach in an adaptive framework since feature vectors from
different sessions are used to build a single model. In semi-
supervised approaches, the classification model is incrementally
updated with the augmented dataset, which includes the initial
labeled dataset and the new incoming points with the predicted
labels. Despite the model being updated, the same probability
density function for training and evaluation sessions is implicitly
assumed. It goes against the finding that was explained above;
feature vectors extracted from EEG data of different sessions
follow different probability distributions. Some studies have
already applied adaptive algorithms with no semi-supervised
learning involvement to cope with this issue. Adaptive procedures
such as bias adaptation [14,24], importance weighted cross valida-
tion [25,26], or data space adaptation based on the Kullback–
Leibler divergence [27] were proposed to extend LDA to non-
stationary environments. Likewise, dynamic Bayesian classifiers
based on the Kalman filter [28–30] have been developed for on-
line adaptive classification. All these methods sequentially update
the model during the unlabeled dataset or testing sessions giving
more importance to the most recent trials. This motivated us to
study whether this kind of procedures that deal with the

mismatching between training and evaluation data can improve
the adaptability of semi-supervised-based BCI systems. We intro-
duce an adaptive processing stage before classification that esti-
mates and corrects the mismatching running exponentially
weighted moving average (EWMA).

As may be seen from BCI literature, successful semi-supervised
approaches make use of kernel methods such as SVMs [21,22].
However, they are not tailored for online semi-supervised learning
applications, which require retraining the model with all the new
and past data. Training conventional SVMs involves solving a quad-
ratic programming problem, which is computationally intensive. The
computational load can become unacceptably high due to the
increasing amount of training data. Hence, finding new solutions is
of great importance to design practical online semi-supervised BCIs.
In this regard, Gu et al. [23] proposed a semi-supervised algorithm
based on the least squares SVM (LS-SVM) instead of the common
SVM to design a semi-supervised P300 BCI. The least square version
of SVM replaces the quadratic programming problem by a set of
linear equations to meet the requirement of low computational
complexity. However, the algorithm relies on computing and sequen-
tially updating the inverse of a matrix that can be inaccurate and
unstable [31]. It motivated us to design an online semi-supervised
classifier based on other equally efficient kernel-based classification
method called spectral regression kernel discriminant analysis
(SRKDA) [32]. SRKDA reformulates the popular kernel discriminant
analysis (KDA) [33] or generalized discriminant analysis [34] to avoid
the eigen-decomposition of the kernel matrix, which is very expen-
sive when a large number of training samples exists. SRKDA only
needs to solve a linear system of equations that can be efficiently
performed using Cholesky decomposition. Furthermore, regarding
online semi-supervised BCI applications, the algorithm can be
incrementally formulated as new samples arrive saving a huge
amount of computational cost.

The aim of this paper is to propose a classification algorithm
whereby the model is gradually enhanced with the unlabeled data
collected online. The novelty of the approach lies in two compo-
nents. Firstly, we present a new sequential updating semi-
supervised classification method based on SRKDA. After training
the classifier with labeled data, a self-training algorithm is used to
sequentially update the model using the arriving unlabeled data.
The resultant algorithm is called sequential updating semi-
supervised SRKDA (SUSS-SRKDA). Secondly, adaptive processing
with EWMA is introduced before classification in order to reduce
the existing non-stationarity between training and evaluation
sessions. Then, four methods, SRKDA and SUSS-SRKDA with or
without adaptive stage, are evaluated on the BCI Competition IV
dataset 2a [35] to quantify the advantages of self-training-based
classification and the adaptive stage. All these alternatives are
compared to the winner of the competition and other methods
tested on this dataset [8,36–41]. Likewise, we evaluate two
adaptive classifiers in the BCI literature [18,24] on the features
extracted in this study in order to further emphasize the benefits
of our contribution. We refer the method proposed by Blumberg
et al. [18] as expectation-maximization-based LDA (EM-LDA).
Vidaurre et al. [24] introduced three types of adaptive procedures
into the well-known LDA. Here, we just focus on the method
providing the highest performance, which was called Pooled Mean
(PMean) by the authors. Although the two methods were pro-
posed to classify two motor imagery tasks, they can be straight-
forwardly extended to multiclass problems.

2. BCI Competition IV dataset 2a description

The algorithms proposed are evaluated on the BCI Competition IV
dataset 2a provided by Graz University [35]. This dataset contains EEG
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signals from 9 healthy subjects performing four different motor
imagery tasks: movement of the left hand, right hand, feet, and
tongue. Two sessions, one for training and the other for evaluation,
were recorded on different days for each subject. Each session includes
288 trials of data (72 for each of the four possible tasks) recorded with
22 EEG channels and 3 monopolar EOG channels (with left mastoid
serving as reference). The signals were sampled at 250 Hz and band-
pass filtered between 0.5 Hz and 100 Hz. A 50 Hz notch filter was also
applied to suppress power line noise.

All volunteers were sitting in an armchair, watching a flat
screen monitor. At the beginning of each trial a cross was shown
on the black screen and a short warning tone was given. At second
2, a cue in the form of an arrow pointing to the left, right, down, or
up (corresponding to one of the four classes left hand, right hand,
foot or tongue) was presented during 1.25 s. Depending on the
direction of the arrow, the subjects were prompted to perform the
corresponding motor imagery task until the cross disappeared
from the screen at second 6. Refer to Tangermann et al. [35] for
further details on the BCI Competition IV dataset 2a.

3. Proposed methods

The architecture of the proposed algorithm is illustrated in
Fig. 1. It comprises five consecutive stages: multiple bandpass
filtering using finite impulse response (FIR) filters, spatial filtering
using the CSP algorithm, feature selection, adaptive processing,
and classification of the selected CSP features. Configurable para-
meters are adjusted for each subject using the trials labeled with
the respective motor imagery tasks from the training session.
These parameters are then used to compute the motor imagery
task for each trial over the evaluation session. Fig. 2 illustrates how
a single-trial is processed as well as the time scheme of the
paradigm. The algorithm computes feature vectors at any point in
time using a sliding 2 second window of EEG data. The classifica-
tion output is continuously computed with the feature vector of
the corresponding window satisfying the causality criterion
required by the competition [35]. Note that no classification
output is generated during the first 2 s. Each stage of the algorithm
is explained in more detail in following sections.

3.1. Band-pass filtering

The first stage employs a filter bank that decomposes the EEG
into 9 frequency pass bands, namely, 4–8 Hz, 8–12 Hz,…, 36–40 Hz
[10]. Nine FIR filters designed by means of Kaiser Window are
used. FIR filters are particularly suitable for the design of filter
banks because they have linear phase, which does not distort the
phase of the filtered signal. The transition bandwidth is set at 1 Hz.
Other configurations are as effective, but this transition bandwidth
yields a reasonable order filter and discriminative capacity
between frequency bands.

3.2. Spatial filtering

The second stage of feature extraction performs spatial filtering
using CSP algorithm for each band-pass signal. CSP is a successful

algorithm for the design of motor imagery-based BCIs [42]. It has
been devised for the analysis of multichannel data belonging to 2-
class problems. Consequently, although other options are feasible
in multiclass problems, we adopt the one-versus-rest approach
[7]. CSP filters are computed on the basis of the trials for each class
versus the trials for all other classes.

CSP calculates the spatial filters by solving an eigenvalue
decomposition problem that involves the mean spatial covariances
for each of the two classes [42]. The spatial filtered signal Z is
obtained from the EEG trial E as

Z ¼WTE; ð1Þ
whereW is a matrix containing the spatial filters computed by CSP.
Each column of W represents a spatial filter. There are as many
spatial filters as EEG channels. For each frequency band, CSP
feature vectors are given by

x¼ log
diagð ~WT

EET ~W Þ
traceð ~WT

EET ~W Þ

" #
; ð2Þ

where ~W represents a matrix having some spatial filters of W.
Since all spatial filters of W are not relevant for subsequent
classification, the first 2 and the last 2 columns of W are selected
[10]. In accordance to the one-versus-rest approach, 16 features
are obtained as a result of repeating the CSP algorithm for each
class. Finally, the 16 features of the 9 frequency bands for a single-
trial are concatenated to form a single feature vector of 144
features.

3.3. Feature selection

After spatial filtering, mutual information-based best individual
feature (MIBIF) algorithm [10] is employed to select the most
discriminative features. MIBIF involves the computation of the
mutual information between each feature and class labels. Then,
the features with higher mutual information are selected. In this
work, the number of selected features is configured by 10-fold
cross validation on the training session.

3.4. Classification

Firstly, the adaptive processing stage is presented. This stage
performs an unsupervised adaptation whereby the extracted
features are processed before classification in order to reduce the
mismatching between training and evaluation data. Secondly, the

Subject
EEG Filter

Bank CSP Feature
Selection Classifier

Predicted
taskAdaptive

processing

Feature extraction Classification

Fig. 1. Architecture of the algorithm. The parameters of CSP, feature selection, and classification stages are adjusted for each subject using training data labeled with the
respective motor imagery tasks. These parameters computed from the training phase are then used to compute the single-trial motor imagery task during the
evaluation phase.

0 1 2 3 4 5 6 7 8

beep

s
Classification output

2s window

2s window

2s window

Fixation cross Motor imagery PauseCue

Fig. 2. Feature extraction from a single-trial EEG. The spatial filters and the most
discriminant bands computed in the training phase are used to extract the features
in the evaluation phase.
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classification algorithms, KDA and its efficient version, SRKDA, are
briefly introduced. Finally, semi-supervised SRKDA (SS-SRKDA)
and its sequential updating semi-supervised version (SUSS-
SRKDA) are proposed. Semi-supervised algorithms use the unla-
beled samples to augment the training dataset. In this work, we
use a variant of semi-supervised learning known as self-training
[16]. The classifier is firstly trained with the labeled data and then
the unlabeled data are classified. After that, the unlabeled data
together with their predicted labels are added to the training
dataset and the classifier is retrained. These steps are repeated
until the algorithm converges.

3.4.1. Adaptive processing
The adaptive processing stage centers every incoming data by

subtracting the global mean. Firstly, the global mean is estimated
from the whole training data. Across the evaluation session, upon
the arrival of a new sample at the time t from the i-th evaluation
trial, the global mean μGði; tÞ is updated by means of EWMA.
EWMA is a powerful tool for mean estimation in noisy environ-
ments [43]. The sequential estimations are given by

μGði; tÞ ¼ ð1�ηÞUμGði�1; tÞþηUxði; tÞ; ð3Þ
where x(i,t) is the current input feature vector of the i-th evalua-
tion trial at the time t and η is the update coefficient, which has to
be configured by the user. The exponential rule estimates the
global mean by an amount that is proportional to the most recent
forecast error. Simple algebraic manipulation reveals that μGði; tÞ
can be written as a weighted average of all past observations, in
which weights for older samples decay exponentially. This is
consistent with the idea that adaptive procedures should give
more importance to the most recent terms in the time series and
less importance to older data [24].

3.4.2. Kernel discriminant analysis
KDA [33] was proposed to extend LDA to the non-linear case.

KDA is a classifier that, in a similar way to LDA, seeks directions
that improve class separation. However, KDA considers the pro-
blem in the feature space ℑ induced by some non-linear mapping
ϕ : ℜNF-ℑ, where NF is the number of features. The KDA basis is
to map the feature vectors into a high dimensional space where
complex classification problems are more likely to be linearly
separable [44]. The objective function of KDA to find the optimal
projective functions vopt is as follows:

vopt ¼ argmax
vTSϕB v

vTSϕWv
; ð4Þ

where vAℑ.SϕB and SϕW are the between-class and within-class
scatter matrices in ℑ, i.e.

SϕB ¼
XC
k ¼ 1

MkðμðkÞ
ϕ �μϕÞðμðkÞ

ϕ �μϕÞT ð5Þ

and

Sϕw ¼
XC
k ¼ 1

XMk

i ¼ 1

ϕðxðkÞi Þ�μðkÞ
ϕ

� �
ϕðxðkÞi Þ�μðkÞ

ϕ

� �T !
: ð6Þ

C is the number of classes, μðkÞ
ϕ and μϕ are the centroids of the

k-th class and the global mean, respectively, in the feature space,
and Mk is the number of feature vectors in the k-th class.

It can be proved that the above maximization problem can be
solved efficiently using the kernel trick [33]. For a chosen mapping
function ϕ, an inner product ;h i can be defined on ℑ, which makes
for the so-called reproducing kernel Hilbert space (RKHS)
ϕðxÞ;ϕðxÞ� �¼ Kðx; yÞ, where Kðx; yÞ is a positive semi-definite
kernel function. Then, from the theory of reproducing kernels,
we know that any solution voptAℑ must lie in the span of all

training samples in ℑ. There exist coefficients αi such that

νopt ¼
XM
i ¼ 1

αiϕðxiÞ; ð7Þ

where M is the number of total training data points.
Let αopt ¼ ½α1;α2;…;αM �, then it can be proved the Eq. (4) is

equivalent to

αopt ¼ argmax
α

αTKVKα
αTKKα

; ð8Þ

where, K is the kernel matrix Kij ¼ Kðxi; xjÞ, and V is defined as

V ¼
1=Mk; if xi and xj both belong to the k� th class
0; otherwise

(
: ð9Þ

The above maximization problem corresponds to the following
eigenvalue decomposition problem

KVKα¼ λKKα: ð10Þ
Each eigenvector αopt gives the projection of a new test pattern

x̂ onto v in the feature space. For a new data example x̂, we have

Θðx̂;αoptÞ ¼ v;ϕðx̂Þ� �¼ XM
i ¼ 0

αiK xi; x̂
� � ð11Þ

Finally, x̂ is classified on the basis of the Euclidean distance to
the projected mean for each class

l̂¼ argmin
k

‖ v;ϕðx̂Þ� �� v;μðkÞ
ϕ

D E
‖: ð12Þ

3.4.3. Spectral regression kernel discriminant analysis
SRKDA [32] is an improvement of KDA that finds optimal

projection casting KDA into a regression framework. The great
advantage of this approach is to facilitate efficient computation
since there is no eigenvector computation involved to solve Eq. (8).
In order to derive SRKDA, Cai et al. [32] proved the following
theorem:

Let y be the eigenvector of eigen-problem

Vy¼ λy; ð13Þ
with eigenvalue λ. If Kα¼ y, then α is an eigenvector of the eigen-
problem in Eq. (10) with the same eigenvalue λ.

According to the above theorem, projective functions can be
obtained through two steps: (1) solving the eigen-problem in Eq.
(13) to get y, and (2) finding αopt which satisfies Kα¼ y. The
solution of the eigen-problem in the first step can be trivially
found exploiting the special structure of V. Without loss of
generality, we can assume that the training data points are
ordered according to their labels. Then, V has a block-diagonal
structure

V ¼

V ð1Þ 0 ⋯ 0
0 V ð2Þ ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ V ðcÞ

0
BBBB@

1
CCCCA; ð14Þ

where fV ðkÞgCk ¼ 1 is an Mk �Mk matrix with all the elements equal
to 1=Mk. It is straightforward to show that V ðkÞ has only one
eigenvector eðkÞ ¼ ½1;1;…;1�T AℜMk , which is associated with
eigenvalue 1. Due to the block-diagonal structure of V, the
eigenvalues and eigenvectors are the union of the eigenvalues
and eigenvectors of its blocks (the latter padded appropriately
with zeros). Therefore, there are C eigenvectors of V with the same
eigenvalue 1. These eigenvectors are

yk ¼ ½0;…;0|fflfflffl{zfflfflffl}Pk� 1

i ¼ 1
Mi

;1;…;1|fflfflffl{zfflfflffl}
Mk

; 0;…;0|fflfflffl{zfflfflffl}PC

i ¼ kþ 1
Mi

�T k¼ 1;…;C ð15Þ
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Since all eigenvalues of V are 1, we can just pick any other C
orthogonal vectors in the space spanned by fykgCk ¼ 1, and define
them to be our C eigenvectors. The vector of all ones is naturally in
the spanned space. This vector is useless since the corresponding
projective function will embed all the samples to the same point.
Therefore, this vector is picked as the first eigenvector of V and the
remaining eigenvectors are found by means of the Gram–Schmidt
algorithm. The vector of all ones can then be removed leaving
exactly C�1 eigenvectors of V, fykgC�1

k ¼ 1.
In the second step, an αopt is obtained for each eigenvector of V

by solving the corresponding linear equation system Kα¼ y. The
kernel matrix K is positive semi-definite. When K is singular, the
system may have no solution or have infinite solutions. Then, a
possible way is to adopt the regularization technique to obtain an
approximate estimator: ðKþδIÞαopt;k ¼ yk, where I is the identity
matrix and δZ0 is the regularization parameter. Once the matrix
KþδI is positive definite, the Cholesky decomposition can be used
to efficiently compute the solution. Finally, after the two steps, the
new patterns are classified projecting the feature vector with the
C�1 projective functions fαopt;kgC�1

k ¼ 1 in the same way as KDA. For
the purposes of clarity, the notation of the C�1 projective
functions fαopt;kgC�1

k ¼ 1 and C�1 eigenvectors of V are hereinafter
denoted as α and y.

3.4.4. Semi-supervised spectral regression kernel discriminant
analysis

SS-SRKDA algorithm builds the classification model with an
initial training dataset D¼ fðxi; liÞgMi ¼ 1 and updates it with an
unlabeled feature vector x̂ as described below.

� Step (1) Training SRKDA classifier using the training dataset D
to obtain the initial eigenvectors y of VM , Cholesky decomposi-
tion RM ¼ cholesky ðKMþδIMÞ, and αð0ÞAℜM , where IM is the
M �M size identity matrix. The subscript M denotes the
number of training samples and the notation ð:ÞðjÞ denotes the
j-th iteration.

� Step (2) Finding the predicted label l̂
ð0Þ

for x̂ by using SRKDA
with αð0Þ. Meanwhile, the augmented Cholesky decomposition
RMþ1 ¼ choleskyðKMþ1þδIMþ1Þ can be obtained from the aug-
mented dataset D [ fx̂g since it does not depend on labels. Note
that RMþ1 can be efficiently computed in the incremental
manner. When the Cholesky decomposition RM of the M �M
submatrix KMþδIM is known, the Cholesky decomposition
RMþ1 of the ðMþ1Þ � ðMþ1Þ submatrix KMþ1þδIMþ1 can be
easily computed by Sherman's march algorithm [32,45].

� Step (3) For the j-th iteration, jZ1, training SRKDA with the

augmented training dataset D̂
ðjÞ ¼D [ fx̂; l̂ðj�1Þg to obtain the

eigenvectors ŷðj�1Þ of V̂
ðj�1Þ

. Finally, αðjÞAℜMþ1 is found using

RMþ1AℜðMþ1Þ�ðMþ1Þ and ŷðj�1Þ.
� Step (4) With αðjÞ, finding the predicted label l̂

ðjÞ
for x̂.

� Step (5) If l̂
ðjÞ ¼ l̂

ðj�1Þ
, then the algorithm converged and ter-

minate. Otherwise, repeat the Steps 3–5.

The convergence of the SS-SRKDA algorithm is proved in the
Appendix A.

3.4.5. Sequential updating semi-supervised SRKDA
With an initial training dataset D¼ fðxi; liÞgMi ¼ 1, and the sequen-

tially arriving unlabeled feature vector from i-th trial, fx̂igNi ¼ 1,
SUSS-SRKDA successively updates the classification model as
described below.

� Step (1) After receiving the unlabeled feature vector x̂1 from
the first testing trial, the predicted label l̂1 is found by using
SS-SRKDA trained with the dataset D. Then, the training dataset
is augmented, D̂1 ¼D [ fx̂1; l̂1g.

� Step (2) For each unlabeled feature vector x̂i, the predicted
label l̂i is found by using SS-SRKDA trained with the dataset
D̂i�1. Then, the training dataset D̂i�1 is augmented D̂i ¼
D̂i�1 [ fx̂i; l̂ig. This step is repeated across the whole test
dataset i¼ 2;…;N.

3.4.6. Computational cost analysis
In this section, the computational complexities of the proposed

SS-SRKDA and SUSS-SRKDA are derived in detail. For the sake of
completeness, computational complexity of SRKDA is also
included, although it has been already described by Cai et al.
[32]. We use the same term flam [32], a compound operation
consisting of one addition and one multiplication, to measure the
operation counts.

SRKDA training involves two steps: generating the responses
fykgC�1

k ¼ 1 and solving ðKþδIÞα¼ y. Responses are computed in the
first step by using Gram–Schmidt method, which requires
MC2�1=3C3

flam [32]. The cost of the second step is mainly the
cost of solving C�1 linear equations with Cholesky decomposition
and the cost of computing the kernel matrix K, which require
about 1=6M3þM2C and M2NF flam, respectively [32]. Thus, the
computational cost of SRKDA is about 1=6M3þM2CþM2NFþ
MC2�1=3C3

flam.
The cost of SS-SRKDA is derived as follows. When a new sample

x̂ arrives, SS-SRKDA predicts the label l̂
ð0Þ
. It involves two steps:

the projection of the new test pattern x̂ onto v in the feature space
(Eq. 11) and computing the Euclidean distance to the projected
mean for each class (Eq. 12). The cost of the first step is the cost of
computing K xi; x̂

� �
and the inner product between αopt and

K xi; x̂
� �

, which require MNF and MðC�1Þ flam, respectively. The
cost of the second step is ðC�1Þ2 flam. Now, we consider the cost
of the Cholesky decomposition of the augmented kernel matrix.
We firstly need to calculate the additional part of kernel matrix.
However, it was partially computed before to classify x̂. Therefore,
we only need to compute K x̂; x̂

� �
, which requires NF flam. The

computational cost of incremental Cholesky decomposition is
1=6ðMþ1Þ3�1=6M3

flam [32]. Computing the responses ŷðj�1Þ

needs ðMþ1ÞC2�1=3C3
flam, as explained in the SRKDA analysis.

Besides, updating αðjÞ by solving the C�1 linear equations with the
Cholesky decomposition, which can be done within ðMþ1Þ2C
flam. Updating the predicted label l̂

ðjÞ
for x̂ requires ðMþ1Þ

ðC�1ÞþðC�1Þ2 flam, as explained above. This process is repeated
until the algorithm converges. To sum up, when C⪡M, the
computation cost of incremental SS-SRKDA measured by flam is:
ð1=2þCÞM2þΟðMNF Þ.

Finally, the cost of SUSS-SRKDA is the cost of SS-SRKDA for
classifying the i-th test trial x̂i, namely, ð1=2þCÞðMþ iÞ2þΟðMNF Þ.
It increases as new test trials are integrated into the augmented
training dataset.

4. Results

In this section, the effectiveness of the proposed methods is
evaluated on the publicly available BCI Competition IV dataset 2a.
Four different approaches, SRKDA and SUSS-SRKDA with or with-
out adaptive processing stage are considered. After the model
selection procedure, the corresponding model is optimized on the
training session and, afterwards, applied to the evaluation session.
We obtain test results for each method in terms of accuracy and
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kappa [46]. All the alternatives are compared with other methods
in the literature.

4.1. Design and optimization on the training session

The training session is used to find the optimal configuration of
the number of features selected NF, the regularization parameter δ
of SRKDA, and the update coefficient η of the adaptive processing
stage. The kernel employed is the linear kernel kðx; yÞ ¼ xTy. The
optimal number of features NF and the regularization parameter δ
are jointly determined running 10-fold cross validation on the
training session. The optimization of such parameters is carried
out independently of η. That is, the adaptive processing stage is
removed from the signal processing chain (the update coefficient η
is set to 0) for the cross validation. A wide range of values is
defined in order to analyze their effect on generalization ability: NF

is varied from 1 to 144 units whereas δ takes values between 1 and
120. It is important to note that maximum number of features is
144 and the classification performance clearly decays when the
regularization parameter exceeds 120. Fig. 3 illustrates the 10-fold
cross validation classification results according to the number of
features and the regularization parameter. The performance
becomes higher as NF increases. However, setting NF higher than
about 97 resulted in lower performance due to features with little
relevance are included in the model. Likewise, we observe perfor-
mance increases with δ. However, there is no substantial improve-
ment beyond a given value of δ, which approximately corresponds
to δ¼85. Therefore, the NF and δ are fixed to 97 and 85, resp-
ectively. Finally, identical procedure is applied to configure the
optimal number of features for LDA. EM-LDA and PMean, which
are used as baseline, are based on LDA. We can see the optimal
value is around NF¼35 (Fig. 4).

Having tuned the number of selected features and the regular-
ization parameter, the update coefficient is fixed. It is an important
factor affecting the performance because there is a trade-off
between being highly sensitive to the changes in the global mean
and being robust to noise. With a large η, the estimated mean
follows the changes too truly presenting peaks, whereas, with a
small η, peaks are suppressed but the variations in the real mean
are followed too slowly by the estimation. The optimal value of the

update coefficient depends on the natural sequence of trials.
Therefore, we have to perform chronological validation on the
training session instead of cross validation [47]. The training
session is chronologically split into two subsets containing the
60% and 40% of the training trials. The first subset of data is used to
train a classifier which is then applied to the second subset of data
to evaluate the performance of the classifier. We use this proce-
dure to imitate the online learning scenario over the evaluation
session. For the proposed adaptive algorithms, different config-
urations with η ranging from 0 to 0.2 in steps of 0.01 are evaluated.
The value yielding the highest kappa value is selected as the
optimal η value. Fig. 5 illustrates the kappa values for SRKDA,
SUSS-SRKDA, and PMean methods as the update coefficient varies.
We can see that the classification performance becomes higher in
accordance with the update coefficient. However, the improve-
ment of kappa value slows down after about 0.10 for SRKDA and
SUSS-SRKDA, and after about 0.05 for PMean. The same procedure
is followed to configure the number of recent trials taken into
account in the expectation maximization algorithm of EM-LDA
[18]. After chronological validation, the optimal number of recent
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Fig. 3. Influence of the number of features NF and regularization parameter δ on the performance of SRKDA. On the left, the plot shows the dependence between the mean
kappa value and NF when δ takes the optimum value, δ¼85. On the right, the plot shows the dependence between the mean kappa value and δ when NF takes the optimum
value, NF¼97. Although both parameters are jointly determined running 10-fold cross validation, for the sake of clarity, we show the result for each parameter in two
separate plots.
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Fig. 4. Influence of the number of features NF on the performance of LDA. PMean
and EM-LDA are based on LDA.
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trials is 42. These values are selected as the optimum for the rest of
the experiments on the unseen evaluation session.

4.2. Performance assessment on the evaluation session

Table 1 summarizes the performances of the four proposed
methods on the evaluation session. According to the evaluation
rules of the BCI Competition, each column in Table 1 contains the
maximum accuracy and kappa achieved throughout the time
course of the paradigm for each method. The highest classification
performance for each subject is in boldface. The results evidence
the superiority of the methods using self-training. Moreover, the
mean performance is further increased by the adaptive stage. The
method with adaptive processing and semi-supervised learning
yields the highest mean accuracy (77%) and Cohen's kappa
coefficient (0.70) in the multiclass problem. It is important to note
that, although self-training alone (without the adaptive stage)
achieves higher performance than SRKDA on average, the effect is
just the opposite in the cases of the subjects with low perfor-
mance, A2, A4, A5, A6, where A9 is the exception. Conversely, the
degradation is avoided when the adaptive stage is used. SUSS-
SRKDA outperforms SRKDA for all subjects with the exception of
the subject A6.

Fig. 6 shows an example of accuracy evolution of SRKDA (η¼0)
and SUSS-SRKDA (η¼0) with different evaluation trials. Although
SRKDA outperforms SUSS-SRKDA at the beginning of the evalua-
tion session, its performance is reduced at the end, which can be

explained by changes in brain signal properties. On the contrary,
SUSS-SRKDA reverses the trend of gradual deterioration because of
updating the model with the evaluation trials. An example of the
adaptation process is also depicted. We see that, upon the arrival
of a new test trial, self-learning algorithm updates the model and
converges in few iterations. The maximum number of iterations
observed is 6. Although we show the adaptation process for one
trial, similar results are found for the remainder. Worth mention-
ing is also the computation time over the evaluation session. As
discussed earlier, this time depends on the number of evaluation
trials already processed. Fig. 7 shows the CPU-time needed to
classify the i-th evaluation trial using an Intel Core i7-2600 @
3.40 GHz processor and 16 GB RAM. Solid black line corresponds to
the polynomial growth Οði2Þ.

Table 2 shows the comparison of our methods against the
winner of the BCI Competition dataset 2a [10], other seven recent
methods tested on this dataset [8,36–41] as well as the EM-LDA
[18] and PMean [24]. Likewise, LDA results were reported as a
baseline. Cohen's Kappa coefficient has been considered because
just this evaluation criterion was used in the BCI Competition IV
dataset 2a. The highest performance for each subject is highlighted
in boldface. Although there is high variability in classification
performance over subjects, overall our methods with adaptive
stage clearly outperform all previously published methods. Table 3
presents the results of Wilcoxon statistical test [48] to evaluate the
statistical significance of the difference between the performance
of SUSS-SRKDA (η40) and the other methods reported in Table 2.

Finally, the presence of outliers could affect the sequential
estimation over the evaluation session. The BCI Competition IV
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Fig. 5. Performance variation of SRKDA, SUSS-SRKDA, and PMean methods over
update coefficient of the exponential rule used in the adaptive processing stage. In
order to estimate the optimal update coefficient, the training session is chron-
ologically split into two subsets containing the 60% and 40% of the training trials.
The first subset of data are used to train a classifier which is then applied to the
second subset of data to evaluate the performance of the classifier.

Table 1
Evaluation results obtained by applying SRKDA and SUSS-SRKDA with or without
adaptive processing stage to the evaluation session from the BCI Competition IV
dataset 2a.

Subjects No adaptation ðη¼ 0Þ Adaptation ðη40Þ

SRKDA SUSS-SRKDA SRKDA SUSS-SRKDA

Acc. (%) Kappa Acc. (%) Kappa Acc. (%) Kappa Acc. (%) Kappa

A1 85 0.81 86 0.81 86 0.81 87 0.83
A2 61 0.48 60 0.47 62 0.49 64 0.51
A3 81 0.74 85 0.80 90 0.87 91 0.88
A4 72 0.63 71 0.61 74 0.65 76 0.68
A5 56 0.42 54 0.38 65 0.53 67 0.56
A6 51 0.34 48 0.31 53 0.38 51 0.35
A7 89 0.86 94 0.92 90 0.87 92 0.90
A8 86 0.81 88 0.84 87 0.83 88 0.84
A9 68 0.57 72 0.62 80 0.73 81 0.75
Average 72 0.63 73 0.64 76 0.68 77 0.70

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Iteration
0 1 2

0.8310

0.8312

0.8314

0.8320

A
cc

ur
ac

y

A
cc

ur
ac

y

0.8316

0.8318

SRKDA (η = 0)
SUSS-SRKDA (η = 0)

SUSS-SRKDA

50 100 150 200 250
Evaluation trial

Fig. 6. Accuracy evolution of SRKDA (η¼0) and SUSS-SRKDA (η¼0) with different
evaluation trials (Data from Subject A3). The accuracy is sequentially computed
based on the actual label of the i-th evaluation trial and the actual labels of the
trials that have been so far classified. In addition, figure shows an example of
accuracy evolution of SUSS-SRKDA with different iterations while the algorithm is
classifying the 155th evaluation trial and updating the model.
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Fig. 7. CPU-time for each trial in test session. Data from Subject A1.
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dataset 2a includes several trials marked as artifacts by an exp-
ert. Following the competition criterion, we had discarded these
trials in training and evaluation sessions. Then, we repeated the
experiments including both valid and invalid trials to show the
resilience of our methods to outliers. The results show that the
performances of the proposed methods are not negatively affected
by outliers. SRKDA (η¼0), SUSS-SRKDA (η¼0), SRKDA (η40), and
SUSS-SRKDA (η40) produce mean kappa values of 0.62, 0.64,
0.68, and 0.70, respectively. They are equal or very similar to the
ones obtained rejecting invalid trials: 0.63, 0.64, 0.68, and 0.70
(Table 1). Wilcoxon's test reveals no significant differences (p-
values¼0.8828, 0.9834, 0.8798, and 0.7785).

5. Discussion and conclusions

In this paper, we study the combination of adaptive processing
and semi-supervised learning to discriminate four imaginary
motor tasks. Four classification algorithms, SRKDA and SUSS-
SRKDA with or without adaptive processing stage are presented.
A filter bank and the CSP algorithm are employed in the feature
extraction stage. The proposed approaches are assessed on EEG
signals of 9 subjects provided by the BCI Competition IV dataset
2a. A comparative study amongst all our approaches and other
nine methods using the same dataset is carried out. Our findings
suggest that the method joining semi-supervised learning and
adaptive processing can significantly increase the classification

performance in multiclass settings. SUSS-SRKDA with adaptive
processing yields the highest average classification performance:
accuracy 77% and Cohen's kappa coefficient 0.70.

Classification performance analysis showed that online semi-
supervised learning by itself obtains higher accuracy and kappa on
average across the 9 subjects. This result agrees with other
previous studies, where the classification accuracy is improved
with the introduction of unlabeled data into model training [21–
23]. The increase of performance can be associated with the
enhancement of adaptability to non-stationary EEG signals since
self-training uses new incoming data to update the classifier.
However, our results also show that further greater performance
is reached when adaptive processing before classification is
introduced. The main concern of self-training is that feature
vectors from different sessions are considered to build and update
a single model. As was reported in previous studies [25,49],
feature vectors extracted from EEG data of different sessions
follow different probability distributions. The non-stationarity
often leads to lower classification performances when it is
assumed that a single model is valid across different sessions. This
is a crucial point given that self-training suffers from the mistake-
reinforcing danger implying that some classification mistakes can
reinforce itself [50]. Therefore, self-training algorithms should
include some sort of procedure that give more importance to the
most recent feature vectors or minimize the mismatch between
sessions before classification. Vidaurre et al. [24] already alluded to
this idea by proposing three adaptive versions of the well-known
LDA method, where the bias term and covariance matrices were
estimated recursively by an unsupervised adaptive procedure that
involved a forgetting factor. The methodology proposed in our
paper consists of a semi-supervised method in addition to redu-
cing session-to-session non-stationarity before classification. Our
results support that minimizing the inter-session difference boosts
the effectiveness of self-training. The adaptive stage removes the
non-stationarity in terms of fluctuations in the global mean.
EWMA estimates the changes in the global mean across the trials
giving more importance to the more recent ones. The evolution of
the global mean over the time is independent of the tasks and can
be addressed without the need to know the labels.

Fig. 8 illustrates the impact of the adaptive stage in the density
distribution of the projected features after applying the Eq. (11) of the
SRKDA method. Since features vary across the time, we select the
2 second window where the highest kappa value of the subject 9 is
produced. The mean and variances of the feature distributions for
four classes are represented with darker-grey ellipsoids (training
session) and lighter-grey ellipsoids (evaluation session). On the left,

Table 2
Kappa values of the proposed and competing methods on the BCI Competition IV Dataset 2a.

Method Subjects AVG

A1 A2 A3 A4 A5 A6 A7 A8 A9

Ang et al. [10] 0.68 0.42 0.75 0.48 0.40 0.27 0.77 0.75 0.61 0.57
Gouy-Pailler et al. [8] 0.66 0.42 0.77 0.51 0.50 0.21 0.30 0.69 0.46 0.50
Wang [36] 0.67 0.49 0.77 0.59 0.52 0.31 0.48 0.75 0.65 0.58
Barachant et al. [37] 0.74 0.38 0.72 0.50 0.26 0.34 0.69 0.71 0.76 0.57
Wang et al. [38] 0.56 0.41 0.43 0.41 0.68 0.48 0.80 0.72 0.63 0.57
Kam et al. [39] 0.74 0.35 0.76 0.53 0.38 0.31 0.84 0.74 0.74 0.60
Asensio-Cubero et al. [40] 0.75 0.50 0.74 0.40 0.19 0.41 0.78 0.72 0.78 0.59
Asensio-Cubero et al. [41] 0.76 0.32 0.76 0.47 0.31 0.34 0.59 0.76 0.74 0.56
LDA 0.76 0.41 0.83 0.56 0.35 0.26 0.79 0.73 0.53 0.58
Blumberg et al. [18] (EM-LDA) 0.59 0.41 0.82 0.57 0.38 0.29 0.79 0.80 0.72 0.60
Vidaurre et al. [24] (PMean) 0.76 0.38 0.87 0.60 0.46 0.34 0.77 0.76 0.74 0.63
SRKDA(η¼0) 0.81 0.48 0.74 0.63 0.42 0.34 0.86 0.81 0.57 0.63
SUSS-SRKDA(η¼0) 0.81 0.47 0.80 0.61 0.38 0.31 0.92 0.84 0.62 0.64
SRKDA(η40) 0.81 0.49 0.87 0.65 0.53 0.38 0.87 0.83 0.73 0.68
SUSS-SRKDA(η40) 0.83 0.51 0.88 0.68 0.56 0.35 0.90 0.84 0.75 0.70

Table 3
Wilcoxon test results (p-values) evaluating the statistical significance of the
difference between the performance of SUSS-SRKDA (η40) and the other methods
reported in Table 2.

Subject p-Value

SUSS-SRKDA (η40) versus Ang et al. [10] 0.0020
SUSS-SRKDA (η40) versus Gouy-Pailler et al. [8] 0.0020
SUSS-SRKDA (η40) versus Wang [36] 0.0020
SUSS-SRKDA (η40) versus Barachant et al. [37] 0.0059
SUSS-SRKDA (η40) versus Wang et al. [38] 0.0762
SUSS-SRKDA (η40) versus Kam et al. [39] 0.0020
SUSS-SRKDA (η40) versus Asensio-Cubero et al. [40] 0.0020
SUSS-SRKDA (η40) versus Asensio-Cubero et al. [41] 0.0176
SUSS-SRKDA (η40) versus LDA 0.0020
SUSS-SRKDA (η40) versus Blumberg et al. [18] (EM-LDA) 0.0020
SUSS-SRKDA (η40) versus Vidaurre et al. [24] (PMean) 0.0020
SUSS-SRKDA (η40) versus SRKDA (η¼0) 0.0020
SUSS-SRKDA (η40) versus SUSS-SRKDA (η¼0) 0.0117
SUSS-SRKDA (η40) versus SRKDA (η40) 0.0391
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we can clearly see inter-session mean shifts and rotations on the
distributions. On the right, the same distributions are shown, but the
mean shifts are reduced. Note that new patterns are classified by
SRKDA on the basis of the Euclidean distance to the projected mean
for each class according to Eq. (12), which is computed during the
training session. Hence, reducing the inter-session mean shifts
indeed achieves to decrease the misclassification rate.

Within the comparative analysis shown in the Table 2, SUSS-
SRKDA with or without adaptive stage outperforms EM-LDA and
PMean. The key point is that, whereas EM-LDA and PMean are
based on LDA, SUSS-SRKDA updates a more powerful classifier that
takes advantage of a regularized linear kernel approach. LDA
assumes the covariance matrices of both classes to be equal and
relies on the estimation of this common covariance matrix, which
might be highly biased [33]. The estimation results in a high
variability when the number of samples is small compared to the
dimensionality. It is recommended to use, at least, five to ten times
as many training samples per class as the dimensionality of feature
vectors [51]. Indeed, due to this circumstance, it can be observed
the optimal number of features found by cross-validation is lower
for LDA than SRKDA (35 for LDA versus 97 for SRKDA). At this
point, regularization [52] could be a simple and effective improve-
ment of the EM-LDA and PMean methods. On the other hand,
other more complex model involving non-linear kernels could be
tried to improve the performance. However, some studies report
non-linear methods perform only slightly better in motor EEG
classification [53,54]. Furthermore, Liao et al. [20] evaluated a
TSVM with either linear or Gaussian kernel on a set of EEG
recordings of three subjects performing three mental tasks finding
the non-linear method did not provide superior performance.

Another benefit of our sequential updating method with
SRKDA is the lower computational requirement with respect to
KDA. KDA cannot efficiently incorporate a new data sample as it
becomes available [32]. Retraining the model with the augmented
dataset by means of the standard KDA is computationally expen-
sive because it involves eigen-decomposition of the kernel matrix,
which can be unacceptable when a large amount of training
samples exists. Instead, SRKDA only needs to solve a linear system
of equations that can be efficiently solved by Cholesky decom-
position. Comparing with other semi-supervised kernel classifiers
in MI-BCI, semi-supervised SVMs have been also shown to

improve the performance of the brain state classification using
unlabeled data [20,21] but it suffers from high computational
complexity, which might make its online applicability difficult.

Some limitations of this research have to be considered. Firstly,
although semi-supervised learning and adaptation processing are
able to increase classification performance, there may be even
more room for improvement. The adaptive stage only deals with
the non-stationarity in terms of changes in the global mean. Note
that the classification performance is also affected by fluctuations
in the position of each class-centroid as well as rotations in the
class distributions. In this research, these issues are compensated
to some extent by the self-training algorithm, which promptly
incorporates new incoming data to update the classification
model. However, as above discussed, forgetting the most out-of-
date information could yield higher performance. On the other
hand, our feature extraction method based on spatial filtering with
CSP does not consider inter-session fluctuations. For instance, Li
and Guan [19] showed that performance can be improved updat-
ing jointly spatial filters and classifier with semi-supervised
learning. Secondly, although the complexity of sequential updating
has been considerably reduced thanks to the use of SRKDA instead
of KDA, it still grows with more and more data samples involved in
updating step. Thirdly, and finally, further analysis about the
performance gain with semi-supervised learning is required. It is
of interest to understand why semi-supervised learning improves
performance in some subjects whereas reduces it for others.
Future work should find new methods that embed forgetting
factors into semi-supervised learning or procedures that minimize
the inter-session non-stationarity in terms of the position of the
class-centroids as well as the rotations before classification. It is of
particular importance in multiclass settings. Likewise, spatial filter
updating along with SUSS-SRKDA should be tested as a mean of
further increasing the performance. For the sake of the applic-
ability in real environments, approaches whose complexity does
not monotonically increase as more trials are processed should be
considered. In this regard, approaches that limit the complexity by
restarting the sequential updating procedure at a regular basis
could be contemplated. Lastly, theoretical studies based on prob-
ably approximately correct (PAC) learning theory [55,56] could
provide a framework for capturing which subjects unlabeled data
can help.
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In summary, this work presents a new methodology that involves
adaptive processing and a semi-supervised method such as self-
training. Either combined or separate use of these two elements has
been evaluated on a multiclass environment. This study provides
evidences that adaptive processing before classification can highlight
the advantages of self-training. Although self-training enhances by
itself the adaptability to non-stationary EEG data, reducing the
intersession non-stationarity increases the performance of multiclass
motor imagery-based BCIs. In addition, this work introduces a new
sequential updating semi-supervised algorithm. It has the advantage
of being developed in a recursive manner, which hugely reduces the
computational effort. Finally, we would like to note that the proposed
classification methods are of great interest for real-life BCI systems
because they mean that model trained during the first session of
training can be used with acceptable classification accuracy during
the following sessions. Furthermore, they are by no means limited to
multiclass MI-BCIs, but also they are applicable to other kinds of
single-trial EEG classification problems.
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Appendix A

In this appendix we give a proof of the convergence of SS-
SRKDA. For the SS-SRKDA, the associated cost function at the j-th
iteration is defined as [32]

Ψ ðjÞðαÞ ¼
XM
i ¼ 1

ðΘðxi;αÞ� ŷðj�1Þ
i Þ2

þðΘðxi;αÞ� ŷðj�1Þ
Mþ1Þ2þδ‖Θ‖2K ; ðA:1Þ

where ŷðjÞi is the i-th element of ŷðjÞ, Θðx;αÞ is the projective
function in the feature space defined in Eq. (9), δ is the regular-
ization term, and ‖‖K is the corresponding norm in a RKHS defined
by the positive definite kernel Kðx; yÞ [57]. SS-SRKDA converges if
the associated cost for each iteration Ψ ðjÞðαðjÞÞ also converges.

According to Steps 1 and 2 of SS-SRKDA algorithm, αð0Þ is

computed with dataset D¼ fðxi; liÞgMi ¼ 1, and the predicted label l̂
ð0Þ

of x̂ obtained.
According to the Step 3, for iteration j�1 ðjZ2Þ, αðj�1Þ is

computed with the augmented dataset D̂
ðj�1Þ ¼D [ fx̂; l̂ðj�2Þg. The

cost of this iteration is given by

Ψ ðj�1Þðαðj�1ÞÞ ¼
XM
i ¼ 1

ðΘðxi;αðj�1ÞÞ� ŷðj�2Þ
i Þ2

þðΘðx̂;αðj�1ÞÞ� ŷðj�2Þ
Mþ1Þ2þδ‖Θ‖2K : ðA:2Þ

With αðj�1Þ, the label l̂
ðj�1Þ

of x̂ and the corresponding ŷðj�1Þ are

found. Replacing ŷðj�2Þ with ŷðj�1Þ, we obtain the updated cost

Ψ̂
ðj�1Þðαðj�1ÞÞ ¼

XM
i ¼ 1

ðΘðxi;αðj�1ÞÞ� ŷðj�1Þ
i Þ2

þðΘðx̂;αðj�1ÞÞ� ŷðj�1Þ
Mþ1Þ2þδ‖Θ‖2K : ðA:3Þ

It is straightforward that Ψ̂
ðj�1Þðαðj�1ÞÞrΨ ðj�1Þðαðj�1ÞÞ. If the

equality holds then the predicted label of the augmented dataset
was not actually updated and the algorithm has converged.

Otherwise, the model is retrained in the next iteration with the
augmented training dataset D̂

ðjÞ ¼D [ fx̂; l̂ðj�1Þg to obtain αðjÞ. The
new cost is given by

Ψ ðjÞðαðjÞÞ ¼
XM
i ¼ 1

ðΘðxi;αðjÞÞ� ŷðj�1Þ
i Þ2

þðΘðx̂;αðjÞÞ� ŷðj�1Þ
Mþ1Þ2þδ‖Θ‖2K ; ðA:4Þ

where Ψ ðjÞðαÞ ¼ Ψ̂
ðj�1ÞðαÞ for any α. It is known that Ψ ðjÞðαðjÞÞr

Ψ ðjÞðαÞ for any α, since Ψ ðjÞðαÞ has a minimum at αðjÞ. Hence, after
each iteration, the cost is non-negative and becomes lower,
Ψ ðjÞðαðjÞÞrΨ ðjÞðαðj�1ÞÞ ¼ Ψ̂

ðj�1Þðαðj�1ÞÞrΨ ðj�1Þðαðj�1ÞÞ. Therefore,
the algorithm will arrive at the infinitum where the classifier
and the labels remain unchanged, i.e., SRKDA converges.
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