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Abstract
Objective. Characterizing the intention to move by means of electroencephalographic activity
can be used in rehabilitation protocols with patients’ cortical activity taking an active role during
the intervention. In such applications, the reliability of the intention estimation is critical both in
terms of specificity ‘number of misclassifications’ and temporal accuracy. Here, a detector of the
onset of voluntary upper-limb reaching movements based on the cortical rhythms and the slow
cortical potentials is proposed. The improvement in detections due to the combination of these
two cortical patterns is also studied. Approach. Upper-limb movements and cortical activity were
recorded in healthy subjects and stroke patients performing self-paced reaching movements. A
logistic regression combined the output of two classifiers: (i) a naïve Bayes classifier trained to
detect the event-related desynchronization preceding the movement onset and (ii) a matched
filter detecting the bereitschaftspotential. The proposed detector was compared with the detectors
by using each one of these cortical patterns separately. In addition, differences between the
patients and healthy subjects were analysed. Main results. On average, 74.5 ± 13.8% and 82.2 ±
10.4% of the movements were detected with 1.32 ± 0.87 and 1.50 ± 1.09 false detections
generated per minute in the healthy subjects and the patients, respectively. A significantly better
performance was achieved by the combined detector (as compared to the detectors of the two
cortical patterns separately) in terms of true detections (p = 0.099) and false positives
(p = 0.0083). Significance. A rationale is provided for combining information from cortical
rhythms and slow cortical potentials to detect the onsets of voluntary upper-limb movements. It
is demonstrated that the two cortical processes supply complementary information that can be
summed up to boost the performance of the detector. Successful results have been also obtained
with stroke patients, which supports the use of the proposed system in brain–computer interface
applications with this group of patients.

Keywords: electroencephalography, voluntary movement, stroke, bereitcshaftspotential, event-
related desynchronization

1. Introduction

The use of electroencephalographic (EEG) activity to study
cortical processes associated with the execution of

movements has been explored widely [1–4]. The online
decoding of this information has been successfully used to
control external devices assisting patients with motor dis-
abilities [5–8].
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During the last few years, the development of brain-
computer interfaces (BCIs) for the functional rehabilitation of
patients with motor disabilities has garnered special interest
[9, 10]. The main purpose of BCIs in such scenarios is to
provide a way to promote the neural rehabilitation of the
patients. EEG-based systems allow the real-time character-
ization of cortical activity over the motor cortex while the
subject is performing motor tasks, which enables online
detection when a person is attempting or imaging a movement
[11–13] and prediction of certain properties of the movement
to be performed [14–17]. Such information may in turn be
used to close the loop with neuroprosthetic or neurorobotic
devices, thus resulting in a natural interface between the
patientʼs expectations of movement and the actuation of
external devices [18]. Recent studies have proven the
importance of proprioceptive feedback timing to achieve
associative neural facilitation [19, 20].

In a series of previous studies, use of the Bereitschaft-
spotential (BP) to detect the movement intention
[13, 17, 21–23] has been proposed. The BP is defined as a
slow decay of the EEG voltage over the central regions of the
cortex right before a voluntary movement is performed
[24, 25]. Because the BP is an identifiable pattern that is
decaying until the movement starts, it is suitable to achieve
temporal precision in the detection of voluntary movement
onsets. In fact, previous studies showing results of online
systems based on this pattern indicate that average latencies
of 315 ± 165 ms can be obtained [23]. Nevertheless, the BP is
not detectable in all cases, since some subjects do not present
a significant pattern during self-paced movements. In addi-
tion, results obtained in previous studies using the BP have
not fully validated the use of this cortical pattern alone to
detect movement intentions in stroke patients [13]. In fact,
altered BP patterns have been observed in previous studies
with this type of patient [26, 27].

A possible way to boost EEG-based systems aimed at
detecting the onsets of voluntary movements is to combine
the BP with other EEG movement-related patterns providing
complementary information [28]. The event-related desyn-
chronization (ERD) is a well-known cortical pattern related to
the execution of voluntary movements. The ERD over the
sensorimotor cortex refers to the decrease of EEG signal
power in the contralateral alpha (8–12 Hz) and beta
(13–30 Hz) rhythms starting about 2 s before the onset of

voluntary movements [1, 3, 4, 29]. Although variable
anticipation may be observed in the ERD of a specific channel
and frequency in a subject during consecutive movements, the
spatio-tempo-frequential distribution of the ERD observed
when averaging a number of EEG segments preceding
voluntary movements shows a desynchronization pattern
attached to the movement event [30]. Therefore, the analysis
of the ERD also provides a certain amount of information
regarding the timing of volitional motor actions. Indeed,
previous studies have used the ERD pattern to anticipate
movement events [12, 31]. As in the analysis of the BP, the
ERD pattern of stroke patients presents variations with respect
to healthy subjects [32]. Therefore, it is of special relevance to
study how stroke-related cortical changes may affect a BCI
driven by these cortical patterns.

This study presents for the first time a classifier com-
bining the information obtained from analysis of the BP and
ERD cortical processes to estimate onset of voluntary upper-
limb reaching movements. System validation is performed by
using data from healthy subjects and chronic stroke patients,
and the classifier combining the ERD and BP patterns and
equivalent classifiers using either the BP or the ERD are
compared. Finally, the study describes the main differences
found between patients and healthy subjects, which leads to a
discussion on how EEG-based systems should be developed
for rehabilitation applications.

2. Methods

2.1. Participants

Two groups of subjects were recruited to validate the pro-
posed system and also to explore differences between the two
groups. Six healthy subjects (all males, right-handed and
under 35 years old) were measured and considered the control
group. The patients group consisted of eight chronic stroke
patients (three females, age 65 ± 12 years, mean ± SD; details
are provided in table 1). The present study shows results
corresponding to all control subjects and patients P1–P6.
Patients P7 and P8 were eliminated from further analysis
because they could not comply with the demands of the task
performed during the experimental protocol. None of the
subjects measured had prior experience with BCI paradigms.

Table 1. Description of the patients participating in the present study.

Pat. Stroke Affected Years since Rh sessions
code Age Gender type hemisphere stroke Fügl-Meyer Minimental Ashworth a week

P1 52 F Isquemic L 4 126 30 0 1
P2 54 M Isquemic R 4 69 30 2 2
P3 54 M Isquemic L 3 68 30 3 2
P4 75 M Hemorrg L 1 60 30 3 2
P5 69 M Hemorrg R 4 64 29 3 —

P6 57 F Isquemic L 1 93 26 1 Discont
P7 83 F Isquemic L 5 112 23 1 2
P8 75 M Isquemic L 3 - (mixed aphasia) — 2 2
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The experimental protocol was approved by the Ethical
Committee of the Universidad Rey Juan Carlos (Madrid) and
warranted to be in accordance with the Declaration of Hel-
sinki. All participants signed a written informed consent.

2.2. Experimental protocol

The design of the experimental sessions was inspired by
related studies [13]. Each participant was measured during
one single session. The study was performed in a sound and
light-attenuated room. Participants sat in a comfortable chair
with their arms supported on a table. During the measurement
phase, participants were instructed to remain relaxed with
their eyes open and their gaze fixated on a point on the wall.
They were asked to perform self-initiated reaching move-
ments with the affected arm (the dominant arm in the case of
the control subjects). The point to be reached was in the
midline of the body and at 75% of the maximum distance
achievable by each subject. The average time interval
between consecutive movements was around 8 to 15 s. Dur-
ing the resting state between movements, participants were
asked to remain as relaxed and quiet as possible but to start a
movement as soon as they felt the urge to do so.

Intervals containing at least 5 s of resting activity fol-
lowed by a self-initiated reaching movement were considered
trials and were used in the subsequent steps of the data ana-
lysis. On average, 53 ± 8 and 55 ± 12 trials were collected
with the healthy subjects and the patients, respectively.

2.3. Data Acquisition

Arm movements were measured with solid-state gyroscopes
and surface electromyography (sEMG). Three gyroscopes
(Technaid S.L., Madrid, Spain), placed on the hand dorsum,
the distal third of the forearm, and the middle of the arm
measured the limb kinematics. The data were sampled at
100 Hz.

Surface EMG was recorded by using bipolar derivations
on the main muscle groups involved in the execution of the
reaching task (pectoralis major, anterior deltoids, medium
deltoids, biceps, triceps, and wrist extensors). The data were
amplified (Zerowire Wireless EMG, Aurion, Milan, Italy) and
sampled at 2000 Hz.

EEG signals were recorded from 31 positions (AFz, F3,
F1, Fz, F2, F4, FC3, FC1, FCz, FC2, FC4, C5, C3, C1, Cz,
C2, C4, C6, CP3, CP1, CPz, CP2, CP4, P3, P1, Pz, P2, P4,
PO3, PO4, and Oz, all according to the International 10–20
system) by using active Ag/AgCl electrodes (Acticap, Brain
Products GmbH, Germany). The reference was set to the
voltage of the earlobe contralateral to the arm moved. AFz
was used as the ground. The signal was amplified (gUSBamp,
g.Tecgmbh, Austria) and sampled at 256 Hz.

All data were synchronised with a common digital signal
and analysed offline by using Matlab (The Mathworks Inc.,
Natick, MA, USA).

2.4. Detection of the onset of the movements

To detect the time at which each movement started, kinematic
information (gyroscopes) was used instead of muscle activa-
tion data (sEMG). This decision was made to solve the dif-
ficulties in detecting muscle activation onset in the spastic
muscles likely to be found in the affected limbs of stroke
patients.

The gyroscopic sensor that first detected that a movement
was starting was used to locate the onsets of the reaching
movements. This sensor selection was performed for each
participant. Data were low-pass filtered (Butterworth, 2nd
order, fc = 6 Hz), and the peak amplitude was estimated for
each subject performing the reaching movement. The
threshold amplitude for detecting the onsets of the movements
was set to 5% of this peak amplitude.

The sEMG data was used to ascertain that no sudden
muscle activations were present in any of the muscles of the
measured arm during the resting intervals between con-
secutive movements. Sudden muscle contractions (which
were observed in the patients only for few moments during
the recordings, such as when they readjusted their position on
the chair to be comfortable) were marked as artifacts and were
not considered in subsequent analyses.

2.5. Description of the classifier architecture and validation

The following sections describe the design of two movement
onset detectors, the first based on the characterization of the
ERD preceding movement onset and the second characteriz-
ing the BP pattern. The process for combining the outputs of
these two classifiers is described as well. The results section
focuses mainly on the performance of the combined (ERD
and BP) detector, although a comparison between the three
proposed systems (based only on the BP, based only on the
ERD and based on both processes) will also be addressed.

Since a limited number of trials could be acquired with
certain subjects, the system was validated according to a
leave-one-out methodology i.e., once all trials had been
identified, each of them was classified with a detector trained
with the rest of the trials of the same session. The techniques
applied here are specifically designed for real-time function-
ing of the proposed system. Therefore, the results obtained
with this validation methodology are expected to be similar to
those obtained in a truly online scenario. After testing the
system online, we decided to generate estimations of move-
ment every 125 ms to enable the correct function (without
data loss) of an average computer.

2.5.1. ERD-based detector of the onset of the movement. A
naïve Bayes classifier was used to detect the ERD pattern
preceding the movements. Previous studies have
demonstrated the suitability of this type of classifiers for
ERD detection [31, 33]. Band-pass filtering was first applied
to the EEG signals (Butterworth IIR filter, 3rd order, 6 Hz <
f1, 35 Hz > f2) and then a small laplacian filter (for each
electrode position, the average voltage of the closest
neighbours is subtracted) was used [34]. Frontal, fronto-
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central, central, centro-parietal and parietal channels were
kept. The power values were estimated in segments of 1.5 s
and for frequencies between 7 and 30 Hz in steps of 1 Hz.
Welchʼs method was used to this end (Hamming windows of
1 s, 50% overlapping). Estimations were generated every
125 ms.

Power estimations obtained in all training trials from −3 s
to −0.5 s (with respect to the movement onsets) were labeled
as examples of the resting state: estimations generated at
t = 0 s were labelled as movement onset examples. The
Bhattacharyya distance was used to select the 10 best features
(channel/frequency pairs) to build the classifier. This number
of features was chosen to correctly characterize the ERD
pattern in several channels and frequencies and also to
achieve a real-time working classifier without requiring an
excessively high computational load.

The trained classifier was applied to the test data
generating estimations of movement intention every 125 ms.

2.5.2. BP-based detector of the onset of the movement. A
similar procedure to the one proposed in [13, 17] was used to
detect the BP. However, unlike in those two previous studies,
we used a finite impulse response band-pass filter with linear
phase (FIR filter, 15th order, 0.05 Hz < f1, 1 Hz > f2) running
the fir1 routine of Matlab software. This solution was adopted
because linear preservation is crucial to extract the entire BP
pattern, and using nonlinear phase filters (as for example the
Butterworth filter) does not permit decoding of this pattern
unless zero-phase filtering (filtering in the forward and reverse
direction) combined with framing of the EEG signal is
performed, which leads to delayed (by a few hundreds of
milliseconds) detection of the BP in the online function due to
filtering edge effects.

After the temporal filters were applied, spatial filtering
and channel selection were performed. Three virtual channels
were computed from the original 31 channels in the
experimental set-up. These channels were obtained by
subtracting the average potential of channels F3, Fz, F4,
C3, C4, P3, Pz, and P4 from channels C1, Cz, and C2
(similarly to [17]). The average BP was computed for the
three resulting channels by using the training data. The
channel showing the highest absolute peak at the movement
onset was selected for the BP-based detection of movement
onsets. We selected one of these channels instead of directly
choosing Cz (as in [17]) because in healthy subjects, upper
limb movements typically present a maximal late BP over the
contralateral central areas of the cortex [25].

A matched filter was designed by using the previously
selected channel. To this end, the average BP was obtained by
using the time intervals from −1.5 s to 0 s of the trials in the
training dataset. The matched filter was applied to the virtual
channel in the validation dataset. Estimations based on the
test data were also made every 125 ms.

2.5.3. Detector of movement onsets based on the combination
of the ERD- and BP-based detectors. Outputs from ERD-
based and BP-based detectors were combined by using a

logistic regression classifier. Training examples of the resting
condition were taken from estimations of the two detectors
between −3 s and −0.5 s with respect to the movement onset
(in steps of 125 ms). The output estimations of the ERD and
the BP classifiers at the movement onset were used to model
the movement state. The classifier generated estimations of
the intention to move every 125 ms.

2.6. Threshold selection

On the test data, a threshold was applied to the output of the
detector to decide at each moment whether movement
intention was detected. The threshold was optimally obtained
from the training dataset, following the criterion of max-
imizing the percentage of good trials (GT), i.e., trials with a
true positive (TP) and with no false positives (FP). These
metrics are further defined in 2.7.

2.7. Metrics of the detector performance and threshold
selection

Because the present study uses an asynchronous paradigm,
conventional metrics used in traditional BCI paradigms could
not be used [35, 36] three metrics were used to evaluate the
ability of the detector to reliably locate movement onsets. The
TP rate was defined as the percentage of trials with movement
detection contained in the time interval from −0.75 s to
+0.75 s with respect to the actual onset estimated by the
gyroscopes. The precision of the detector was characterized as
the number of FP per minute (FP/min), i.e., rate of detections
during the resting intervals. One or more false activations
could be generated in a single trial. Therefore, the percentage
of GT was obtained by counting the number of trials in which
no FP were generated and a TP was achieved. Finally, the
latencies of the TP with respect to the actual onsets of
movements were also computed to analyse the temporal
accuracy of the system.

2.8. Statistical analysis

A comparison between the performance of the proposed
detector combining the ERD and the BP information and the
performances of detectors based only on each one of the two
patterns was carried out to validate the proposed methodol-
ogy. Given that the performances of the three detectors
depend on each subject, a Friedmanʼs test was used. To gain
statistical power and reduce the size of the statistical results,
samples from healthy subjects and patients were used together
to test the hypothesis that the three proposed detectors sup-
plied significantly different results. Bonferroni post hoc cor-
rection was used to analyse significant differences between
pairs. The statistical analysis was performed on the dependent
variables GT, TP, and FP/min. The rest of the presented
results are reported as the mean ± SD and are provided
separately for patients and healthy subjects.

4

J. Neural Eng. 11 (2014) 056009 J Ibáñez et al



3. Results

3.1. Summary of observed cortical patterns in patients and
healthy subjects

A summary of the average BP and ERD patterns observed in
all patients and healthy subjects is shown in figures 1 and 2.
Overall, the ERD and BP could be observed in most subjects
analysed, although differences in spatial distribution and in
strength of these patterns were found. The average BP peak
across healthy subjects was found at −19.8 ± 57.6 ms with
respect to movement onsets. In the case of the patients, this
peak was observed at 97.5 ± 47.3 ms. A more homogeneous
BP pattern could be observed in the group of healthy subjects
than with the patients according to both the temporal BP
pattern and its spatial distribution. The ERD spatial dis-
tribution presented a predominant contralateral activation
both in the alpha and beta bands in the group of healthy
subjects, whereas activation patterns presented a central (P1,
P2, and P5 in the alpha band and P2, P3, and P5 in the beta
band) or bilateral distribution (P3 in the alpha band and P1 in
the beta band) in the patients group.

3.2. Results of the detection of the movement onsets

Figure 3 shows a representative example of the detector
function on a single trial performed by participant C2. The
different stages in EEG signal processing to extract infor-
mation regarding movement intention are represented. The
three last curves show the estimations of the onset of the
movement based either on the BP pattern, on the ERD pat-
tern, or on the combination of both, respectively. In this

example, EEG-based detection is achieved with a few hun-
dreds of milliseconds of anticipation.

Table 2 summarizes the results obtained by the detector
based on the ERD and BP patterns. On average, 63.3 ± 13.8%
and 66.4 ± 18.8% of GT are obtained with the healthy sub-
jects and the patients, respectively. The percentage of true
positives achieved with patients is smaller than with healthy
subjects, but also the FP/min generated with patients is
higher. These results lead to a similar average performance of
the system in terms of detections and false activations in both
groups. Nevertheless, more delayed detections are obtained
with patients (35.9 ± 352.3 ms) than with healthy subjects
(−89.9 ± 349.2 ms).

The features selected by the ERD-based detector of
movement onsets in the healthy subjects and patients are
summarized in tables 3 and 4, respectively. According to the
average ERD patterns observed in section 3.1, a pre-
dominance of contralateral central features is observed in the
first case (healthy subjects); therefore, most features corre-
spond to channel C3 and the surrounding positions. In the
case of the patients, a more spatially spread distribution of
selected features was obtained. Features from the midline
(around Cz) become more relevant in this case. The selection
of features from the alpha or beta band varies for each subject,
although beta band features predominate. Finally, the tables
show that selected features relative to the alpha-band in the
case of the patients present lower frequencies than the ones in
the group of healthy subjects.

Figure 4 compares the detection results obtained with the
combined detector (ERD and BP) with the results obtained by
detectors based only on the BP or the ERD. Statistically
significant differences between the three detectors are found

Figure 1. Average BP of all subjects (discontinuous lines) and average BP across subjects (solid line). Averages from healthy subjects and
patients are presented in the left and right panels, respectively.
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in GT, TP, and FP/min (p = 0.002, p = 0.010 and p = 0.008,
respectively). Post hoc multiple comparisons show significant
differences between the ERD-based detector and the com-
bined detector in GT (p = 0.007) and FP/min (p = 0.015), but
not in TP (p = 0.192). In the comparison between the BP-
based detector and the combined detector, significant differ-
ences are found in GT (p = 0.003) and TP (p = 0.003), but not
in FP/min (p = 0.0.059). Finally, no significant differences are
found in GT (p = 0.611), TP (p = 1) and FP/min (p = 0.305)
between the detector based on the ERD and the one based on
the BP.

For healthy subjects, the detector combining ERD and
BP information achieves 6.5 ± 5.2% more GT than the BP-
based detector and 22.4 ± 10.0 % more GT than the ERD-
based detector (see table 5). For patients, the percentage of
GT also increases when using the combined detector (13.3
± 10.9% and 12.6 ± 16.3% increase as compared with the BP-
and ERD-based detectors, respectively).

The latencies in the detections of the movement onsets
are represented by means of histograms in figure 5. The
latencies obtained when using the detectors based only on the
BP or the ERD information are superimposed in the figure.

The histograms shown depend on how much the ERD and BP
patterns vary across trials with respect to the onsets of the
movements and also on the detection threshold applied to
each the three detectors. The figure shows a more delayed
distribution of the detections with the group of patients.
Nonetheless, around 85% of these BP detections are located
earlier than +375 ms. Given that the window used for the BP
detector is 1.5 s long, this result supports the absence of
movement artifacts in the activity analyzed. The ERD-based
detector appears to be the less precise in terms of latencies of
the detections, whereas the BP-based detector presents dis-
tributions clearly centred at t = 0 s. Also noticeably, the ERD-
based detector shows a certain degree of anticipation in the
detections of movement onsets in the group of healthy sub-
jects, although it generates delayed detections in the case of
the patients.

4. Discussion

The accuracy with which movements can be detected online
by using using EEG activity (both in terms of temporal

Figure 2. ERD and BP spatial maps with healthy subjects (left) and patients (right). Left and central columns show the spatial distribution of
the α-ERD and β-ERD (normalized power changes) obtained by comparing a window of 1.5 s ending at the movement onset with an
equivalent window 4 s before the onset. The third column shows the spatial distribution of the BP peak amplitude. For each column, the same
colour scales are used with all subjects. Colour scale normalization is performed by representing the lowest value in each column with dark
blue and calibrating the level of dark red to optimize pattern representation.
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precision and ratio between true and false activations)
represents an important criterion when deciding whether BCI
technology can be brought to clinical practice in neuroreh-
abilitation environments. This study showed the results of an
EEG-based detector of voluntary movement onsets that

combined information extracted from the processing of cor-
tical rhythms and slow cortical potentials. This is the first time
that both sources of information have been combined to this
end. It is also the first time the benefits of a detector com-
bining information from the ERD and BP patterns in patients
with stroke have been demonstrated.

Previous studies have described several aspects of the
characterization of the BP to locate movement onsets. Gar-
ipelli et al. studied the relevance of choosing appropriate
spatial and temporal filters to extract the BP pattern [21],
without showing results regarding temporal precision in the
detections. In a study by Lew et al., average results of BP
detection were presented for healthy subjects and stroke
patients, although no single trial validation was carried out
[22]. To the authors’ knowledge, no one thus far has studied
the detection of upper-limb voluntary movements based on
the detection of the BP and using an online feasible design.

In a recent study, Xu et al. presented a system using a
manifold method (Locality Preserving Projection) with an
LDA classifier to optimize the classification of the BP. The
algorithm was tested on healthy subjects performing ankle
dorsiflexions. The TP and FP/min results obtained in that
study (79 ± 12% and 1.04 ± 0.8, respectively) were similar to
the ones obtained here with healthy subjects and upper-limb
movements. Nevertheless, the average latencies presented in
their study (315 ± 165 ms) were higher than the ones obtained
here. These differences could be due to variations in the way
subjects performed the task in each experiment (differences
between upper-limb and lower limb cortical patterns, length
of the resting intervals between movements, and speed of
movements among others). The observed differences could
also be due to the combined use of the ERD and BP features
proposed here, which enables reduction of the rate of FP and,
as a consequence, enables the selection of less restrictive
(more anticipative) detection thresholds.

Figure 3. Simulated online function of the single-trial EEG-based
detector of onsets of voluntary movements. The plots show from top
to bottom: (1) the gyroscopic data used to locate the actual onset of
the movement, (2) the raw EEG signal of a single channel, (3) the
virtual channel obtained after spatial and temporal filtering of the
EEG signal to detect the BP pattern, (4) the EEG signal in one
channel after applying a small laplacian filter and a band-pass filter
(between 6 Hz and 35 Hz) for the ERD-based detection, (5) the
output of the matched filter applied by the BP-based detector, (6) the
output of the Bayesian classifier applied by the ERD-based detector,
and (7) the final estimation of the intention to move and the optimal
threshold level used to convert the estimation to a Boolean signal.

Table 2. Detection results obtained with control subjects and patients.

Code
GoodTr
(%) TP (%) FP/min Latency (ms)

C1 81.3 82.8 0.47 −48 ± 351
C2 63.8 81.0 1.34 −24 ± 278
C3 39.0 56.1 2.63 −180 ± 476
C4 64.6 70.8 0.38 −198 ± 322
C5 69.8 84.9 1.13 −3 ± 388
C6 61.5 71.2 1.96 −164 ± 290

Average 63.3 ± 13.8 74.5
± 10.8

1.32
± 0.87

−89.9 ± 349.2

P1 56.5 84.8 1.83 −58 ± 368
P2 75.0 83.3 0.92 123 ± 290
P3 60.3 80.9 1.94 98 ± 386
P4 60.0 70.0 1.08 83 ± 449
P5 100.0 100.0 0.00 −89 ± 147
P6 46.5 74.4 3.21 50 ± 520

Average 66.4 ± 18.8 82.2
± 10.4

1.50
± 1.09

35.9 ± 352.3
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Although several previous studies have made use of
cortical rhythms to either detect movement events [7, 35] or
to anticipate movement intentions [12, 31], no studies so far
have tried to use ERD information to locate voluntary
movement onsets with time precision. In a previous study by
Fatourechi et al., the combined use of cortical rhythms and

slow cortical potentials was proposed for an asynchronous
BCI, although in that case the device was not intended to
detect the onset of voluntary movements [28]. The naïve
Bayes classifier described here has demonstrated that the
ERD supplies valuable information in this sense. Indeed, we
have shown here the benefits of the combined use of

Figure 4. Performances of the three compared detectors (BP-based, ERD-based, and combined) in the healthy subjects group (left) and in the
patients (right) in terms of GT, TP and FP/min.

Table 3. Features selected by the ERD-based detector for the control group.

C1 C2 C3 C4 C5 C6

C3/21 Hz C3/12 Hz Pz/12 Hz F1/7 Hz C3/12 Hz FC3/19 Hz
CP3/21 Hz C3/11 Hz C3/12 Hz F1/8 Hz C3/19 Hz CP1/19 Hz
C3/20 Hz C3/23 Hz C3/13 Hz C6/29 Hz C3/11 Hz FC3/20 Hz
CP3/20 Hz FC1/18 Hz FC4/9 Hz C3/27 Hz CP3/10 Hz FC3/18 Hz
C3/10 Hz FC1/17 Hz P1/12 Hz FC1/23 Hz CP3/11 Hz F3/19 Hz
C3/19 Hz C3/22 Hz P1/11 Hz C3/26 Hz C3/22 Hz CPz/20 Hz
C3/22 Hz C2/17 Hz CP1/8 Hz C3/24 Hz CP3/12 Hz C1/19 Hz
CP3/19 Hz FC1/19 Hz Pz/10 Hz C3/28 Hz Pz/11 Hz F3/18 Hz
C3/9 Hz FC1/14 Hz P1/9 Hz FC2/18 Hz C3/18 Hz CP3/18 Hz
CP3/22 Hz C3/13 Hz FC4/10 Hz C3/29 Hz CP3/13 Hz FC3/17 Hz

Table 4. Features selected by the ERD-based detector for the patients.

P1 P2 P3 P4 P5 P6

C1/9 Hz C2/9 Hz Cz/20 Hz F3/8 Hz CP2/13 Hz C3/14 Hz
Cz/13 Hz C2/8 Hz Cz/21 Hz C1/10 Hz C2/13 Hz P2/18 Hz
FC1/10 Hz C2/10 Hz Cz/13 Hz F3/9 Hz C1/22 Hz C3/19 Hz
FC1/13 Hz CP2/18 Hz Cz/22 Hz C2/11 Hz C1/21 Hz C2/23 Hz
C1/10 Hz C2/7 Hz Cz/14 Hz F1/8 Hz Cz/21 Hz CP3/14 Hz
CP4/18 Hz Cz/9 Hz Cz/16 Hz P1/10 Hz C1/20 Hz CP1/15 Hz
FC1/9 Hz Cz/10 Hz Cz/15 Hz C1/9 Hz CPz/22 Hz FC2/19 Hz
FC1/11 Hz CP2/19 Hz Cz/17 Hz P3/8 Hz CPz/16 Hz Pz/22 Hz
C1/12 Hz CP2/17 Hz CP1/11 Hz F4/20 Hz CPz/12 Hz CP4/21 Hz
C1/13 Hz Cz/8 Hz Cz/19 Hz FC3/8 Hz C1/23 Hz CP3/11 Hz
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information about the ERD and BP as compared with
detectors relying solely on either the BP or the ERD.

Significantly better performances could be achieved with
the combined detector in all metrics analysed: a higher
number of GT and TP was achieved with lower rates of false
activations during the resting intervals. Previous studies have
demonstrated that different neural mechanisms are involved
in the generation of the ERD and the BP and therefore may
justify their complementarity. The BP is assumed to originate
in the presupplementary and supplementary motor areas
[25, 37], which are associated with the movement planning
and with the process of attending to the intention to move
[38]. In contrast, the ERD is first visible over the contralateral
motor cortex [4], and it is associated with the formation of
more specific neural assemblies synchronized at higher fre-
quencies to generate the desired descending motor commands
[4, 39]. The spatial distribution of both phenomena in the
presented data here also points to different cortical sources.
Given these evidences, it seems reasonable to point to an
improved outcome in the combination of both sources of
information to estimate certain aspects regarding motor
planning.

Differences in the average ERD and BP patterns between
patients and healthy subjects were found. A delayed peak of
the BP was observed in the patients group, likely associated
with the higher cognitive motor planning time and the slower
speed with which stroke patients perform voluntary move-
ments [17, 26]. Differences in the spatial distribution of both
ERD and BP patterns were also observed (see figure 2),
reflecting altered cortical activation patterns in stroke patients,
as described in previous studies [26, 32, 40, 41].

Regarding the single-trial detection results, previous
offline studies [13] showed differences in BP-based detection
performance with healthy subjects and stroke patients (sig-
nificantly worse TP results were obtained with the patients).
In contrast, the detection results obtained here with the

proposed system (in terms of GT, TP, and FP/min) were
similar for patients and healthy subjects. Apart from the dif-
ferences in the recruited subjects and paradigms used in both
experiments, these better results with patients were likely due
to the improved detector performance when the ERD infor-
mation was used. Specifically, there was a 13.3 ± 10.9 %
increase in numbers of GT as compared with the BP-based
detector alone (see table 5). In addition, differences were
observed in the detection latencies: detections in patients were
achieved later than with the healthy subjects. According to
figure 5, this is especially evident in the ERD-based detection
(whereas ERD-based detections in healthy subjects tend to
anticipate the actual movement onsets, the reverse effect is
observed in the group of patients). Such differences may be
the combined result of the altered ERD in stroke patients
[32, 41] and an aging factor [42].

Given the detector design proposed here, the influence of
movement artifacts in the detections achieved after the onset
of movements are considered negligible. First, regarding the
ERD-based system, the combined use of a small laplacian
filter and a band-pass filter discarded the presence of move-
ment-related common low-frequency components in the
analysed EEG. In addition, the use of premovement signals in
the training stage ensured that the Bayesian classifier focused
specifically on the ERD phenomenon, as can be seen by
analysing the features selected by the Bayesian classifier (see
tables 3 and 4).

In the case of BP-based detection, use of spatial filtering
together with the spatial distribution of this pattern (see
figure 2) reduces the chance that artifactual sources are having
any influence. Indeed, around 95% of the detections in the
case of the healthy subjects (around 85% with the patients)
were obtained with latencies under +375 ms (see figure 5).
Because a matched filter of 1.5 s was used, it is highly unli-
kely that any of these detections were caused by the effect of
movement artifacts. In fact, BP-based detections later than
+375 ms in the stroke patients are likely related to the intrinsic
difficulties in detecting the real onsets of the movements and
also to the delayed BP observed in these patients due to
slower movement velocities with the affected limb [17] and to
an increased cognitive motor planning time [26].

Developing EEG-based systems that can be trained in a
short period of time is a critical aspect in bringing this tech-
nology into clinical practice. The training procedure proposed
here assumes that a number of self-initiated movements are
performed in the beginning of each session and are used to
train the detector (this process takes around 5 min if 30
movements are used to train the system). In this regard,
several studies have proposed methods for using training data
from different sessions to calibrate the BCI system [43, 44],
and these methods may be considered in future studies
regarding the EEG-based detector proposed here.

Finally, gyroscopic data were used to locate the move-
ment events to extract and characterize the subject-specific
ERD and BP patterns. Similar previous studies have fre-
quently used muscle activation data (from EMG) for such
purposes. In this case, because functional upper limb move-
ments were measured on stroke patients, detecting the onsets

Table 5. Gain in the performance of the detector (GT %) when using
the combined information of the ERD and BP compared with the use
of either of these patterns alone.

Code ERD+BP vs BP ERD+BP vs ERD

C1 4.7 32.8
C2 10.3 12.1
C3 14.6 12.2
C4 0.0 35.4
C5 5.7 18.9
C6 3.8 23.1

Average 6.5 ± 5.2 22.4 ± 10.0

P1 4.3 10.9
P2 20.8 -6.9
P3 30.9 -4.4
P4 10.0 36.0
P5 1.9 19.2
P6 11.6 20.9

Average 13.3 ± 10.9 12.6 ± 16.3

9

J. Neural Eng. 11 (2014) 056009 J Ibáñez et al



of the movements from muscle activation became difficult,
particularly in the patients with muscle spasticity. On the
contrary, by using kinematic data from the upper-limb seg-
ments, it becomes possible to finely detect when a functional
movement starts without significant latencies, considering
that the electromechanical delay for upper-limb movements is
relatively small (on the order of tens of milliseconds [45]). In
agreement with this observation, results presented here of
average BP patterns in healthy subjects and patients-obtained
with movement references based on gyroscopic data show
peaks of the BP with similar latencies to those observed in
other studies using EMG data and healthy subjects [19].

5. Conclusion

EEG-based detection of the onset of voluntary upper-limb
movements combining information about cortical rhythms
and slow cortical potentials has been proposed and tested in
healthy subjects and stroke patients. With the proposed sys-
tem the average number of true positives (74.5 ± 13.8%) and
false activations per minute (1.32 ± 0.87) obtained in the
group of healthy subjects was similar to those obtained in
comparable previous studies, and the latencies of the detec-
tions were smaller here (−89.9 ± 349.2 ms). Remarkably,
similar results to those obtained with the healthy subjects
were observed in the group of patients (true positives = 82.2 ±
10.4 %; FP/min = 1.50 ± 1.09), although in this case, higher
latencies in the detections were observed (35.9 ± 352.3). By
comparing the proposed detector with two alternatives relying
either on the ERD or the BP patterns, the study demonstrated

the importance of combining these two sources of information
to boost the performance of the movement onset detector.
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