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 

Abstract— Practical motor imagery-based brain computer 

interface (MI-BCI) applications are limited by the difficult to 

decode brain signals in a reliable way. In this paper, we propose 

a processing framework to address non-stationarity, as well as 

handle spectral, temporal, and spatial characteristics associated 

with execution of motor tasks. Stacked generalization is used to 

exploit the power of classifier ensembles for combining 

information coming from multiple sources and reducing the 

existing uncertainty in EEG signals. The outputs of several 

regularized linear discriminant analysis (RLDA) models are 

combined to account for temporal, spatial, and spectral 

information. The resultant algorithm is called stacked RLDA 

(SRLDA). Additionally, an adaptive processing stage is 

introduced before classification to reduce the harmful effect of 

intersession non-stationarity. The benefits of the proposed 

method are evaluated on the BCI Competition IV dataset 2a. We 

demonstrate its effectiveness in binary and multiclass settings 

with four different motor imagery tasks: left-hand, right-hand, 

both feet, and tongue movements. The results show that adaptive 

SRLDA outperforms the winner of the competition and other 

approaches tested on this multiclass dataset. 

 

Index Terms— Adaptive estimation, Brain Computer 

Interfaces, Classifier ensembles, Common spatial pattern, 

Electroencephalography, Linear Discriminant Analysis, Stacked 

generalization. 

I. INTRODUCTION 

RAIN computer interfaces (BCIs) are becoming more 

popular as a mean to improve the quality of life of 

severely disabled people and, at the same time, reduce the cost 

of intensive care [1]. BCIs enable humans to interact with their 

surroundings, without the involvement of peripheral nerves 

and muscles, by using control signals generated from brain 
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activity. An alternative non-muscular communication channel 

is created to translate brain activity directly into sequences of 

control commands for external devices such as computers, 

speech synthesizers [2], assistive appliances [3], and neural 

prostheses [4] amongst many others. 

 Sensorimotor rhythms have been widely applied for 

relaying commands in BCI research [5]. Changes in the 

amplitude of sensorimotor rhythms, known as event-related 

desynchronization/synchronization (ERD/ERS) [6], can be 

detected from electroencephalography (EEG) signals when 

cerebral activity is related to any motor task, even without 

performing actual movement [7]. However, the applicability 

of sensorimotor rhythms in real environments is still limited 

by low transfer rates [8]. Motor imagery based-BCIs (MI-

BCIs) or sensorimotor-based BCIs (SMR-BCIs) are usually 

designed to transmit just two different commands 

corresponding to two brain states: left and right hand 

movements. Extending the number of tasks naturally increases 

misclassification rate because there is a trade-off between 

number of classes and accuracy [8]. In recent years, temporal, 

spectral, and spatial features [9-14], as well as combination of 

feature vectors extracted from independent physiological 

sources [8] have been researched to enhance MI-BCI 

performance and speed up communication. With this purpose, 

a new processing algorithm is presented in this paper. 

Non-stationarity of brain activity is a major issue to robust 

operation of BCIs [15]. Diverse behavioral and mental states 

continuously change the statistical properties of brain signals. 

Although there may be multiple types of non-stationarity, we 

focus on the intersession non-stationarity and temporal 

variability. The intersession non-stationarity refers to the fact 

that patterns observed during calibration sessions are different 

from those recorded during subsequent online sessions [15]. 

BCI systems are often calibrated by supervised learning during 

training sessions. They assume that feature vectors extracted 

from EEG data of different sessions follow similar probability 

distributions. Hence, non-stationarity can result in degraded 

performance. Several adaptive techniques such as expectation-

maximization-based adaptation [16-19], transductive learning 

[20], self-training [21-23], bias adaptation [15, 24], covariate 

shift adaptation [25, 26], data space adaptation (DSA) based 

on the Kullback-Leibler divergence [27], or dynamic Bayesian 

classifiers based on the Kalman filter [28-30] were proposed 
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to address non-stationarity in BCI. Within multiclass MI-BCI 

context, Xu et al. [31] proposed a new adaptive multiclass 

classifier that enlarged training dataset by adding unlabeled 

test samples. The increase of performance can be associated 

with the enhancement of adaptability to non-stationary EEG 

signals since new incoming data is used to update the 

classifier. However, the method does not give more 

importance to the most recent feature vectors. We share the 

perspective presented by Vidaurre et al. [24] that adaptive 

algorithms should include a forgetting factor. Llera et al. [32] 

and Nicolas-Alonso et al. [33] extended the adaptive method 

proposed by Vidaurre et al. [24] to multiclass settings. 

Continuing this working line, we use an adaptive processing 

stage before classification stage that estimates and reduces the 

mismatching running exponentially weighted moving average 

(EWMA). 

Temporal variability in motor imagery tasks arises because 

of the changing brain dynamics and difficulty of performing 

long-term mental tasks by users. It results in the detectable 

ERD/ERS events not occurring in fixed time segments [34]. It 

can be reduced by constraining experimental conditions. 

Synchronous MI-BCI provides users with a cue that indicates 

when the mental task should be executed [35]. However, the 

task of generating adequate ERD/ERS patterns could be 

unintentionally delayed. In an effort to address such a 

problem, methods involving temporal features [36-38] or 

dynamic classifiers such as hidden Markov models (HMMs) 

[39], conditional random fields (CRFs) [40] or hidden CRFs 

(HCRFs) [40] have been used in binary MI-BCIs. Regarding 

multiclass MI-BCIs, HMMs [41] or CRF [42] have been 

tested to classify five tasks (four motor tasks and one 

arithmetic task) and three motor tasks (imagery of the left and 

right hands and the feet), respectively. More recently, 

Asensio-Cubero et al. [13] developed a multiclass common 

spatial pattern (CSP)-based algorithm that automatically 

segmented motor imagery EEG data within a trial to extract 

spatio-temporal information.  

Reliable communication with multiclass MI-BCIs seems to 

require handling information from different domains. 

Ensemble learning appears to be particularly suitable for 

combining information from multiple sources. It has been 

successfully applied to a wide range of real world problems 

[43]. The main advantage of such a technique is that the 

variance and bias can be simultaneously reduced [44]. Voting 

[45-48], bagging [49], boosting [49, 50], and stacked 

generalization [49, 51] have been the main types of classifier 

ensembles in BCI research. They have not been applied to deal 

with temporal variability yet. In the current study, we 

investigate whether stacked generalization can increase 

reliability of multiclass MI-BCI combining temporal, spatial, 

and spectral information.  

The aim of this study is to propose an approach based on 

adaptive ensemble learning that addresses the intersession 

non-stationarity and temporal variability in motor imagery 

EEG data. The novelty of our approach lies in two 

components. Firstly, adaptive processing with EWMA is 

introduced in order to ameliorate the intersession non-

stationarity effects on classification performance. Secondly, 

we propose an ensemble classification method that employs 

stacked generalization to handle multiple information sources. 

Several regularized linear discriminant analysis (RLDA) 

models are combined to account for temporal, spatial, and 

spectral information in EEG data. The resultant algorithm is 

called stacked RLDA (SRLDA). The benefits of the adaptive 

stage and stacked generalization are evaluated on the BCI 

Competition IV dataset 2a [52].  

II. BCI COMPETITION IV DATASET 2A DESCRIPTION 

BCI Competition IV dataset 2a was provided by Graz 

University [52] and contains EEG data from 9 healthy subjects 

performing four motor imagery tasks: movement of the left 

hand, right hand, feet, and tongue. The dataset provides two 

sessions for each subject, one for training and the other for 

evaluation, recorded on different days. Each session includes 

288 trials of data (72 for each of the four possible tasks). The 

electrode montage consisted of 22 EEG channels and 3 

monopolar electrooculogram (EOG) channels (with left 

mastoid serving as reference). In the current study, we use 

only the EEG channels. The signals were sampled at 250 Hz 

and band-pass filtered between 0.5 Hz and 100 Hz. A 50 Hz 

notch filter was also applied to suppress power line noise. 

The recording protocol was as follows. At the beginning of 

each trial, a cross was shown on the black screen and a short 

warning tone was given. At second 2, a cue in the form of an 

arrow pointing to the left, right, down, or up (corresponding to 

one of the four classes: left hand, right hand, foot or tongue) 

was presented during 1.25 s. At the given signal, the subjects 

performed the corresponding motor imagery task until the 

cross disappeared from the screen at second 6. Refer to 

Tangermann et al. [52] for further details on the BCI 

Competition IV dataset 2a. 

III. PROPOSED METHOD 

Fig. 1 illustrates the architecture of the proposed signal 

processing chain. EEG signals are processed by five stages: 

multiple band-pass filtering using Finite Impulse Response 

(FIR) filters, spatial filtering using the CSP algorithm, feature 

selection, adaptive processing, and SRLDA. All of them 

except band-pass filtering are optimized using the labelled 

trials from the training session. The optimized algorithm is 

then used to predict the motor imagery task for each trial over 

the evaluation session. Feature vectors are computed using a 

sliding 2-second window of EEG data. Therefore, 

classification output is not generated during the first 2 

seconds. As the computation and classification of feature 

vectors at every sample is computationally intensive, the 

output was only computed on every alternate 10th time sample. 

That is, every time that features are extracted, the sliding 

window moves forward 10 samples. Thus, given the sampling 

frequency of 250 Hz, 25 feature vectors are computed per 

second. Following sections further explain each stage of the 

proposed signal processing chain. 
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A. Feature extraction and selection 

1) Band-pass filtering 
The first stage consists of a filter bank that splits the EEG 

into 9 spectral pass bands: 4-8 Hz, 8-12 Hz,…, 36-40 Hz [12]. 

Nine FIR filters designed by means of Kaiser Window are 

used. FIR filters have linear phase, which does not distort the 

phase of the filtered signal. It makes them particularly suitable 

for filter banks. The transition bandwidth is set at 1 Hz. 

Although other configurations are as effective, this transition 

bandwidth yields a reasonable order filter and discriminative 

capacity between spectral bands.  

 

2) Spatial filtering 

 The second stage spatially filters each band-pass signal 

using CSP [53]. CSP was originally devised for the analysis of 

multichannel data belonging to 2-class problems. Then, 

although other options are feasible in multiclass problems, we 

adopt the one-versus-rest approach [9]. Spatial filters for 

multiclass motor imagery classification are computed on the 

basis of the trials for each class versus the trials for all other 

classes.  

Not all CSP filters are relevant for subsequent 

classification. The discriminative power of a spatial filter is 

related to its associated eigenvalue. Therefore, we extract 4 

features corresponding to the filter with the 2 highest and the 2 

lowest eigenvalues [12]. We obtain 4 features for binary 

classification and 16 for 4-class classification as a result of 

repeating the CSP algorithm for each class. Finally, the 

features of the 9 spectral bands are concatenated to form a 

single feature vector of 36 and 144 features, respectively. 

 

3) Feature selection 

The third stage selects the most discriminative spatio-

spectral features using mutual information-based best 

individual feature (MIBIF) algorithm [12]. Features are sorted 

according to mutual information in descending order. The first 

features are then selected. The number of selected features is a 

free parameter tuned by 10-fold cross validation (CV) on the 

training session. More details are given below. 

B. Classification 

1) Adaptive processing 

The adaptive processing stage removes the non-stationary 

bias from each feature. Every incoming feature vector is 

centered by subtracting the global mean. Firstly, data from all 

training session are used to estimate the global mean. Across 

the evaluation session, upon the arrival of a new sample at the 

time t from the i-th evaluation trial, the global mean G( i , t)  is 

updated by means of EWMA. EWMA estimates the global 

mean by an amount that is proportional to the most recent 

forecast error. The sequential estimates are given by 

 

 ),(),1()1(),( GG tititi xμμ       (1) 

 

where x ( i , t)  is the current input feature vector of the i-th 

evaluation trial at the time t and η is the update coefficient, 

which has to be configured by the user.  

EWMA has been widely used for mean estimation in noisy 

environments [54] and fits with the idea of adaptation in BCI 

applications, as proposed by Vidaurre et al. [24]. More 

importance is given to the most recent terms in the time series 

rather than older data. Simple algebraic manipulation reveals 

that µG( i , t)  can be written as a weighted average of all past 

observations, in which weights for older samples decay 

exponentially. Vidaurre et al. [24] proposed an adaptive 

binary LDA based on EWMA. In this study, we extend the 

work to multiclass problems and other classifiers such as 

regularized LDA and stacked classifiers. It should be noted 

that both approaches are quantitatively the same in binary 

settings when non-regularized LDA is used.  

 

2) Regularized linear discriminant analysis 

LDA is the basis of our classifier ensemble SRLDA. We 

use binary and multiclass versions of LDA [55] for binary and 

multiclass motor imagery classification. LDA is a standard 

 
Fig. 1. Architecture of the signal processing chain. Adaptive SRLDA classifier is illustrated in detail. The adaptive processing stage reduces the intersession 

non-stationarity between training and evaluation session. Level-0 RLDA models classify the selected CSP features over the time producing a score sequence. 

Then, the scores are combined with a sliding window.  Finally, level-1 RLDA models make the final prediction sequence using the combined scores as features. 
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tool for classification and dimension reduction that seeks 

linear projections of features. The distance between class 

means is maximized while the class variance is minimized 

[55]. Linear classification has provided accurate results 

without high computational requirements in numerous BCI 

applications [56-58]. Although LDA has been proven to be 

reasonably robust in multiple contexts, if the number of 

features is comparable to the number of observations, the 

estimate model can become highly unstable, giving rise to 

high variance [59]. Applying regularization reduces the 

variance ensuring good generalization ability for unseen data. 

In this work, we adopt the Ridge regularization by adding 

some constant values to the diagonal elements of the within-

class scatter matrix [55]. The regularization penalty is 

controlled by a free parameter  that is empirically tuned 

by 10-fold CV on the training session. 

 

3) Stacked regularized linear discriminant analysis 

Stacked generalization is a way of constructing classifier 

ensembles combining multiple models to induce a higher-level 

classifier with improved performance [60]. Stacking 

introduces the concept of metalearning where the input of the 

metamodels, also called the level-1 models, consists of the 

predictions of the base models, or level-0 models. When 

stacked learning is used for classification, the extracted 

features are first fed into the level-0 models, and each one 

produces a score for each possible class. Then, the outputs of 

level-0 models are fed into the level-1 models, which combine 

them into the final prediction. 

In an attempt to exploit the temporal structure of EEG, we 

take advantage of stacking to combine spatial, spectral, and 

temporal information over the trial. The architecture of the 

SRLDA is illustrated in Fig. 1. In the first stage or level-0, a 

set of regularized RLDA models processes the CSP features, 

which provide spatial and spectral characterization of EEG 

signal. We build a different classifier for each feature vector, 

that is, 25 RLDA models per second. Each of them produces C 

– 1 scores, where C is the number of classes. In the second 

stage or level-1, the output of the RLDA classifiers is then fed 

into another regularized RLDA classifier in order to treat the 

temporal information throughout the trial. According to Ting 

and Witten [61], linear projections rather than class 

predictions are used as input. This second level determines the 

task that the subject is performing.  

Temporal information is stacked in a sliding fashion as can 

be noted in Fig. 1. This is because information at the 

beginning of the trial may have little to do with the 

information at the end. The size of the sliding window 

determines the number of level-0 models combined by each 

level-1 model. This parameter is configured by CV to 

optimize performance. It should be pointed that, at the 

beginning of the trial, shorter sliding windows are used. It 

ensures that classification output is produced even if the 

number of score samples is less than the length of the window. 

SRLDA does not require delaying the feedback until having 

recorded enough EEG samples. Given that CSP in feature 

extraction stage already delays the feedback 2 seconds, we 

have designed SRLDA in such a way to avoid delaying the 

feedback even more. 

Finally, we would like to emphasize an issue to train the 

level-1 classifiers. If all instances from the training session are 

used to build the level-0 models and the corresponding 

predictions to train the level-1 model, then too simplistic rules 

are learned by the level-1 models [62]. This is because the 

same data are exploited to train and predict the instances 

needed in the level-1. Then, to imitate the scenario during the 

evaluation session, we perform leave-one-out CV for every 

level-0 classifier. Each instance in the training session is 

predicted using the model trained with the remaining data. 

Now, the level-0 models have not been trained on the instance 

to be predicted, therefore their predictions are unbiased. Once 

the level-1 input data have been generated by this holdout 

procedure, the level-0 classifiers are retrained on the full 

training dataset to make slightly better use of the data and 

leading to better prediction in the test session. 

IV. RESULTS 

 In this section, we describe our experiments on the publicly 

available BCI Competition IV dataset 2a. Performance 

analyses are conducted on both binary and multiclass datasets. 

For binary tests, we split the multiclass dataset into 6 cases: 

left-hand versus right-hand, left-hand versus foot, left-hand 

versus tongue, right-hand versus foot, right-hand versus 

tongue, and foot versus tongue. The effectiveness of the 

proposed adaptive or non-adaptive SRLDA is analyzed and 

compared against non-regularized LDA, adaptive or non-

adaptive RLDA, as well as some adaptive methods in BCI 

literature, namely, DSA [27], MPMLDA with equal 

responsibilities [32], and MPMLDA [32]. All these methods 

are tested in combination with the filter bank, CSP, and 

MIBIF. Although DSA was proposed for classifying two 

motor imagery tasks, it can be directly extended to multiclass 

classification. We use only the unsupervised version of DSA 

algorithm with continuous adaptation mode for a fair 

comparison. Arvaneh et al. [27] proposed other versions of 

DSA that made use of a small number of labelled trials at the 

beginning of evaluation session to adapt. On the other hand, 

MPMLDA was designed for multiclass motor imagery 

classification but MPMLDA with equal responsibilities can be 

directly applied to binary problems. Finally, the results of the 

winner of the competition [12] and other studies on the same 

dataset [10, 13, 33, 63-67] are also reported. 

Performance is measured in terms of Cohen’s kappa 

coefficient [68]. According to the evaluation rules of the BCI 

competition, the maximum kappa throughout the time course 

of the paradigm is reported. All methods are configured in the 

same way. Configurable parameters are adjusted running 10-

fold CV or chronological validation with partitions containing 

the same trials. Adaptive SRLDA has five parameters: the 

number of selected features F, the regularization parameters α1 

and α2, the size of the sliding window Ω, and the update 

coefficient η. Adaptive RLDA has three parameters: the 

number of selected features F, the regularization parameter α, 

and the update coefficient η. DSA has one parameter the 
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number of selected features F. Finally, MPMLDA has two 

parameters: the number of selected features F and the update 

coefficient η. All the parameters but the update coefficients 

are optimized with 10-fold CV on training session. The update 

coefficients are optimized with chronological validation on 

training session. Further information is given below. 

A. Design and optimization on the training session 

In this section, we give details and results regarding RLDA 

and SRLDA configuration for multiclass case. The same 

applies to every binary case. Owing to the large number of 

parameters, we split SRLDA configuration in three steps. 

Firstly, the output of the RLDA models in the level-0 is used 

to determine the optimal F and α1 by means of 10-fold CV. 

Secondly, α2 and  in the level-1 are optimized by 10-fold CV 

as well. Here, we use the previously optimized parameters F 

andα1. Although each level-0 model could have been 

designed with different parameters, we choose a single 

configuration that corresponds to maximize the kappa value of 

the model providing the highest performance. The same 

applies to level-1 models. The two-step optimization of F, α1, 

α2, and Ω is carried out independently of η. The update 

coefficient η is set to 0.  

A wide range of values is defined in order to analyze the 

effect of the parameters on generalization ability. F is varied 

from 10 to 144 in steps of 10, α1 and α2 take values from 10 to 

300 in steps of 5, Ω ranges from 0.40 to 4.40 s in steps of 

0.80, and η varies from 0 to 0.2 in steps of 0.01. These ranges 

are selected taking into account that the maximum number of 

features is 144 and the classification performance is observed 

to decay when the parameters fall outside. Fig. 2 illustrates the 

10-fold CV classification results for each step according to F, 

α1, α2, and Ω. We use mean kappa value because we select a 

single set of parameters, which is shared by all the subjects. 

Mean kappa value is computed obtaining the highest kappa 

value over the training session for each subject and averaging 

the results. We choose the maximum as the optimal value (F = 

91, α1 = 85, α2 = 155, and Ω = 2 s). The amount of features in 

level-1 is determined by Ω. Given that there are 25 level-0 

models per second, each level-1 model combines the C - 1 

scores produced by 50 models. That is, the number of features 

in level-1 is 3 × 50. 

We perform chronological validation on the training session 

[69] because the optimal value of η depends on the natural 

sequence of trials. The training session is chronologically split 

into two subsets containing the 60% and 40% of the trials. The 

first one is used for training and the other for evaluation. This 

procedure imitates the online learning scenario throughout the 

evaluation session. Adaptive RLDA and adaptive SRLDA use 

individually optimized update coefficients. Fig. 3 illustrates 

the performance in terms of mean kappa as the update 

coefficient η varies. The improvement of adaptation is notable 

for a wide range of values. Mean kappa value reaches the 

maximum at η = 0.02 for RLDA and η= 0.04 for SRLDA. 

Therefore, η are fixed to these values for the rest of the 

experiments on the unseen evaluation session.  

 

Fig. 2. SRLDA configuration results: mean kappa variation with (a) the 

number of features F when α1 is optimal (α1 = 85), (b) the regularization 
parameter α1 when F is optimal (F = 91) (c) the regularization parameter α2 

when F, α1, and Ω are optimal (F = 91, α1 = 85, and Ω = 2 s) and (d) the 

sliding window size Ω when F, α1, and α2 are optimal (F = 91, α1 = 85, and α2 
= 155). Although the parameters are determined in two steps running 10-fold 

CV, we show the parameter influence in separate plots for clarity. 

 
 

 
Fig. 3. Mean kappa of adaptive RLDA and adaptive SRLDA over update 

coefficient η. The other configurable parameters of RLDA and SRLDA were 
fixed to optimal values:  RLDA (F = 91, α1 = 85) and SRLDA (F = 91, α1 = 

85, α2 = 155, and Ω = 2 s). 
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B. Binary datasets: performance assessment on the 

evaluation session 

The comparative analyses of the six cases of motor imagery 

binary classification are presented in Table I. The highest 

classification performance for each subject is in boldface. 

MPMLDA is not applicable to binary problems. The binary 

version of MPMLDA with equal responsibilities is used 

instead. Actually, it corresponds to the pooled mean update 

proposed by Vidaurre et al. [24].  

The results evidence the superiority of adaptive methods, 

namely, DSA, MPMLDA, and our EWMA-based methods, 

with respect to LDA or RLDA (η = 0). However, there does 

not seem to be clear reasons for recommending a particular 

method based on kappa values.  

Stacked generalization is shown to increase the 

performance further. Table II contains the p-values of 

Wilcoxon’s test to evaluate the statistical significance of the 

difference between the kappa values for SRLDA (η > 0) and 

other methods.  

C.  Multiclass dataset: performance assessment on the 

evaluation session 

 The classification performances on the multiclass BCI 

Competition IV dataset 2a are presented in Table III. We also 

report the results of other studies on the same dataset [10, 12, 

13, 33, 63-67]. The highest classification performance for each 

subject is in boldface.  

Adaptive classification and stacking generalization bring a 

substantial improvement. SRLDA (η > 0) yields the highest 

mean kappa value (0.74). Table IV presents the results of 

Wilcoxon’s test to evaluate the statistical significance of the 

difference between the performance of RLDA and SRLDA 

with or without adaptation, and the other methods.  

TABLE I 

 SUMMARY OF KAPPA VALUES OVER DIFFERENT TYPES OF BINARY-CLASS MOTOR IMAGERY.  

LEFT – RIGHT  LEFT – FOOT 

METHOD 
 SUBJECTS  

AVG. 

 

METHOD 

 SUBJECTS  

AVG. 
 A1 A2 A3 A4 A5 A6 A7 A8 A9   A1 A2 A3 A4 A5 A6 A7 A8 A9  

LDA  0.85 0.10 0.83 0.46 0.75 0.36 0.81 0.93 0.79  0.65   LDA  0.97 0.57 0.92 0.76 0.24 0.35 0.99 0.82 0.94  0.73  

DSA  0.84 0.04 0.91 0.52 0.76 0.37 0.77 0.94 0.80  0.66   DSA  0.97 0.58 0.91 0.80 0.66 0.25 1 0.81 0.94  0.77  

MPMLDA 

(EQUAL RESP.) 
 0.85 0.18 0.93 0.46 0.75 0.36 0.81 0.93 0.79  0.67  

 MPMLDA 

(EQUAL RESP.) 
 
0.97 0.56 0.93 0.81 0.57 0.38 1 0.83 0.93 

 
0.77  

RLDA ( = 0)  0.78 0.11 0.83 0.33 0.67 0.29 0.83 0.92 0.83  0.62   RLDA ( = 0)  0.92 0.47 0.89 0.68 0.15 0.33 1 0.82 0.94  0.69  

SRLDA ( = 0)  0.78 0.28 0.83 0.43 0.89 0.43 0.96 0.85 0.78  0.69   SRLDA ( = 0)  0.94 0.78 0.94 0.71 0.40 0.29 0.99 0.88 0.86  0.75  

RLDA ( > 0)  0.81 0.03 0.93 0.44 0.74 0.32 0.88 0.93 0.82  0.65   RLDA ( > 0)  0.93 0.53 0.92 0.72 0.50 0.31 1 0.86 0.96  0.75  

SRLDA ( > 0)  0.82 0.39 0.92 0.51 0.89 0.49 0.96 0.96 0.81  0.75   SRLDA ( > 0)  0.96 0.82 0.96 0.75 0.71 0.61 1 0.88 0.96  0.85  

 

LEFT – TONGUE  RIGHT – FOOT 

METHOD 
 SUBJECTS  

AVG. 

 

METHOD 

 SUBJECTS  

AVG. 
 A1 A2 A3 A4 A5 A6 A7 A8 A9   A1 A2 A3 A4 A5 A6 A7 A8 A9  

LDA  0.94 0.35 0.90 0.81 0.46 0.35 0.88 0.83 0.94  0.72   LDA  0.97 0.67 0.85 0.75 0.54 0.28 1 0.82 0.49  0.71  

DSA  0.96 0.38 0.94 0.84 0.61 0.32 0.85 0.90 0.94  0.75   DSA  0.96 0.64 0.94 0.79 0.71 0.34 1 0.85 0.52  0.75  

MPMLDA 

(EQUAL RESP.) 
 0.93 0.44 0.96 0.75 0.56 0.44 0.92 0.89 0.94  0.76  

 MPMLDA 

(EQUAL RESP.) 

 
0.97 0.65 0.93 0.74 0.57 0.32 1 0.82 0.47 

 
0.72  

RLDA ( = 0)  0.94 0.33 0.92 0.67 0.46 0.43 0.88 0.78 0.94  0.71   RLDA ( = 0)  0.94 0.57 0.85 0.72 0.32 0.31 1 0.81 0.46  0.66  

SRLDA ( = 0)  0.93 0.60 0.92 0.78 0.40 0.36 0.90 0.68 0.96  0.73   SRLDA ( = 0)  0.96 0.93 0.83 0.90 0.51 0.32 0.99 0.86 0.38  0.74  

RLDA ( > 0)  0.93 0.32 0.94 0.72 0.53 0.50 0.96 0.90 0.93  0.75   RLDA ( > 0)  0.96 0.54 0.93 0.78 0.68 0.46 1 0.82 0.58  0.75  

SRLDA ( > 0)  0.93 0.63 0.90 0.81 0.68 0.33 0.96 0.92 0.94  0.79   SRLDA ( > 0)  0.97 0.92 0.94 0.90 0.76 0.56 0.99 0.88 0.64  0.84  

 

RIGHT – TONGUE  FOOT – TONGUE 

METHOD 
 SUBJECTS  

AVG. 

 

METHOD 

 SUBJECTS  

AVG. 
 A1 A2 A3 A4 A5 A6 A7 A8 A9   A1 A2 A3 A4 A5 A6 A7 A8 A9  

LDA  0.97 0.39 0.89 0.74 0.67 0.29 0.82 0.65 0.71  0.68   LDA  0.57 0.54 0.50 0.58 0.44 0.33 0.64 0.69 0.75  0.56  

DSA  0.96 0.45 0.93 0.76 0.72 0.41 0.88 0.78 0.72  0.73   DSA  0.62 0.60 0.63 0.61 0.42 0.44 0.65 0.75 0.87  0.62  

MPMLDA 

(EQUAL RESP.)  
 0.97 0.51 0.92 0.75 0.68 0.40 0.92 0.76 0.74  0.74  

 MPMLDA 

(EQUAL RESP.) 

 
0.58 0.53 0.64 0.56 0.50 0.43 0.68 0.74 0.89 

 
0.62  

RLDA ( = 0)  1 0.44 0.86 0.74 0.39 0.22 0.89 068 0.36  0.62   RLDA ( = 0)  0.69 0.67 0.53 0.68 0.26 0.39 0.63 0.64 0.51  0.56  

SRLDA ( = 0)  0.97 0.46 0.89 0.78 0.67 0.26 0.92 0.68 0.74  0.71   SRLDA ( = 0)  0.63 0.78 0.69 0.65 0.40 0.54 0.76 0.68 0.67  0.65  

RLDA ( > 0)  0.99 0.43 0.97 0.75 0.60 0.24 0.97 0.79 0.78  0.72   RLDA ( > 0)  0.68 0.65 0.69 0.65 0.31 0.43 0.65 0.74 0.76  0.62  

SRLDA ( > 0)  0.99 0.53 0.94 0.86 0.86 0.36 1 0.75 0.83  0.79   SRLDA ( > 0)  0.72 0.81 0.86 0.61 0.43 0.68 0.75 0.81 0.83  0.72  
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The time courses of the mean kappa value throughout 

evaluation session by RLDA and SRLDA with or without 

adaptive processing stage are shown in Fig. 4. 

V. DISCUSSION AND CONCLUSION 

In this paper, we addressed the problem of motor imagery 

classification. We studied the performance of an adaptive 

classifier ensemble that integrates temporal, spectral, and 

spatial information. The feature extraction stage employed a 

filter bank and the CSP algorithm. Performance analyses were 

conducted on the publicly available BCI Competition IV 

dataset 2a. Our findings suggest that stacked generalization 

and adaptive processing with EWMA are able to increase the 

classification performance of binary and multiclass MI-BCIs. 

The power of SRLDA stems from its ability to model 

temporal discriminant features. It combines information from 

different time points to obtain additional information and deal 

with temporal variability in ERD/ERS patterns. Other studies 

evaluated dynamic classifiers such as HMM, CRF, or HCRF 

[40, 42] to exploit temporal information in experiments with 

synchronous BCI as well. While there is no complete 

consensus, HMMs were reported to provide comparable or 

even lower performance than static classifiers such as LDA 

[40, 42]. HMM is a generative approach that estimates the 

joint probability density function between class labels and the 

observed sequence of data samples. Although HMM is one of 

the most widely used classifier in the task of labeling 

multivariate time series [70], it requires making assumptions 

about independence of the data at each time point conditioned 

on the states, which are violated in practical BCI scenarios 

[40]. Discriminant approaches such as CRFs and HCRF, 

TABLE III 

 SUMMARY OF KAPPA VALUES ON MULTICLASS BCI COMPETITION IV 

DATASET 2A. 

METHOD 
 SUBJECTS  

AVG. 
 A1 A2 A3 A4 A5 A6 A7 A8 A9  

ANG ET AL. [12] 
(WINNER) 

 0.68 0.42 0.75 0.48 0.40 0.27 0.77 0.75 0.61  0.57 

GOUY-PAILLER ET 

AL. [10] 
 0.66 0.42 0.77 0.51 0.50 0.21 0.30 0.69 0.46  0.50 

WANG [63]  0.67 0.49 0.77 0.59 0.52 0.31 0.48 0.75 0.65  0.58 

BARACHANT ET AL. 

[64] 
 0.74 0.38 0.72 0.50 0.26 0.34 0.69 0.71 0.76  0.57 

WANG ET AL. [65]  0.56 0.41 0.43 0.41 0.68 0.48 0.80 0.72 0.63  0.57 

KAM ET AL. [66]  0.74 0.35 0.76 0.53 0.38 0.31 0.84 0.74 0.74  0.60 

ASENSIO-CUBERO 

ET AL. [13] 
 0.75 0.50 0.74 0.40 0.19 0.41 0.78 0.72 0.78  0.59 

ASENSIO-CUBERO 

ET AL. [67] 
 0.76 0.32 0.76 0.47 0.31 0.34 0.59 0.76 0.74  0.56 

NICOLAS-ALONSO 

ET AL. [33] 
 0.77 0.39 0.87 0.55 0.47 0.32 0.74 0.79 0.72  0.62 

LDA  0.76 0.41 0.83 0.56 0.35 0.26 0.79 0.73 0.53  0.58 

DSA  0.78 0.50 0.83 0.63 0.59 0.38 0.85 0.81 0.67  0.67 

MPMLDA  

(EQUAL RESP.)  
 0.65 0.51 0.80 0.63 0.52 0.33 0.85 0.75 0.62  0.63 

MPMLDA   0.77 0.53 0.85 0.65 0.55 0.32 0.86 0.79 0.68  0.67 

RLDA ( = 0)  0.79 0.48 0.75 0.63 0.40 0.34 0.84 0.79 0.59  0.62 

SRLDA ( = 0)  0.83 0.55 0.79 0.62 0.47 0.34 0.92 0.80 0.60  0.66 

RLDA ( > 0)  0.77 0.50 0.88 0.67 0.51 0.36 0.88 0.83 0.73  0.68 

SRLDA ( > 0)  0.84 0.55 0.90 0.71 0.66 0.44 0.94 0.85 0.76  0.74 

 

 

TABLE IV 

WILCOXON’S TEST  RESULTS (P-VALUES) EVALUATING THE STATISTICAL 

SIGNIFICANCE OF THE DIFFERENCE BETWEEN THE MULTICLASS 

PERFORMANCES OF RLDA AND SRLDA, AND OTHER METHODS. SIGNIFICANT 

DIFFERENCES ARE MARKED WITH A SYMBOL (* < 0.05 AND ** < 0.01). 

Method  
RLDA 

(η = 0) 
 

SRLDA 

(η = 0) 
 

RLDA 

(η > 0) 
 

SRLDA 

(η > 0) 

ANG ET AL. [12] 
(WINNER) 

 0.1250  0.0391*  0.0039**  0.0039** 

GOUY-PAILLER ET 

AL. [10] 
 0.1797  0.0391*  0.0039**  0.0039** 

WANG [63]  0.5078  0.1797  0.0391*  0.0039** 

BARACHANT ET AL. 

[64] 
 0.0703  0.0703  0.0391*  0.0078** 

WANG ET AL. [65]  0.5078  0.5078  0.1797  0.1796 

KAM ET AL. [66]  0.2891  0.0391*  0.0391*  0.0039** 

ASENSIO-CUBERO 

ET AL. [13] 
 0.5078  0.1797  0.2891  0.0391* 

ASENSIO-CUBERO 

ET AL. [67] 
 0.2891  0.0703  0.0391*  0.0039** 

NICOLAS-ALONSO 

ET AL. [33] 
 0.7266  0.2891  0.0078**  0.0039** 

LDA  0.0391*  0.0391*  0.0039**  0.0039** 

DSA  0.0703  0.5078  0.7266  0.0039** 

MPMLDA  

(EQUAL RESP.)  
 0.0703  0.5078  0.5078  0.0039** 

MPMLDA   0.2891  0.5078  0.2891  0.0039** 

RLDA (= 0)  -  0.0703  0.0391*  0.0039** 

SRLDA (= 0)  -  -  0.5078  0.0078** 

RLDA ( > 0)  -  -  -  0.0039** 

 

 
 

TABLE II 

WILCOXON’S TEST  RESULTS (P-VALUES) EVALUATING THE STATISTICAL SIGNIFICANCE OF THE DIFFERENCE BETWEEN THE BINARY PERFORMANCE OF 

SRLDA ( > 0) AND OTHER METHODS. SIGNIFICANT DIFFERENCES ARE MARKED WITH A SYMBOL (* < 0.05 AND ** < 0.01). 

Method 
 SRLDA ( > 0) 

 LEFT  - RIGHT LEFT  - FOOT LEFT  - TONGUE RIGHT - FOOT RIGHT  - TONGUE FOOT - TONGUE 

LDA  0.0156* 0.0469* 0.1250 0.0156* 0.0039** 0.0078** 

DSA  0.0547 0.0781 0.4258 0.0117* 0.0742 0.0195* 

MPMLDA 

 (EQUAL RESP.)  
 0.0430* 0.1016 0.3906 0.0234* 0.0703 0.0508 

RLDA ( = 0)  0.0078** 0.0078** 0.1563 0.0078** 0.0078** 0.0117* 

SRLDA ( = 0)  0.0156* 0.0078** 0.1406 0.0625 0.0039** 0.0391* 

RLDA ( > 0)  0.0313* 0.0156* 0.4531 0.0156* 0.0625 0.0117* 
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which directly model the class conditional distributions, were 

proposed to overcome this issue [40, 42]. Both approaches, 

particularly HCRF, perform better than HMM. However, their 

applicability in real-time BCI applications is limited by the 

high computational cost. SRLDA does not present such an 

inconvenient, since linear models are not as computationally 

demanding as computing the likelihoods of sequences.  

Another important point related to temporal variability is 

the selection of the time point of good performance. The BCI 

Competition IV dataset 2a organizers did not take into account 

this issue. The performance was measured obtaining the 

highest kappa value across the evaluation session for each 

subject and averaging the results. Although we follow this 

criterion for comparison purposes, it leads to an optimistic 

measure. It does not imitate the real scenario in discrete motor 

imagery applications where the algorithm has to choose the 

time point of decision in advance. Then, we configure the time 

points of decision for RLDA (η = 0) and SRLDA (η = 0) based 

on 10-fold CV performance over the training session. The 

other parameters F, α1, α2, and Ω are set to the previously 

optimized values. The time point of decision is chosen based 

on the maximum mean kappa over the training session (tRLDA 

= 4.52 s and tSRLDA = 5.68 s). The same values are used for the 

adaptive counterparts. We assume that the optimal time point 

of decision is not largely affected by the update coefficient. 

RLDA (η = 0), SRLDA (η = 0), RLDA (η > 0), and SRLDA 

(η > 0) with a single time point of decision are tested on the 

evaluation session yielding mean kappa values of 0.57, 0.63, 

0.64, and 0.72, respectively. They are lower than in Table III 

as expected, but the losses are slightly smaller with SRLDA. 

This suggests that SRLDA is less sensitive to the time point of 

decision. Interestingly, the time window of good performance 

of SRLDA is longer compared to RLDA (Fig. 4). 

Another benefit of stacked generalization is that more stable 

correct output is produced. It is of great interest for real MI-

BCI applications because it reduces the amount of spurious 

transitions between correct and incorrect outputs. Fig. 5 

depicts the temporal evolution of RLDA (η = 0) and SRLDA 

(η = 0) accuracy for one trial. Label 1 means that the algorithm 

predicted correctly the task and label 0 implies the opposite. In 

view of the figure, RLDA (η = 0) output presents several 

transitions between correct and incorrect states. In contrast, 

the number of transitions is clearly reduced by SRLDA (η = 

0). Although we show just one trial, similar results are found 

for the remainder of the trials. Classifiers that generate stable 

correct output avoid highly changing feedback, which can 

mislead the user. 

Regarding the adaptive processing stage, our results show 

that it increases the classification performance in binary and 

multiclass settings. EWMA is able to estimate small 

fluctuations in global mean ameliorating intersession non-

stationarity effects. Our findings agree with other previous 

studies on two-class [15, 24, 27] or multiclass [31, 32] BCIs. 

Our adaptive method is an extension of the pooled mean 

update proposed by Vidaurre et al. [24] to multiclass 

classification. The novelty is that our architecture can be used 

in multiclass settings and with other classifiers. Both would be 

quantitatively the same in the case of binary classification and 

non-regularized LDA. 

The binary and multiclass comparative analyses amongst 

DSA, MPMLDA, and our adaptive approach show that none 

of them provides clearly superior performance. However, 

Llera et al. [32] stated that MPMLDA outperformed DSA in 

multiclass settings. The explanation for this discrepancy can 

be that Llera et al. tested MPMLDA on a different set of 

features extracted by tangent space mapping or the way in 

which we configure update coefficient by means of 

chronological validation on the training session. Leaving aside 

the quantitative results, DSA and our adaptive approach have 

the advantage that they can be used with any classifier. The 

computational cost needed to re-adjust other more costly 

classifiers sequentially throughout the evaluation sessions 

would be avoided. 

EWMA presents the difficulty of the proper choice of the 

update coefficient η. With a large η, the estimated mean 

follows the features too truly presenting peaks, whereas, with 

a small η, peaks are suppressed but the changes in the real 

mean are followed too slowly by the estimation. Unlike 

Vidaurre et al. [24], who configured η with several datasets, 

we use chronological validation on training data to estimate η. 

It has the advantage that there is no need for recording EEG 

data in different days but performance might be affected by a 

 

Fig. 4. Time course of the mean kappa value for RLDA and SRLDA with or 

without adaptive processing stage throughout evaluation session. Mean kappa 

value is computed obtaining the kappa time course for each subject and 
averaging these values across the subjects. 

 

Fig. 5. Comparison between RLDA (η = 0) (upper plot) and SRLDA (η = 0) 

(bottom plot) accuracy over the time for one trial. Label 1 means the 

predicted task is correct whereas label 0 means an error is made.  
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large difference between evaluation and train data. Thus, the 

selected η value might not be optimal anymore. We verify this 

issue configuring η with the training session and the first 15 

trials of the evaluation session. The optimal update 

coefficients for RLDA (η > 0) and SRLDA (η > 0) are η = 

0.08 and η = 0.11 yielding mean kappa values of 0.68 and 

0.73, respectively. Wilcoxon’s test reveals no significant 

differences for RLDA (η > 0) (p-value = 0.5078) or SRLDA 

(η > 0) (p-value = 0.8981). 

The comparative analysis with other previous studies on the 

multiclass BCI Competition IV dataset 2a (Table III) shows 

that, although several studies have been conducted, there has 

been little improvement since the competition in 2008. 

Whereas Kam et al. [66] obtained a mean kappa of 0.60 in 

2013, adaptive SRLDA increases mean kappa to 0.74. It can 

be also observed that LDA slightly outperforms the winner of 

the competition despite of both being very similar. The use of 

the LDA instead of Naïve Bayesian Parzen Window classifier 

or the different number of selected features are the reasons for 

such a difference. A Wilcoxon’s test reveals no significant 

difference (p-value = 0.8448).  

SRLDA requires adjusting five parameters by CV. It can 

raise questions concerning stability, overfitting, resilience to 

outliers, and the actual usability of the system in real life 

applications. Fig. 2 shows the performance is little sensitive to 

the adjustable parameters. Optimal values of F, α1, α2, and Ω 

are in the flattest part of the optimization curves. It is true that 

update coefficient seems to affect the performance more than 

other parameters. Nevertheless, as can be seen in Fig. 3, the 

improvement is notable with respect to the static classification 

(η = 0) for a wide range of values. 

The risk of overfitting is assessed comparing the 

performances in training and evaluation sessions. RLDA (η = 

0) and SRLDA (η = 0) yield mean kappa values of 0.72 and 

0.78 on 10-fold CV training session, respectively. These 

values are considerably higher than the respective mean kappa 

values of 0.62 and 0.68 on evaluation session, which would 

suggest overfitting. The number of configurable parameters do 

not seem to be an important reason as both RLDA (η = 0) and 

SRLDA (η = 0) are equally affected. The performances of 

RLDA (η > 0) and SRLDA (η > 0), which yield mean kappa 

values of 0.68 and 0.74 on evaluation session, point to the 

intersession non-stationarity as the main cause of such 

performance reduction. Furthermore, RLDA and SRLDA 

incorporate regularization, which should protect against 

overfitting to some extent [55]. On the other hand, the 

performance reduction may be also caused by CSP, which is 

prone to overfitting [71].  

In order to evaluate the resilience to outliers, we repeat 

multiclass experiments training RLDA and SRLDA models 

without discarding the training trials marked as artifacts 

during the BCI Competition. RLDA (η = 0), SRLDA (η = 0), 

RLDA (η > 0), and SRLDA (η > 0) produce mean kappa 

values of 0.63, 0.67, 0.69, and 0.75, respectively. Wilcoxon’s 

test reveals no significant differences with respect to rejecting 

invalid trials (p-values = 0.5078, 0.2891, 0.2891, and 0.7266).  

Regarding real-life usage, the time needed for configuring 

adaptive or static SRLDA is about 45 min for each subject 

using a PC with an Intel Core i7-2600 @ 3.40 GHz processor 

and 16 GB RAM. The training time for each subject, including 

feature extraction and selection, is less than 3 minutes. 

Although SRLDA cannot be configured in few minutes, given 

the stability of the configurable parameters and the adaptive 

nature of our method, there could be no need for 

reconfiguration before every session. 

Some limitations of this research have to be considered. 

Firstly, it is important to note that binary and multiclass results 

present large variations amongst BCI users. Therefore, the 

results should be cautiously interpreted. Secondly, although 

stacking generalization is able to increase the classification 

performance, there may be even more room for improvement. 

Our approach selects a single time point of decision for task 

prediction. Performance could be further improved by 

methods that adaptively compute this point for each trial. 

Further analyses should be carried out with new and larger 

datasets to test the usefulness of our methodology 

prospectively. In addition, future work should test methods 

that in an unsupervised way evaluate classification output 

reliability to compute the optimal time of decision adaptively 

throughout the evaluation session. 

In summary, the current study presents a new methodology 

that addresses intersession non-stationarity and temporal 

variability. Spatial and spectral information are also 

considered to characterize EEG signals. Our findings suggest 

that both binary and multiclass MI-BCI performance can be 

significantly increased with either combined or separated use 

of adaptive processing and stacking generalization. Adaptive 

processing stage reduces the mismatch between sessions 

before classification whereas stacked generalization is able to 

handle temporal, spatial, and spectral information, and cope 

with temporal variability. In binary and multiclass motor 

imagery experiments, adaptive SRLDA significantly 

outperforms the state-of-the-art methods. Adaptive SRLDA 

can serve to design more reliable and robust MI-BCIs, which 

are of great interest for speeding up communication in real-life 

applications. 
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