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Abstract
Objective. Current diagnostic guidelines encourage further research for the development of
novel Alzheimer’s disease (AD) biomarkers, especially in its prodromal form (i.e. mild
cognitive impairment, MCI). Magnetoencephalography (MEG) can provide essential
information about AD brain dynamics; however, only a few studies have addressed the
characterization of MEG in incipient AD. Approach. We analyzed MEG rhythms from 36 AD
patients, 18 MCI subjects and 27 controls, introducing a new wavelet-based parameter to
quantify their dynamical properties: the wavelet turbulence. Main results. Our results suggest
that AD progression elicits statistically significant regional-dependent patterns of abnormalities
in the neural activity (p < 0.05), including a progressive loss of irregularity, variability,
symmetry and Gaussianity. Furthermore, the highest accuracies to discriminate AD and MCI
subjects from controls were 79.4% and 68.9%, whereas, in the three-class setting, the accuracy
reached 67.9%. Significance. Our findings provide an original description of several dynamical
properties of neural activity in early AD and offer preliminary evidence that the proposed
methodology is a promising tool for assessing brain changes at different stages of dementia.

Keywords: Alzheimer’s disease, mild cognitive impairment, magnetoencephalogram,
continuous wavelet transform, wavelet turbulence

(Some figures may appear in colour only in the online journal)

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder
that progressively affects the brain function. Different brain
regions, as well as their associated neural activity, become
involved during the course of AD. In the last decades, growing
efforts have been devoted to explore the underlying brain
dynamics associated with AD. A key issue to explain such
interest is the rising socio-economic impact of dementia in
modern societies, partially because of the strong age-related

incidence (Hampel et al 2011, Reitz et al 2011). AD is
increasingly being recognized as a modern epidemic with an
enormous impact on the health care systems (Hampel et al
2011, 2012). Nevertheless, despite the considerable progress
made over the past two decades to understand AD mechanisms,
further research is still required to gain deeper insights into
the neural dynamics of AD. In this regard, a better and more
comprehensive characterization of mild cognitive impairment
(MCI) is essential for appropriate identification of incipient
AD, since subjects with MCI are at a higher risk of developing
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AD (Mufson et al 2012). MCI is defined as the symptomatic
predementia stage of AD in which subjects exhibit a memory
impairment beyond what would be expected for their age, but
do not fully accomplish the criteria for a diagnosis of dementia
(Petersen 2010). As a consequence, MCI is considered a
prodromal stage of dementia (Mufson et al 2012).

To address these tasks, several neuroimaging techniques
are currently available: functional and structural magnetic
resonance imaging (fMRI and sMRI), positron emission
tomography (PET), fluorodeoxiglucose PET (FDG-PET),
diffusion tensor imaging, magnetic resonance spectroscopy,
electroencephalography (EEG) and magnetoencephalography
(MEG), among others (Ewers et al 2011). Nowadays, none
of the available neuroimaging measures is recommended for
routine diagnostic purposes (McKhann et al 2011). However,
scientific evidence points out that they can be potentially useful
to delimit promising biomarkers for early AD detection (Ewers
et al 2011, Hampel et al 2011).

Due to the still limited knowledge on the dynamical
processes involved in the regulation of complex functional
brain systems, non-invasive neurophysiological techniques,
such as EEG and MEG, have been brought into focus (Hampel
et al 2011, Reitz et al 2011). Mounting evidence suggests that
they may provide essential information on the neural function
(Georgopoulos et al 2007, Hampel et al 2011, Reitz et al 2011).
Nevertheless, EEG and MEG provide slightly different views
of neuronal dynamics (Rampp and Stefan 2007), partially
because MEG is reference-free and is less affected by the
volume conduction than EEG (Stam 2010). Evidence suggests
that MEG can track downstream neuronal injury, taking into
account the regional patterns of abnormalities. In fact, MCI
and AD result in a wide range of structural and functional
changes in the brain, which seem to reflect damage to neurons
and synapses (Sperling et al 2011). There are also emerging
data suggesting that early brain changes include a decline in
the synaptic function and integrity of neurons, which may
be present even before evidence of amyloid accumulation in
the brain (Hampel et al 2012, Sperling et al 2011). However,
the mechanisms of neural injury are still not fully understood
(Hampel et al 2011, Mufson et al 2012).

In this context, MEG appears to provide evidence about
the severity of dementia; however, there is a dearth of studies
focused on analyzing resting-state MEG patterns in early
phases of AD. Diverse findings support the notion that MCI can
be associated with intermediate abnormalities between those
observed in normal ageing and AD dementia. Specifically,
MCI subjects show a slight decrease in low frequency power,
an increase in irregularity and a decrease in disequilibrium
when compared to AD patients (Bruña et al 2012, Fernández
et al 2006a, 2006b, Osipova et al 2006). Different patterns
of complexity have been found depending on the applied
parameter. Studies using nonlinear measures have found an
increase of complexity in MCI subjects in comparison to
AD patients (Fernández et al 2010), whereas a decrease has
been observed applying a statistical complexity definition
(Bruña et al 2012). Functional connectivity analyses have also
shown that AD increases the level of coherence in the delta
band, while MCI tends to decrease the connectivity in the

theta and alpha bands (Escudero et al 2011). Furthermore,
it is noteworthy that subtle MCI-characteristic patterns have
been reported when MCI subjects and cognitively elderly
controls were analyzed (Bruña et al 2012, Escudero et al 2011,
Fernández et al 2006a, 2006b, Gómez et al 2009). In summary,
the neurophysiological substrate of neural dysfunction in
MCI subjects is not yet well established. Further research is
indeed required to establish a consistent description of neural
dynamics associated with prodromal AD.

Recent studies suggested that the analysis of irregularity
based on the spectral content from the short-time Fourier
transform (STFT) can provide valuable information to
understand brain dynamics in AD dementia (Poza et al 2008a).
Likewise, AD-like patterns of brain changes were observed
in a preliminary study at the stage of MCI (Poza et al
2012). Nevertheless, electromagnetic brain signals exhibit
simultaneously high frequency and short time patterns, as
well as low frequency and long time oscillations (Figliola and
Serrano 1997). Accordingly, time–frequency representations
with a variable time–frequency resolution are strongly
required. The wavelet transform provides such an approach,
varying window size across frequencies. Thus, wavelet
analysis yields a good time resolution at high frequencies and
a good frequency resolution at low frequencies (Figliola and
Serrano 1997).

In this study, we applied a new wavelet-based parameter,
named wavelet turbulence (WT), to characterize the time-
dependent content of MEG activity in MCI and AD. In
the present research, we attempt to address the following
questions: (i) Does the proposed methodology based on WT
introduce an original description of neural dynamics to that
provided by conventional spectral and nonlinear methods?;
(ii) Do the changes in the MEG activity reflect the regional
abnormalities of MCI and AD?; (iii) Can the proposed
methodology be useful to account for the complexity of AD
and provide further insights into the underlying brain dynamics
associated with AD?

2. Materials

2.1. Selection of subjects

A total of 81 subjects were initially selected to participate in
the study, according to the following inclusion and exclusion
criteria.

• Inclusion criteria: (1) age > 60 years; (2) collaborative
in the MEG recording procedure; (3) ability to
complete medical, physical, neurological, psychiatric and
neuropsychological evaluations; (4) free of any drug that
could affect MEG recordings at the time of the study.

• Exclusion criteria: (1) history of any other significant
medical, neurological or psychiatric disorder, excluding
MCI or AD; (2) presence of a pacemaker or other
implanted medical device that may interfere with the MEG
equipment; (3) lack of written informed consent obtained
from healthy volunteers or caregivers of patients.

Thirty-six patients with AD (12 men and 24 women,
age = 74.1 ± 6.9 years, mean ± standard deviation,
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M ± SD) were recruited from the ‘Asociación de Familiares
de Enfermos de Alzheimer’ and the Geriatric Unit of the
‘Hospital Clı́nico Universitario San Carlos’ (Madrid, Spain).
Diagnoses were made on the basis of exhaustive medical,
physical, neurological, psychiatric and neuropsychological
examinations. All patients fulfilled the criteria for probable
AD, according to the clinical guidelines of the National
Institute of Neurological and Communicative Disorders and
Stroke and the AD and Related Disorders Association
(McKhann et al 1984). The cognitive and functional deficits
were assessed by means of the mini-mental state examination
(MMSE) and the functional assessment staging (FAST). AD
patients obtained mean scores of 18.1 ± 3.4 and 4.2 ± 0.4
on the MMSE and FAST, respectively.

Eighteen MCI subjects from AFAL (8 men and 10 women,
age = 74.9 ± 5.6 years, M ± SD) were also enrolled in
the study. All patients were diagnosed with MCI following
Petersen’s criteria (Petersen et al 2001). Mean MMSE and
FAST scores in this group were 25.7 ± 1.8 and 3.0 ± 0.0,
respectively. It is noteworthy that neither MCI subjects nor AD
patients were taking any medication that could affect MEG
recordings at the time of study (like cholinesterase inhibitors,
benzodiazepines or antidepressants).

Twenty-seven healthy volunteers (11 men and 16 women,
age = 71.5 ± 6.2 years, M ± SD) were included in the
study as a control group. Elderly controls were cognitively
healthy subjects with no history of neurological or psychiatric
disorders. Their mean MMSE and FAST scores were 29.0 ±
1.2 and 1.6 ± 0.5, respectively.

Nonsignificant differences were observed in the mean age
and gender of AD patients, MCI subjects and controls (p >

0.05, Kruskal–Wallis test).
It is noteworthy that all participants and all patients’

caregivers gave their informed consent prior to their
participation in the study. Moreover, the study protocol was
approved by the local Ethics Committee.

2.2. MEG recording

MEG signals were acquired using a 148-channel whole-head
magnetometer (MAGNES 2500 WH, 4D Neuroimaging, San
Diego, CA). MEG acquisition was carried out in a magnetically
shielded room at the ‘Centro de Magnetoencefalografı́a Dr
Pérez-Modrego’ (Complutense University of Madrid, Spain).
In addition, subjects were asked to remain awake, relaxed
and with their eyes closed, in order to minimize the presence
of artifacts. MEG signals were continuously monitored to
prevent drowsiness. Five minutes of spontaneous MEG activity
were recorded from each subject with a sample frequency
of 678.17 Hz. Initially, a 0.1–200 Hz hardware band-pass
filter and a 50 Hz notch filter were applied. Then, each MEG
recording was downsampled by a factor of 4 to reduce the
data length. Artifact-free epochs of 10 s (26.6 ± 5.7 artifact-
free epochs per channel and subject, M ± SD) were selected
for further analysis. MEG signals were subsequently processed
using a finite impulse response filter designed with a Hamming
window and cut-off frequencies at 1 and 70 Hz. It should be
noted that the frequency range was chosen to keep the relevant

spectral content and minimize the presence of oculographic
and myographic artifacts (Bruña et al 2012, Poza et al 2008b).

3. Methods

3.1. Continuous wavelet transform

Electromagnetic brain signals are non-stationary biomedical
recordings (Blanco et al 1995). Non-stationary signal analysis
techniques are then needed to appropriately characterize their
time-varying properties. In this study, the time-scale maps
were computed for each 10 s MEG epoch using the continuous
wavelet transform (CWT). The CWT is a multiresolution
signal decomposition method conceptually related to the STFT
and useful for extracting local-frequency information from a
signal. Wavelets are zero-mean functions localized in both time
and frequency; thereby, different waveforms can be considered
a wavelet. However, the waveform contained in the wavelet
should also provide a biological plausible fit to the signal being
modeled (Roach and Mathalon 2008). This is the case of the
Morlet wavelet, which exhibits a Gaussian-windowed shape
in both time and frequency, while maintaining a sinusoidal
underlying structure. This function will be used in this study
to generate a family of wavelets, including compressed and
stretched versions of the ‘mother wavelet’ (Mallat 1998).
In brief, several wavelets at different scales are generated.
The CWT of each 10 s MEG epoch, x(t), is then defined as the
convolution of x(t) with a scaled and translated version of the
‘mother wavelet’:

CWT(k, s) = 1√
s

·
∫ +∞

−∞
x(t) · ψ∗

(
t − k

s

)
dt, (1)

where ψ(t, s) represents the ‘mother wavelet’, s is the scaling
factor, k represents the time interval and ∗ denotes the complex
conjugate. The wavelet analysis was carried out for scales
[1:128] to include the 1–70 Hz frequency range.

A simple way to represent the magnitude of the
neuromagnetic oscillations at specific scales is the calculation
of the wavelet power. Hence, the scalogram (WS) is a function
that summarizes the distribution of wavelet power in the time-
scale map (Percival 1995). The WS is calculated by squaring
the magnitude of CWT coefficients:

WS(k, s) = |CWT(k, s)|2. (2)

3.2. Wavelet turbulence

From the time-scale map of WS, several parameters can be
computed to summarize its dynamical properties. One of them
is WT, which provides an estimate on how WS varies over
time (Poza et al 2012). The calculation of WT is based on the
comparison of WS values at consecutive time points by means
of the correlation coefficient (Kelen et al 1991). Thereby, WT
is able to summarize the regularity patterns of time-varying
signals in terms of the strength of the relationship. Although
WT can be computed over narrow-band ranges, in the
present study this parameter was calculated considering the
entire frequency range. Hence, the definition of WT can be
read as

WT(k) = τ [WS(k, s), WS(k + 1, s)], (3)
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where τ [ · ] denotes the Kendall correlation between WS(k, s)
and WS(k + 1, s). WT could also be computed using the
Pearson or the Spearman correlation. The Pearson correlation
measures the degree of linear association between two
variables, whereas the Spearman rank correlation is useful to
detect nonlinear but monotonic associations, either increasing
or decreasing (Jobson 1991). The Kendall correlation is an
alternative measure of association based also on the property
of monotonicity. However, it does not rely on any assumptions
on the data distributions and provides a straightforward
interpretation as a difference between the probability of
concordance and the probability of discordance (Kendall and
Gibbons 1990).

Due to the fact that we are analyzing finite-length time
series, border distortion will be introduced at the beginning
and end of WS. The WS region in which edge effects become
important is named ‘cone of influence’ (Mallat 1998). Figure 1
illustrates the influence of border distortion on WT, introduced
in the wavelet analysis. In order to avoid edge effects, the
time intervals [0 1] s and [9 10] s were excluded from the
computation of WT for each 10 s MEG epoch.

As illustrated in (4), WT is formed by the correlations
between neighbor WS components at different time points.
Several statistics were then computed from the time series
formed by the Kendall correlation coefficients to characterize
the data distribution, like those metrics intended to measure
the location, spread and shape.

3.2.1. Measures of location. This kind of statistics is useful
to summarize the central tendency of the distribution. The
most commonly used statistic is the mean or sample average
(Jobson 1991), which in the case of WT (WT) summarizes the
average degree of similarity between the WS components of
adjacent time slices (Poza et al 2008b, 2012):

WT = 1

N − 1
·

N−1∑
k=1

WT(k), (4)

where N represents the number of time points.
Another measure of centrality is related to the maximum

frequency in the histogram, named the mode (Jobson 1991). In
the case of WT, its mode (WTm) represents the most frequent
value of correlation in the temporal series, namely the most
likely value of WT. The WTm definition is given by

WTm = arg max
WT(k)

{hist[WT(k)]}, (5)

where hist[WT(k)] denotes the histogram corresponding to the
WT distribution.

3.2.2. Measures of spread. The most common measure
of spread is the variance (Jobson 1991). Nevertheless, the
standard deviation (σ WT) was used instead of the variance
in this study, since it provides a more intuitive description of
the changes of variability in the correlation around the mean
value (Poza et al 2008b, 2012). It is defined as

σWT =
{

1

N − 2
·

N−1∑
k=1

[WT(k) − WT]

}1/2

. (6)

Figure 1. Grand-average of WT for each group, showing the border
distortion at the edges of the 10 s time series. Shaded contours
enclose regions where edge effects become important.

The interquartile range is an alternative to the standard
deviation that provides a robust estimate of the spread of the
data. In the case of WT (IQRWT), it estimates the range of the
central half of the correlation values (Jobson 1991):

IQRWT = QWT
3 − QWT

1 , (7)

where QWT
3 and QWT

1 represent the third and first quartiles (i.e.
the 25th and the 75th percentiles) of the WT distribution,
respectively.

3.2.3. Measures of shape. Shape is usually concerned with
the tails of the distribution. Hence, its characterization is based
on the tail length and the symmetry of the left and right tails.
The first measure of shape is the skewness (γ WT), which is
a quantifier of the asymmetry between the two tails of the
distribution of correlation values (Jobson 1991):

γWT = E{[WT(k) − WT]3}
σ 3

WT

, (8)

where E{ · } is the expectation function.
Another measure of shape is the kurtosis (δWT), which is

related to the property of peakedness or to the length and the
thickness of the tails of the WT distribution (Jobson 1991).
Owing to the normalization of kurtosis with respect to the
normal distribution (whose kurtosis is 3), δWT has been used
as a quantifier of non-Gaussianity (Jobson 1991):

δWT = E{[WT(k) − WT]4}
σ 4

WT

− 3. (9)

Figure 2 illustrates the previous statistics (mean, mode,
standard deviation, interquartile range, skewness and kurtosis),
calculated from the WT distribution of a 10 s MEG epoch, for
one subject from each group: (a) healthy control, (b) MCI
subject and (c) AD patient.

3.3. Statistical analysis

It is noteworthy that the statistical and classification analyses
were carried out in four steps: (i) exploratory analysis; (ii)
global statistical analysis; (iii) sensor-level statistical analysis;
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(a)

(b)

(c)

Figure 2. Histograms corresponding to WT, calculated for 10 s MEG epochs at sensor A107, for one subject from each group. (a) Control
subject. (b) MCI subject. (c) AD patient. The corresponding WT statistics are also indicated (mean, WT; mode, WTm; standard deviation,
σ WT; interquartile range, IQRWT; skewness, γ WT; and kurtosis, δWT).

and (iv) three-class ROC (receiver operating characteristic)
analysis.

Initially, an exploratory analysis was carried out to study
the data distribution. After the descriptive analysis, variables
did not meet parametric test assumptions.

Grand average WT statistics were then compared between
AD patients, MCI subjects and controls by means of
Kruskal–Wallis tests (α = 0.05). Mann–Whitney U-tests
adjusted for multiple comparisons by a Bonferroni correction
were performed when previous analyses showed significant
interactions (α = 0.05/3 = 0.0167).

Due to the limitations of the previous tests to control
type I error when a high number of comparisons should be
made, the significance of the differences in WT statistics
was analyzed at the sensor level using a multiple comparison
nonparametric permutation test (Nichols and Holmes 2001).
This test is useful to achieve a strong control over type I error in
situations in which the multiplicity of testing must be taken into
account (e.g. 148 sensors). The test computes the permutation
distribution of the maximal sensor statistic, which is based on
the F statistic obtained comparing each WT statistic between
controls, MCI subjects and AD patients sensor by sensor. It
is noteworthy that the goal of this step is to compute the
permutation distribution for the maximal statistic Fmax (i.e.
the maximum of the sensor statistics for each permutation).

As a consequence, WT statistics should not necessarily be
normally distributed. In this study, the maximal distribution
was generated from 5000 permutations. Multiple comparisons
were then corrected by selecting a critical threshold at the
c + 1 largest member of the permutation distribution for
Fmax, where c = �αN�, αN rounded down (α represents
the significance level, typically 0.05, and N is the number of
permutations, 5000). Sensors with F statistics exceeding this
threshold exhibit evidence against the corresponding sensor
hypothesis at level α. The corrected p-value for each sensor
is estimated according to the proportion of the permutation
distribution for Fmax exceeding the observed sensor statistic
(Nichols and Holmes 2001).

The classification performance of each WT statistic was
finally evaluated using a three-class ROC analysis (Nakas and
Yiannoutsos 2004). The three-dimensional generalization of
the ROC curve, named ROC surface, extends the two-class
classification task carried out in a conventional ROC analysis.
Classification statistics were summarized in terms of true
class (TCgroup, group = {CON, MCI, AD}) and accuracy.
TCgroup represents the proportion of subjects of each group
with a correct classification, whereas the accuracy is the total
proportion of subjects with a correct classification. In the two-
class setting, statistics can be graphically represented by pairs,
using ROC curves, whereas in the three-class setting a ROC
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Table 1. Results of Mann–Whitney U-tests (α = 0.0167, Bonferroni-corrected) and Kruskal–Wallis analysis (α = 0.05) for the averaged WT
statistics. Significant values have been highlighted.

Mann–Whitney U-tests Kruskal–Wallis test

Parameter C versus AD C versus MCI MCI versus AD C versus MCI versus AD

WT Z = −3.931, p = 0.0001 Z = −1.413, p > 0.05 Z = −3.156, p = 0.0016 χ2 = 19.5, p = 0.0001
WTm Z = −3.933, p = 0.0001 Z = −1.332, p > 0.05 Z = −3.193, p = 0.0014 χ2 = 20.0, p < 0.0001
σ WT Z = −2.250, p = 0.0244 Z = −1.031, p > 0.05 Z = −1.184, p > 0.05 χ2 = 5.5, p = 0.0649
IQRWT Z = −2.785, p = 0.0054 Z = −1.089, p > 0.05 Z = −1.688, p > 0.05 χ2 = 8.6, p = 0.0136
γ WT Z = −3.847, p = 0.0001 Z = −1.158, p > 0.05 Z = −3.119, p = 0.0018 χ2 = 18.6, p = 0.0001
δWT Z = −3.681, p = 0.0002 Z = −1.251, p > 0.05 Z = −3.083, p = 0.0021 χ2 = 17.5, p = 0.0002

C: control group. MCI: mild cognitive impairment group. AD: Alzheimer’s disease group.

surface is generated. The area under ROC curve (AUC) and
the volume under ROC surface (VUS) were thereby used to
quantify the probability that test values will allow a proper
classification of two or three randomly selected subjects, one
from each group (Nakas and Yiannoutsos 2004). It should
be noted that the interpretation of AUC and VUS values
must be carefully carried out. The volume under the ROC
hypersurface in a k-class setting is in the range [1/k! 1], where
the lower limit, 1/k!, is reached by a completely uninformative
parameter and the upper limit, 1, is obtained when the k
populations are perfectly separated (Nakas and Yiannoutsos
2004). Hence, a random classifier in the two-class setting
would obtain an AUC value of 0.500, whereas in the three-
class setting it would yield a VUS value of 0.167.

Signal processing and statistical analyses were performed
using the software packages Matlab (version 7.14 Mathworks,
Natick, MA) and SPSS Statistics (version 20, IBM Corp,
Armonk, NY).

4. Results

4.1. Statistical analysis

Initially, WT statistics were averaged over all sensors in
order to obtain a single value per parameter and subject.
Figure 3 depicts the boxplots corresponding to the averaged
WT statistics for each group, whereas table 1 summarizes
the results of the statistical analyses. WT statistics were
subsequently analyzed at the sensor level in order to extract
group-specific spatial patterns. Detailed results for WT
statistics are shown in figure 4, where the differences in the
spatial distributions for each pair of groups can be observed.

The spatial analyses of the measures of location (i.e. WT
and WTm) showed a significant widespread increase for AD
patients in comparison to controls, whereas this increment was
more localized when compared to MCI subjects, including the
left frontal, central and left parieto-occipital regions. On the
other hand, MCI subjects exhibited an increase of WT and
WTm in the right fronto-temporal region in comparison to
controls.

Regarding the measures of spread (i.e. σ WT and IQRWT),
AD patients obtained statistically significant lower values in
the upper temporal and lower right temporal regions than
controls. Spatial analyses showed that MCI subjects reached
higher σ WT and IQRWT values than AD patients in the
left frontal and left parieto-occipital regions. MCI subjects

obtained lower σ WT and IQRWT values than controls in the
temporal regions of both hemispheres.

Statistical analyses of the measures of shape (i.e. γ WT and
δWT) revealed that AD patients obtained a widespread pattern
of significant increases compared to controls, including the
temporal, central and right parieto-occipital regions, though
the changes were more localized for δWT than for γ WT. MCI
subjects displayed a significant decrease of γ WT and δWT in
comparison to AD patients, which was mainly localized in
the parietal region. MCI subjects exhibited simultaneously a
slight increase of γ WT and δWT in the right temporal region
and a decrease in the upper left temporal region.

In summary, AD patients showed statistically significant
different measures of location, spread and shape for WT when
compared to MCI subjects and controls. Furthermore, MCI
subjects exhibited intermediate WT statistics when compared
to AD patients and controls. These results suggest that
dementia progression can be associated with several changes
in the spontaneous MEG activity like: (i) an increase of the
average degree of similarity in WS and in the most frequent
value of WT; (ii) a loss of variability in WT; and (iii) an increase
in the asymmetry and peakedness of the data distribution
calculated from WT. The correlation analyses with cognitive
and functional tests support these ideas. WT statistics were
correlated with MMSE and FAST scores (p < 0.05 using the
Spearman correlation).

4.2. Classification analysis

In addition to the previous statistical results, the diagnostic
ability of the proposed parameters was assessed following
a two-step approach. Firstly, a two-class ROC analysis
was carried out to analyze the classification performance
of WT statistics to discriminate between pairs of groups.
Secondly, a three-class ROC analysis was applied to study
the global classification performance to simultaneously
distinguish among the three groups. Table 2 summarizes the
accuracies, AUC and VUS values for WT statistics averaged
for the sensors that reached significant results in the two-
group and three-group comparisons. σ WT was not further
analyzed, since no significant results were observed for any
sensor (p > 0.05).

In a first step, the classification statistics for the two-
class ROC analysis indicated that the highest classification
rates were achieved when discriminating between AD patients
and controls. The highest AUC values were reached using
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Boxplots for each group (C: healthy controls; MCI: MCI subjects; AD: AD patients) corresponding to the averaged WT statistics.
(a) Mean, WT. (b) Mode, WTm. (c) Standard deviation, σ WT. (d) Interquartile range, IQRWT. (e) Skewness, γ WT. (f) Kurtosis, δWT.

Table 2. Accuracies, AUC and VUS values for the significant WT statistics.

Parameter C versus AD C versus MCI MCI versus AD C versus MCI versus AD

WT AUC/VUS 0.794 0.626 0.765 0.546
Accuracy (%) 79.4 68.9 75.9 66.7

WTm AUC/VUS 0.801 0.628 0.776 0.551
Accuracy (%) 77.8 66.7 77.8 66.7

IQRWT AUC/VUS 0.761 0.667 0.662 0.492
Accuracy (%) 77.8 66.7 74.1 64.2

γ WT AUC/VUS 0.801 0.605 0.769 0.546
Accuracy (%) 77.8 66.7 79.6 67.9

δWT AUC/VUS 0.794 0.634 0.759 0.542
Accuracy (%) 76.2 66.7 77.8 66.7

AUC: area under ROC curve. VUS: volume under surface. C: control group. MCI: mild cognitive
impairment group. AD: Alzheimer’s disease group.

WTm (AUC = 0.801, TCCON = 66.7%, TCAD = 86.1%,
accuracy of 77.8%) and γ WT (AUC = 0.801, TCCON = 77.8%,
TCAD = 77.8%, accuracy of 77.8%). However, the highest
accuracy was obtained with WT (AUC = 0.794, TCCON =
63.0%, TCAD = 91.7%, accuracy of 79.4%). The classification
analysis for MCI and AD groups showed that the highest
AUC value was reached using WTm (AUC = 0.776, TCMCI =
72.2%, TCAD = 80.6%, accuracy of 77.8%). The highest
accuracy was achieved with γ WT (AUC = 0.769, TCMCI =

72.2%, TCAD = 83.3%, accuracy of 79.6%). The highest AUC
value when discriminating between controls and MCI subjects
was obtained with IQRWT (AUC = 0.667, TCCON = 51.9%,
TCMCI = 88.9%, accuracy of 66.7%), whereas the highest
accuracy was obtained using WT (AUC = 0.626, TCCON =
63.0%, TCMCI = 77.8%, accuracy of 68.9%).

In a second step, the three-class ROC analysis indicated
that the highest VUS value was reached using WTm (VUS
= 0.551, TCCON = 63.0%, TCMCI = 44.4%, TCAD = 80.6%,
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Figure 4. Sensor level topographic maps of the statistics computed from WT (mean, WT; mode, WTm; standard deviation, σ WT; interquartile
range, IQRWT; skewness, γ WT; and kurtosis, δWT) between controls and MCI subjects (C versus MCI), MCI subjects and AD patients (MCI
versus AD), and controls and AD patients (C versus AD). Dots indicate sensors showing statistically significant differences (p < 0.05
corrected for multiple comparisons).

accuracy of 66.7%), though the highest accuracy was achieved
with γ WT (VUS = 0.546, TCCON = 55.6%, TCMCI = 83.3%,
TCAD = 55.6%, accuracy of 67.9%).

Figure 5 depicts the ROC surface and the ROC curves
corresponding to WTm (figures 5(a) and (b)). ROC curves
coincide with the projections of the ROC surface on the sides
of the unit cube.

5. Discussion

In this study, we investigated the neural dynamics associated
with AD, as well as with the prodromal phase of the disease
(i.e. MCI). A new parameter, WT, was calculated using a
CWT decomposition to quantify the changes of WS over
time in spontaneous MEG activity. Our findings suggest that
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(b)(a)

Figure 5. Results of the ROC analysis corresponding to WTm. (a) Three-dimensional ROC surface (TCCON: true class for controls; TCMCI:
true class for MCI subjects; TCAD: true class for AD patients). (b) ROC curves assessing the pairwise classification (C versus AD: controls
versus AD patients; C versus MCI: controls versus MCI subjects; MCI versus AD: MCI subjects versus AD patients). X- and Y-axes for the
ROC curves have been labeled using different colors depending on the pairwise comparison.

dementia progression is accompanied by several alterations
in WT statistics, which reflect abnormal behavior of neural
dynamics in MCI and AD.

5.1. Dynamical properties of neural activity

Regarding the first research question, our findings support the
notion that WT statistics provide an original description of
neural dynamics. Measures of location, spread and shape have
proven their utility to extend the concepts of irregularity and
variability, as well as to study new properties of symmetry
and non-Gaussianity. Measures of location showed that AD
patients obtained significantly higher WT and WTm values
than MCI subjects and healthy controls. Likewise, MCI
subjects displayed higher WT and WTm values than controls.
These findings provide direct evidence that MCI and AD
are associated with a loss of irregularity in comparison with
normal ageing, which is in agreement with previous studies
that reported a loss of irregularity in MCI (Bruña et al 2012,
Poza et al 2012) and AD (Fernández et al 2006a, Poza et al
2007, 2008a, 2008b). Nevertheless, these results should be
analyzed from two different points of view. First, WT reflects
a progressive increase of the average degree of similarity in
WS over the course of AD. Indeed, WT provides an estimate
of the average irregularity in MEG activity. At the same time, it
introduces an alternative definition of irregularity that is neither
based on the distance to the spectral uniform distribution
(like spectral entropies or disequilibrium measures) nor on
the variability of patterns (like nonlinear entropies). Secondly,
WTm indicates an increase in the most frequent value of WT
as AD progresses. Certainly, WTm and WT are related, though
they do not necessarily agree. Accordingly, WTm extends the
concept of similarity introduced by WT. More specifically,
WTm quantifies the most probable degree of similarity in WS,
i.e. it provides an estimation of the prevailing irregularity in
the MEG activity.

Measures of spread indicated that AD patients reached
lower σ WT and IQRWT values than MCI subjects and controls,

though only statistically significant differences between
AD patients and controls were found for IQRWT. MCI
subjects exhibited intermediate σ WT and IQRWT values in
comparison to AD patients and controls. These findings
support the notion that MCI and AD elicit a variability
decrease in the MEG activity when compared to normal
ageing, though other neurodegenerative disorders might also
exhibit similar variability patterns. Likewise, these results are
in line with those reported by two previous studies, which
found preliminary evidence of a loss of variability in the
spectral content of patients with dementia (Poza et al 2008a,
2012). Our findings extend the results of these investigations,
since IQRWT introduces a robust estimate of data variability.
Consequently, IQRWT is less dependent on outliers than σ WT.
This is an essential issue to accurately detect subtle fluctuations
in the WT distribution due to an inherent change of data
variability.

Measures of shape showed that AD patients reached
statistically higher γ WT and δWT values than MCI subjects and
healthy controls. As in the case of measures of location, MCI
subjects obtained higher γ WT and δWT values than controls, but
the differences were not statistically significant. Our findings
provide evidence that both MCI and AD elicit considerable
changes in the shape of WT histograms. Abnormalities in
γ WT and δWT suggest that dementia progression can be
associated with an increase in the asymmetry and peakedness
of WT distribution, respectively. Interestingly, the lack of
symmetry might be related to a decrease of homogeneity.
Certainly, γ WT suggests that the WT distribution is biased
toward low values for MCI subjects and AD patients, so that
their WT values are less homogeneously distributed than in
the case of healthy controls. As outlined earlier in the text,
kurtosis can also be used as a quantifier of the property of
non-Gaussianity. Thereby, our findings provide preliminary
evidence that, as dementia progresses, the WT distribution of
the neural activity moves away from a Gaussian distribution.

In summary, changes in irregularity, variability, symmetry
and Gaussianity reflect an alteration in fluctuations of brain
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dynamics. Our results lead to suppose that changes in the
previous properties could help to distinguish incipient AD
and normal ageing. Nevertheless, future research should be
carried out to delimit the role of the proposed methodology
as a candidate to obtain a clinical differential diagnosis.
Furthermore, abnormalities in the structure of the WT
distribution involve changes of time-varying properties of
neural activity and, therefore, of transient information flow
dynamics. In fact, mounting evidence suggests that different
psychiatric disorders can be characterized in terms of different
kinds of cognitive information flow instabilities (Rabinovich
et al 2012). Similar ideas have been raised in previous MEG
studies, posing the hypotheses that changes in entropy and
complexity due to AD might be related to a loss of information
content (Bruña et al 2012) and a decrease in information
processing within the brain cortex (Poza et al 2008b).

5.2. Regional abnormalities in MCI and AD

The second research question addressed the issue of whether
the changes in the MEG activity could reflect the regional
abnormalities of MCI and AD. In fact, our findings revealed
marked regional differences in WT statistics. Frontal and
temporal lobes, mainly in the right hemisphere, appear to
be early affected in MCI, though no significant differences
were found between MCI subjects and controls. Certainly, the
temporal lobe is predominantly affected at early stages of AD,
which results in typical clinical symptoms like impairment in
cognition (Hampel et al 2011). In line with our results, previous
studies did not find significant differences in synapse counts
and the number of diffuse plaques between MCI and healthy
elderly subjects (Mufson et al 2012). Similar spatial patterns of
abnormalities have also been reported in previous studies based
on FDG-PET, which observed the AD-like hypometabolic
pattern in several brain regions of MCI subjects, including
the precuneus and temporo-parietal cortex (Ewers et al 2011).
Brain atrophy has been observed using sMRI in the medial
temporal lobe, posterior cingulated and orbitofrontal cortex of
MCI subjects (Ewers et al 2011). Interestingly, progressive
brain atrophy of hippocampus was found to be correlated
with decreased cortical alpha power in a previous study that
combined sMRI and EEG (Babiloni et al 2009).

Our results indicate that AD progression is followed
by several changes in frontal and parieto-occipital regions,
mainly in the left hemisphere. These results are in agreement
with previous research suggesting that the frontal and parietal
association cortices are progressively affected along with
disease progression (Hampel et al 2011). Spread of AD beyond
the temporal lobe is accompanied by increasing deficits in
spatial orientation, attention, executive functions, working
memory and language (Hampel et al 2011). Functional and
cognitive impairment can be partly explained by the significant
loss of synapses observed in milder AD patients compared to
both normal and MCI subjects (Mufson et al 2012). In this
regard, accumulating evidence consistently showed that early
AD patients exhibit a significant increase in the number of
neuritic plaques and neurofibrillary tangles in several brain
regions in comparison to MCI subjects (Mufson et al 2012).

Furthermore, AD has been widely related to brain atrophy
on sMRI in several regions (including the lateral temporal,
parietal and prefrontal lobes), impaired connectivity patterns
using fMRI in the ‘default mode network’ and decreased FDG
uptake on PET in temporo-parietal cortex (Ewers et al 2011,
McKhann et al 2011, Sperling et al 2011). Neurophysiological
studies support the regional-dependent cerebral dysfunction
observed in AD. Thus, intramodular losses in the parietal
cortex, a reduction in synchronization in the left fronto-
temporal area and a decrease in functional connectivity in
the posterior cingulated cortex have been reported (de Haan
et al 2012, Franciotti et al 2013, Knyazeva et al 2013). The
results of the pairwise comparisons in the present research
suggest that distinct brain structures are differentially affected
during the course of the disease. Extensive evidence is in line
with this result (Hampel et al 2012). AD is a complex disease
that elicits a heterogeneous spatial pattern of abnormalities.
Our findings support this idea and suggest that temporal
cortices play an important role in incipient AD. In fact,
some studies highlighted a link between normal ageing and
AD-related abnormalities, specifically regarding beta-amyloid
(Aβ) deposition and brain atrophy in the temporal cortex
(Ferrer 2012, Sperling et al 2011). Nevertheless, MCI subjects
showed an overlapped distribution of biochemical, cognitive,
structural and functional abnormalities when compared to
elderly controls. Hence, sharp distinctions between normal
cognition and MCI are difficult (Sperling et al 2011).

5.3. Multifaceted nature of AD dementia

Regarding the last research question, we put forth the idea of
whether the proposed methodology could be useful to account
for the complexity of AD and to provide further insights into
the underlying brain dynamics of this condition. Accumulating
scientific evidence proposes that Aβ plaques deposition in the
brain is a distinctive early lesion in the cascade of events
leading to clinical impairment in AD. Abnormal changes
in the Aβ metabolism result in altered cholinergic activity
and subsequent neural degeneration (Hampel et al 2011).
Nevertheless, there is lack of consensus about whether or
not cholinergic deficits are an early or late feature of AD.
Some studies suggest the hypothesis that these changes may
be only detectable in specific brain regions (Mufson et al
2012). Certainly, AD etiology still remains unclear. The
complex nature of prodromal AD suggests that disruption
of Aβ metabolism can be one among other important
mechanisms underlying neuronal dysfunction (Hampel et al
2012). Emerging evidence points out that diverse factors,
including synaptic, mitochondrial, metabolic, inflammatory,
neuronal, cytoskeletal and other age-related changes, could
be involved in the onset of neuronal degeneration (Mufson
et al 2012, Sperling et al 2011). Neuroimaging techniques,
such as MEG, provide further insights into the mechanisms of
neural functions. Accordingly, they can be useful to understand
dynamical processes involved in the regulation of complex
functional brain systems. It should be stressed that neural
injury, including damage in synaptic function and integrity
of neurons, appears to be an early lesion in dementia (Hampel

10



J. Neural Eng. 11 (2014) 026010 J Poza et al

et al 2012, Sperling et al 2011). Hence, MEG becomes a
promising tool to understand the incipient changes of brain
dynamics in AD.

An accurate characterization of MCI is crucial for early
AD detection. Our results suggest that neural dynamics are
significantly different in MCI and AD. Normal ageing and
MCI exhibit an overlapped distribution of abnormalities, but
some differences between controls and MCI subjects can be
found. Hence, MCI displays intermediate changes in the MEG
activity between those observed in normal ageing and AD.
Our classification results support these ideas. The highest
accuracy of 79.4% was reached when discriminating between
AD patients and controls, whereas a maximum value of 68.9%
was obtained when classifying MCI subjects and controls.
Similar classification statistics were reported by previous
MEG studies, which reached accuracies around 80% in the
distinction between AD patients and controls (Bruña et al
2012, Escudero et al 2011, Fernández et al 2006a, Poza et al
2008b, Stam 2010), and around 65% when discriminating
between MCI subjects and controls (Bruña et al 2012,
Escudero et al 2011, Fernández et al 2006a, 2010, Gómez
et al 2009). Furthermore, it is worth noting that the highest
three-class accuracy was 67.9%. A plausible explanation for
the relatively low classification statistics, as well as the similar
WT statistics in MCI subjects and controls, could be the
moderately low alteration in the neural dynamics associated
with MCI. Our findings showed that regional patterns of
abnormalities in WT statistics are generally in line with
the results reported in other studies, which applied diverse
techniques (de Haan et al 2012, Ewers et al 2011, Ferrer 2012,
Franciotti et al 2013, Hampel et al 2011, Knyazeva et al 2013,
Mufson et al 2012). They support the notion that MEG might
be differentially sensitive to changes in brain dynamics at
different stages of AD. Therefore, the proposed methodology
based on WT provides valuable insights into the underlying
brain dynamics associated with MCI and AD. Certainly,
studies using other neuroimaging techniques, such as MRI
and PET, obtained sensitivity and specificity values higher
than 90% (Ewers et al 2011, Hampel et al 2011). They are
considered as potential candidates to establish core biomarkers
for the detection of AD; however, their inclusion for routine
diagnostic purposes is still not recommended (McKhann et al
2011). In order to reach an accurate detection of AD, diverse
studies acknowledge that a strategy for integrating different
markers of AD pathophysiology is needed (Ewers et al 2011,
Hampel et al 2012). The predictive value of multimodal
neuroimaging is then brought in focus, due to the ability to
detect structural and functional changes in the brain (e.g.
sMRI, fMRI and FDG-PET) and provide a direct measure
of the neural function (e.g. EEG and MEG) (Ewers et al 2011,
Sperling et al 2011).

5.4. Limitations of the study and future research lines

Finally, further consideration should be devoted to several
methodological and clinical issues. First, the time-scale
analysis was based on the CWT using a real Morlet wavelet,
though there are diverse ‘mother wavelets’ and time-scale

representations that could also be considered. In a previous
study, an analogous parameter to WT based on the STFT,
named the spectral turbulence, was used to analyze global
irregularity patterns in AD brain dynamics (Poza et al 2008a).
The reported results are in agreement with the present findings,
indicating a global decrease in irregularity of MEG activity
due to dementia progression. Nevertheless, wavelet analysis
is better suited than Fourier transform for non-stationary data.
In this regard, the Morlet wavelet provides easily interpretable
results in the time-scale domain, as well as qualitatively similar
data to those obtained using a Fourier-based analysis. As a
consequence, both real- and complex-valued Morlet wavelets
(Ghuman et al 2011, Poza et al 2012) have been previously
applied to describe brain dynamics. In this study, the real-
valued Morlet was selected on the basis of previous research
(Poza et al 2012). Nevertheless, further efforts should be
carried out to analyze the role of real- and complex-valued
wavelets in the characterization of MEG.

WT computation was based on the Kendall correlation.
Nevertheless, other nonlinear association measures might
also be considered, such as mutual information, statistical
distances or divergences, among others. Further efforts
should be devoted to analyzing the influence of the
association measure on the description of time-varying WS
properties. Furthermore, as previously indicated, WT was
computed considering the entire frequency range from 1
to 70 Hz. Nevertheless, future studies should address the
characterization of WT in different frequency bands to further
analyze the frequency-dependent patterns associated with this
parameter.

The diagnostic ability of WT statistics averaged over
sensors was assessed by means of two- and three-class
ROC analyses. Future studies should analyze whether the
application of more sophisticated classification methodologies
can be helpful to increase the classification performance.
Likewise, it would be interesting to study whether different
WT statistics and their spatial patterns could provide
complementary information useful to improve classification
statistics.

There is another important issue concerning the cohort
of subjects enrolled in the study. Our research focused on
analyzing brain activity at different stages of AD. However,
other forms of dementia may also elicit similar abnormalities in
neural dynamics. Further studies should be aimed at assessing
whether the proposed methodology might be differentially
sensitive to changes in the MEG activity due to diverse
neurodegenerative dementias affecting the brain, such as Lewy
body dementia, vascular dementia, fronto-temporal dementia
or dementia associated with Parkinson’s disease. In connection
with the previous concern, it would be appropriate to increase
the number of MCI subjects. The multifaceted nature of
MCI involves that heterogeneous populations can be recruited
across studies (Ward et al 2012). Consequently, longitudinal
analyses should be carried out to account for the clinical
MCI heterogeneity. They would be useful to characterize the
brain patterns of subjects with stable MCI and those who
later progress to AD, as well as to delimitate the differential
utility of biomarkers given the diverse timing of progression
to dementia (Sperling et al 2011).
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6. Conclusions

WT statistics extend the concepts of irregularity and
variability, and provide original insights into the
characterization of time-varying signals, in terms of the
properties of symmetry and non-Gaussianity. The proposed
methodology has proven useful in addressing several
dynamical aspects of neural activity, which may lead to a
better understanding of incipient brain abnormalities in AD.
Specifically, our findings support the notion that MCI and AD
elicit several changes in MEG activity, including a progressive
loss of irregularity, variability, symmetry and Gaussianity
in the distribution of WT values. In this regard, our results
suggest that WT changes in prodromal AD (i.e. MCI) could
be early indicators of a subsequent neural dysfunction leading
to AD.

Further studies will address the role of complex-valued
wavelets to describe neural dynamics in MCI and AD.
Moreover, future efforts will be devoted to analyzing whether
WT statistics can be useful to differentially describe brain
dynamics in other neurodegenerative disorders.
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