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Abstract This paper aims at detecting sleep apnoea–

hypopnoea syndrome (SAHS) from single-channel airflow

(AF) recordings. The study involves 148 subjects. Our

proposal is based on estimating the apnoea–hypopnoea

index (AHI) after global analysis of AF, including the

investigation of respiratory rate variability (RRV). We

exhaustively characterize both AF and RRV by extracting

spectral, nonlinear, and statistical features. Then, the fast

correlation-based filter is used to select those relevant and

non-redundant. Multiple linear regression, multi-layer

perceptron (MLP), and radial basis functions are fed with

the features to estimate AHI. A conventional approach,

based on scoring apnoeas and hypopnoeas, is also assessed

for comparison purposes. An MLP model trained with AF

and RRV selected features achieved the highest agreement

with the true AHI (intra-class correlation coeffi-

cient = 0.849). It also showed the highest diagnostic

ability, reaching 92.5 % sensitivity, 89.5 % specificity and

91.5 % accuracy. This suggests that AF and RRV can

complement each other to estimate AHI and help in SAHS

diagnosis.
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1 Introduction

The sleep apnoea–hypopnoea syndrome (SAHS) is a dis-

ease characterized by recurrent episodes of total absence

(apnoeas) or significant reduction (hypopnoeas) in airflow

(AF) during sleep. SAHS is highly prevalent since up to

5 % of adults are affected [41]. It has been usually related

to cardiovascular illnesses [25], motor vehicle collisions

[35], and occupational accidents [24]. Recently, it has been

also associated with cancer incidence [8].

The current diagnostic standard test is nocturnal poly-

somnography (PSG). It requires monitoring and recording

multiple physiological signals from patients [32]. The

origin of the signals can be electrical or mechanical, and

each of them can involve one or several channels. The

apnoea–hypopnoea index (AHI), which is derived

from PSG, is used to establish SAHS. Physicians have to

perform an offline inspection of signals such as electro-

cardiogram (ECG), electroencephalogram (EEG), electro-

myogram (EMG), oxygen saturation (SpO2), or AF to

obtain AHI. Thus, PSG is technically complex and time-

consuming [6, 14]. Moreover, it is also costly since

requires expensive equipment as well as expert workforce

overnight [14]. These restrictions limit the availability of

specialized sleep units, leading to long waiting lists and

increasing the time until diagnosis and treatment [11].

Thereby, simplifying SAHS diagnosis has become a major

concern.

New alternative methods have been proposed to over-

come the PSG drawbacks. A common approach is to
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analyse reduced sets of signals from PSG in order to

decrease complexity, cost, and diagnostic time [14]. We

propose evaluating the utility of single-channel AF data to

assist in SAHS diagnosis. The respiratory rate variability

(RRV), derived from AF [10], is also investigated. The

waveform of both signals is directly modified by the

occurrence of apnoea and hypopnoea events [10, 19].

Hence, their study is a natural way of dealing with the

problem. There exist many recent works focused on pro-

cessing AF to determine SAHS. Most of them are aimed at

scoring apnoeic events to estimate AHI [5, 11, 30, 36, 39].

By contrast, our proposal performs a direct estimation of

AHI after a comprehensive analysis of AF and RRV. Thus,

the first step is the extraction of statistical moments, non-

linear measures and spectral parameters from the record-

ings in order to characterize them [2, 15, 26]. This

exhaustive characterization of AF and RRV may lead to

obtain redundant or non-relevant features. Hence, we

include a second step consisting of a feature selection

procedure using the fast correlation-based filter (FCBF)

[42]. FCBF relies on symmetrical uncertainty (SU) and has

been already involved in biomedical applications for can-

cer recognition [18], neonatal seizure detection [1], or gene

classification [13]. Its purpose is to filter data according to

their relevancy and redundancy. A final step is included to

estimate AHI. Thus, we feed three pattern recognition

techniques with the extracted features: multiple linear

regression (MLR), multi-layer perceptron neural network

(MLP), and radial basis function neural network (RBF).

They represent common linear (MLR) and nonlinear

(MLP, RBF) methodologies to perform regression tasks

[7]. We evaluate the agreement between these estimations

and the true AHI of subjects as well as their diagnostic

ability. Additionally, we also conduct a conventional

approach (scoring apnoeas and hypopnoeas) for compari-

son purposes. Our hypothesis is that relevant and non-

redundant features from single-channel AF could help in

SAHS diagnosis by estimating AHI.

2 Materials and methods

Figure 1 presents a scheme of the general methodology

carried out in this study. It includes the feature extraction,

the feature selection, and the AHI estimation steps, as well

as the two kinds of evaluations applied to the estimations

from each pattern recognition method and the conventional

approach.

2.1 Subjects and signals

This study involved recordings from 148 subjects (100

SAHS-positive and 48 SAHS-negative). The AF data were

obtained from nocturnal PSG, which was conducted in the

sleep unit of the Hospital Universitario Rı́o Hortega (Val-

ladolid, Spain). All subjects were suspected of suffering

from SAHS before undergoing PSG due to common

symptoms such as daytime sleepiness, loud snoring, noc-

turnal choking, awakenings, and referring apnoeic events.

The physicians established the AHI threshold for a positive

diagnosis in 10 events per hour (e/h). The score of apnoeic

events was done following the rules of the American

Academy of Sleep Medicine (AASM) [19]. Thus, apnoeas

were defined as 10-s-or-more episodes of complete cessa-

tion of AF. Accordingly, hypopnoeas were defined as 10-s-

or-more episodes of 30 % of AF reduction accompanied by

a 4 % or more decrease in the saturation of haemoglobin.

The Review Board on Human Studies accepted the proto-

col, and all the subjects gave their informed consent to

participate in the study.

The proportion of male subjects was 79 %. No statisti-

cally significant differences between SAHS-positive and

SAHS-negative samples were encountered in the body

Fig. 1 General scheme of the methodology carried out in the study.

AHI apnoea-–hypopnoea index, PPV positive predictive value, NPV

negative predictive value

1368 Med Biol Eng Comput (2013) 51:1367–1380

123



mass index (BMI) or age. The entire group was randomly

divided into a training group (60 %) and a test group

(40 %). Table 1 summarizes demographic and clinical data

from the entire sample, the training group and the test

group.

The acquisition of signals during PSG was done by

means of a polygraph (Alice 5, Respironics, Philips

Healthcare, The Netherlands). AF was obtained through a

thermistor (Pro-Tech, Respironics, Philips Healthcare, The

Netherlands) at the sample rate of 10 Hz. The length of the

AF recordings was 7.24 ± 0.38 h (mean ± standard

deviation). An anti-aliasing filter was applied to satisfy the

Nyquist–Shannon theorem. The RRV signal was obtained

from AF by measuring the time between consecutive

breaths [10]. Thereby, we examined the first derivative of

AF to find time intervals in which the original signal grew.

We located the AF maximums at each interval. To derive

RRV, consecutive locations were used as references to

measure the time from one breath to the next [21].

2.2 Definition of spectral bands of interest

The recurrent behaviour of apnoeas and hypopnoeas can be

characterized by analysing AF and RRV in the frequency

domain. Moreover, according to previous studies [15],

differences in the spectrum of SAHS-positive and SAHS-

negative samples are expected. Thus, the power spectral

density (PSD) of the recordings was computed in order to

establish these differences. PSD was estimated using the

nonparametric Welch method, which is suitable for non-

stationary signal analysis [38]. A Hamming window of

2048 (204.8 s) samples (50 % overlap and 4,096-point

DFTs) was used. Cubic spline interpolation was previously

applied to RRV series in order to resample the recordings

to a constant sample rate (10 Hz). The interpolation is not

needed to perform the analysis in time domain, and

therefore, the resampled version of the RRV recordings

was not used in that case.

Spectral bands of interest were defined for AF and

RRV. The Mann–Whitney test was applied to each

SAHS-positive and SAHS-negative full PSD from the

training group. Thus, a p value was computed for each

frequency. We located those frequencies at which the

lowest p value for AF and RRV was reached (p value

�0.01). We set the corresponding band limits around

these frequencies. In order to minimize type I errors, we

chose those frequencies with a corresponding p value

smaller than one order of magnitude. Thereby, we

maximized the likelihood of defining bands in which

truly exist significant differences. According to this

procedure, the following spectral bands of interest were

determined: [0.022–0.058] Hz for AF and [0.085–0.134]

Hz for RRV. Figure 2a, b shows the averaged PSD of

SAHS-positive and SAHS-negative samples for AF and

RRV, respectively, in the training set.

2.3 Feature extraction

Up to 19 features were used to exhaustively characterize

AF and RRV. Statistical moments, nonlinear measures, and

spectral parameters were extracted from each full AF and

RRV recordings. Thus, subjects were described by patterns

composed of the corresponding values for each feature.

2.3.1 Statistical moments

We expected differences between the distribution of the

time series amplitude values from SAHS-positive and

SAHS-negative samples [15]. Hence, four statistical

moments were extracted from AF and RRV. Mean (Mt1),

standard deviation (Mt2), skewness (Mt3), and kurtosis

(Mt4) were computed to quantify central tendency, disper-

sion, asymmetry, and peakedness of data, respectively.

Table 1 Demographic and clinical data for all subjects under study

(mean ± standard deviation)

All SAHS

positive

SAHS

negative

Subjects 148 100 48

All subjects

Age (years) 50.9 ± 11.7 51.9 ± 11.4 48.7 ± 12.1

Males (%) 79.0 85.0 66.7

BMI (kg/m2) 29.2 ± 4.7 29.7 ± 4.5 28.1 ± 5.0

Recording time (h) 7.24 ± 0.38 7.23 ± 0.36 7.27 ± 0.43

AHI (h-1) 37.15 ± 25.81 4.13 ± 2.39

All SAHS positive SAHS negative

Subjects 89 60 29

Training set

Age (years) 51.9 ± 11.8 52.8 ± 11.9 50.2 ± 11.7

Males (%) 80.9 88.3 65.5

BMI (kg/m2) 29.8 ± 5.0 30.5 ± 5.2 28.4 ± 5.7

Recording time (h) 7.22 ± 0.43 7.21 ± 0.38 7.24 ± 0.52

AHI (h-1) 37.4 ± 27.2 3.8 ± 2.4

All SAHS positive SAHS negative

Subjects 59 40 19

Test set

Age (years) 49.2 ± 11.3 50.5 ± 10.7 46.5 ± 12.5

Males (%) 76.3 80.0 68.4

BMI (kg/m2) 28.3 ± 4.1 28.6 ± 3.5 27.7 ± 5.2

Recording time (h) 7.27 ± 0.29 7.26 ± 0.32 7.30 ± 0.23

AHI (events/h) 26.2 ± 17.2 4.3 ± 2.3

BMI body mass index, AHI apnoea–hypopnoea index
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2.3.2 Nonlinear features

Nonlinear features were used to measure the variability,

complexity, and irregularity of the time series. We used

central tendency measure (CTM), Lempel–Ziv complexity

(LZC), and approximate entropy (ApEn) for this purpose.

These methods have been already used to characterize

SAHS in previous studies [2, 15, 26].

• Central tendency measure quantifies the degree of

variability in time series [8]. It is based on first-order

difference plots that can be generated representing

x[n ? 2] - x[n ? 1] versus x[n ? 1] - x[n], where

x[n] are the time series values. CTM is computed by

counting the points falling within a preselected radius q
and dividing that count by the total number of points

[9]. Values closer to 1 indicate lower variability,

whereas values closer to 0 indicate higher variability.

• Lempel–Ziv complexity is a measurement of complex-

ity in finite sequences [23]. Thus, the conversion of

time series into a finite sequence of symbols is needed.

Binary conversion has been commonly applied by

using the median as a threshold [29]. Once the

sequence is obtained, it is scanned from left to right

in order to find new subsequences of consecutive

characters [43]. The final number of these subsequences

is normalized to make the method independent of the

length of sequences. Larger values of LZC correspond

to higher complexity [43].

• ApEn measures the irregularity of time series. It assigns

higher values to higher irregularity [34]. ApEn was

originally developed to be applied over short and noisy

data sets and requires the specification of two design

parameters: a length m and a tolerance window r [33].

These are used to establish the logarithmic likelihood

resulting from those close patterns (within r) for

m contiguous observations, which remain close (within

the same r) for m ? 1 contiguous observations.

Optimum radiusq (CTM), length m, and tolerance r (ApEn)

were determined by a p value-based methodology [17]. In the

case of ApEn, we evaluated m = 1, 2 and r ranging 0.10–0.25

times the standard deviation of the times series (with a 0.05

step). These values produce good statistical reproductibility

for ApEn [34]. A wide range of values for q were also assessed

(0.1–30, with a 0.1 step). We selected those configurations,

which showed the lowest p value between SAHS-positive and

SAHS-negative samples in the training group:

• AF: q = 0.8 (CTM), m = 2, r = 0.2 times standard

deviation (ApEn).

• RRV: q = 4.8 (CTM), m = 2, r = 0.2 times standard

deviation (ApEn).

2.3.3 Spectral features

A total of 12 parameters were extracted from the full PSD

(6) and the band of interest (6) for every AF and RRV

recording.

• First-to-fourth statistical moments, which were also

extracted in the frequency domain (Mf1 - Mf4).

• Peak amplitude (PA), taken as the maximum value of

PSDs in a given frequency interval.

• The Wootters distance (WD) [40], which is a disequi-

librium measure. WD assigns higher values when the

PSD is concentrated into a narrow frequency band (as

in sum of sinusoids). If it is uniformly distributed along

frequencies (white noise), WD equals zero [27].

2.4 Automatic feature selection: FCBF

After the feature extraction stage, the FCBF algorithm

automatically selected relevant and non-redundant features

[42]. FCBF is a filter method, which is not dependent on

posterior analysis. It relies on symmetrical uncertainty

Fig. 2 Low-frequency

representation of the averaged

PSD for a AF and b RRV.

SAHS-positive group in solid

black line. SAHS-negative

group in solid grey line.

Corresponding bands of interest

into dashed lines
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(SU), which is a normalized measure of information gain

(IG) between two variables [42]. The method is divided

into two steps. First, a relevance analysis of features was

done. SU between the features (Xi) and AHI (Y) was

computed as follows:

SUiðXi; YÞ ¼ 2
IGiðXi; YÞ

HiðXiÞ þ HðYÞ i ¼ 1; 2; . . .;N; ð1Þ

where H refers to Shannon’s entropy [42], and N is the

number of features extracted. SU is restricted to the range [0,

1]: 1 indicates that knowing one feature it is possible to

completely predict the other, whereas 0 indicates that the two

features are independent [42]. Once SUi were computed, the

features were ranked from more relevant (higher SUi) to less

relevant (lower SUi). The mean of all SUi values was used as

a cut-off to perform a preselection. The second step was a

redundancy analysis. SU between each pair of preselected

features (SUi,j) was sequentially computed beginning from

the most relevant ones. When SUi,j C SUi, the feature j was

discarded due to redundancy and was not taken into account

in successive comparisons. The final selected features were

those not discarded after ending the procedure.

2.5 Pattern recognition methods

As described above, the extracted features were used to form

patterns (vectors). Thus, a subject n was characterized by a

pattern xn. Each subject and its corresponding xn are asso-

ciated with an AHI value (tn). We modelled the statistical

relationship between patterns and AHI by means of pattern

recognition techniques. The utility of three methods to pro-

vide a reliable estimation (y) of the AHI was evaluated.

2.5.1 Multiple linear regression (MLR)

Multiple linear regression is a traditional method to predict

an output variable, y, through data from a multivariate

pattern, x1, x2,…, xN. It assumes a linear relationship

between the former and the latter [20]:

yðx;wÞ ¼ w0 þ w1x1 þ . . .þ wNxN ¼ wT x; ð2Þ

where w = (w0, w1,…, wN)T are the regression coefficients

for each input variable and the intercept (w0). The

computation of w is done by means of the sum of

squares error (ED) minimization [7]:

ED ¼
1

2

XN

n¼1

yðxn;wÞ � tn½ �2: ð3Þ

2.5.2 Multi-layer perceptron (MLP) network

The MLP network is a model inspired by the human brain.

The architecture of MLP is arranged in several

interconnected layers (input, hidden layers, and output),

which are composed of simple units known as perceptrons

[7]. Each perceptron is characterized by an activation

function g(•), and their connections to perceptrons from

other layers are associated with adaptive weights (wij).

The output layer provides the response, y. Since our

purpose is to estimate a continuous variable, a single output

unit with a linear activation function was used [28].

Additionally, we implemented a single hidden layer com-

posed of perceptrons with nonlinear activation functions.

This configuration is known to be able of providing uni-

versal approximation [7]. Thus, y can be expressed as

follows:

yðx;wÞ ¼
XNH

j¼1

wjg
Xd

i¼1

wijxi þ bj

 !
þ b0

" #
; ð4Þ

where w is a vector with all the adaptive parameters

(weights and bias), wj is the weight connecting hidden units

hj with the output unit, b0 is the bias associated with the

output unit, wij is the weight connecting the input unit

i with hidden unit hj, and bj is its associated bias. NH, the

number of perceptrons in the hidden layer, is a design

parameter. Weights were optimized with patterns from the

training group, by sum of squares error function minimi-

zation. Scaled conjugate gradient was used for this purpose

[7].

Weight decay regularization was used to achieve good

generalization. Thus, a penalty term (X) was added to the

error function ED, to favour small weights [7]:

ET ¼ ED þ X

¼ ED þ t
X

i

w2
i ¼

1

2

XN

n¼1

yðxn;wÞ � tn½ �2 þ t
X

i

w2
i ;

ð5Þ

where X is the sum of squares of the network weights, and

t is known as the regularization parameter, which has to be

configured.

2.5.3 Radial basis function (RBF) network

Radial basis function is a different neural network

approach. This network is composed of a hidden and an

output layer. The output y is computed from the responses

provided by the basis functions w(•) in the hidden layer

nodes. These functions only depend on the radial distance

(typically the Euclidian distance) between the input vector

x and a set of suitable centres cj [7]. A single output neuron

with a linear activation function was used to implement the

output layer, since the problem was a single variable

regression task. Thus, y is given by the following expres-

sion [7]:
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yðx;wÞ ¼
XNB

j¼1

wjwj jjx� cjjj
� �

þ b; ð6Þ

where NB is the number of basis functions (or centres), cj is

the centre of function wj, wj is the weight connecting wj and

the output neuron, and b is the bias parameter for this

neuron. A Gaussian function is commonly used for w(•)

[7]:

wjðxÞ ¼ exp � jjx� cjjj2

2r2
j

 !
: ð7Þ

where rj is the standard deviation (width) of each function.

Thus, the numbers of centres (NB) and their locations cj as

well as the widths of radial basis functions rj and the

weights wj are parameters to be optimized. NB and rj were

experimentally determined during a design stage. K-means

algorithm was used to optimize the location of centres [7],

and wj was computed from the solution of linear equations

following the sum of squares error minimization [7]. All of

them were configured by patterns from the training group.

2.6 Conventional approach

A conventional way of dealing with the problem of auto-

matic SAHS diagnosis is to detect and score respiratory

events in AF signal. Then, an estimation of AHI (AHIc) can

be derived by dividing the number of these events by the

sleep time. We implemented a scoring algorithm to com-

pare it with the proposed pattern recognition techniques. A

peak detection algorithm was used to locate inspiratory

onsets and endings in AF [21]. These values determined the

amplitude of every inspiration. Following the rules of the

AASM, we scored those respiratory events that matched

30 % or more drop from the baseline and lasted a minimum

of 10 s [19]. The baseline was determined by the mean

amplitude of the s previous inspirations [16]. Hence, s was

a design parameter. The same methodology than in the case

of the parameters of nonlinear features was used to opti-

mize s. We computed AHIc in the training group by

varying s from 1 to 10 (with a 1 step). For each s, the

Mann–Whitney test was used to obtain the p value between

the AHIc from the SAHS-positive and the SAHS-negative

samples. The greatest statistical difference, i.e. the lowest

p value, was obtained for s = 3, which was established as

the optimum value.

2.7 Statistical analysis

Data did not pass the Lilliefors normality test. Hence, the

nonparametric Mann–Whitney significance test was used to

assess the differences in SAHS-positive and SAHS-nega-

tive samples. We used the intra-class correlation coefficient

(ICC) and Bland–Altman plots as assessment of agreement

between estimated and true AHI. The diagnostic ability of

the estimations was assessed by means of sensitivity

(proportion of SAHS-positive patients correctly classified),

specificity (proportion of SAHS-negative subjects correctly

classified), accuracy (percentage of subjects correctly

classified over the entire sample), positive predictive value

(proportion of positive test result which are true positives),

and negative predictive value (proportion of negative test

result which are true negatives).

3 Results

Three sets of complete patterns were defined: patterns

composed of the 19 AF features (Pc
AF); patterns composed

of the 19 RRV features (Pc
RRV); and patterns composed of

the 38 AF and RRV features (Pc
AF�RRV). Then, we used the

training group to select relevant and non-redundant fea-

tures through FCBF algorithm. Thus, three new sets of

reduced patterns, formed with filtered features, were

obtained (Pr
AF, Pr

RRV, and Pr
AF�RRV). The training group

was also used in the process of obtaining specific pattern

recognition models. This process was divided into two

stages: design and training. In the first one, the ICC was

computed using a leave-one-out cross-validation (loo-cv)

procedure to find optimum design parameters for MLP and

RBF. In the second one, MLR, MLP, and RBF models

were trained by the use of the entire training group.

The test group was used to evaluate our methodology.

ICC and Bland–Altman plots were used to assess the

agreement between the AHI estimations (MLR, MLP,

RBF, and the conventional approach) and the actual values

of AHI. Furthermore, the diagnostic ability of these esti-

mations was also evaluated. Thus, we used the AHI

threshold established by the physicians (AHI = 10 e/h) to

derive Se, Sp, Acc, PPV, and NPV in each case.

3.1 Feature selection stage

The FCBF algorithm was applied to Pc
AF, Pc

RRV, and

Pc
AF�RRV. The complete patterns were significantly filtered.

Thus, the reduced patterns Pr
AF, Pr

RRV, and Pr
AF�RRV were,

respectively, composed of: 7 out of 19 AF features (from

higher to lower SU: WDb, Mf1b, ApEn, CTM, Mf3b, WD,

Mf1), 5 out of 19 RRV features (from higher to lower SU:

CTM, Mf1b, Mt3, Mf3, Mf1), and 10 out of 38 AF and RRV

features (from higher to lower SU: CTMRRV, WDb
AF,

Mf1b
RRV, Mt3

RRV, Mf1b
AF, Mf3

RRV, Mf1
RRV, ApEnAF, CTMAF,

LZCRRV). All the selected features from the spectral bands

of interest were more relevant than the features from the

full PSDs. Linear and nonlinear features, as well as

1372 Med Biol Eng Comput (2013) 51:1367–1380
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frequency and time domain features, were selected in all

cases. The presence of AF and RRV features was balanced

in Pr
AF�RRV. Nonetheless, the features from RRV tended to

be more relevant than those from AF. CTM from RRV was

the most relevant feature in terms of SU.

3.2 Design and training stages

3.2.1 Design of MLP and RBF

A proper design of MLP and RBF networks is required to

achieve high generalization ability. It refers to selecting the

appropriate model complexity in order to prevent over-

fitting and under-fitting effects [7]. The effective com-

plexity of the MLP and RBF models is governed by the

design parameters [7]. Thus, we experimentally determined

the number of hidden nodes (NH and NB), the regularization

parameter (t), and a smoothing parameter (s), which gov-

erns the widths of kernel functions (rj) in RBF. Only the

training group was used for this purpose.

Figures 3 and 4 show the results of the experiments

conducted to determine these parameters. The MLP and

RBF were fed with complete (Pc
AF, Pc

RRV, Pc
AF�RRV) and

reduced (Pr
AF, Pr

RRV, Pr
AF�RRV) patterns. In each case, the

ICC was computed for NH/t (MLP) or NB/s (RBF) pairs,

and it was used as selection criterion. ICC was estimated

through loo-cv, which was repeated ten times due to ran-

dom initialization of weights and centres of MLP and RBF

networks. Then, we averaged the ten ICCs to obtain the

final value.

Figure 3a–f displays the performance of the MLP net-

works following this procedure. Figures in the same col-

umn correspond to complete (left) or reduced (right) input

patterns, respectively. Figures in the same row indicate the

origin of the features included in the patterns: AF, RRV, or

both signals. t was assessed according to each set. We

chose those t for which their ICC was higher throughout

the number of nodes. NH was varied from 1 to 50, and the

optimum value was selected for the sake of the network

complexity, i.e. we chose those values from which no

substantial ICC improvement was observed. Thus, the

optimum values were NH/t = 18/6 (Pc
AF), 20/11 (Pc

RRV),

22/8 (Pc
AF�RRV), 17/3 (Pr

AF), 13/7 (Pr
RRV), and 18/2

(Pr
AF�RRV). Since NH/t govern the effective complexity of

the networks [7], less complex models were selected as

optimum when using reduced patterns.

Figure 4 follows the same scheme for the RBF net-

works. We varied NB from 1 to 50 and evaluated s in 1, 2,

3, 4 and 5. Since the evolution of the ICC presented clear

absolute maximums, we selected those pairs NB/s corre-

sponding with these points. Hence, NB/s were the

following: 21/2 (Pc
AF), 7/4 (Pc

RRV), 7/4 (Pc
AF�RRV), 18/3

(Pr
AF), 4/1 (Pr

RRV), and 5/4 (Pr
AF�RRV). The optimum

models were also less complex in the case of reduced

patterns, i.e. fewer nodes NB were used.

3.2.2 Training of MLR, MLP and RBF models

Specific MLR, MLP and RBF models were obtained from

the entire training group. A single MLR model was com-

puted for each set of complete (Pc
AF, Pc

RRV, and Pc
AF�RRV)

and reduced (Pr
AF, Pr

RRV, and Pr
AF�RRV) patterns. In the case

of MLP and RBF, we computed 100 models for each set,

due to random initializations in these networks. The opti-

mum design parameters values, which were obtained in the

previous stage, were used in the process.

3.3 Test stage

3.3.1 Intra-class correlation coefficient

and Bland–Altman plots

Table 2 shows the ICC values reached by the MLR, MLP

and RBF models for each set of patterns in the test group.

The values for MLP and RBF are presented as

mean ± standard deviation of the 100 models previously

obtained. One model for each method was selected

according to their ICC: MLRc
AF�RRV (Pc

AF�RRV from MLR),

MLPr
AF�RRV (Pr

AF�RRV from MLP), and RBFr
AF (Pr

AF for

RBF). Thus, MLPr
AF�RRV outperformed AHIc in terms of

agreement and both of them outperformed MLRc
AF�RRV

and RBFr
AF. This tendency was also observed when

applying graphical analysis. Figure 5 displays the ‘‘Bland–

Altman’’—(a, c, e, g)—and ‘‘estimated versus true AHI’’

plots—(b, d, f, h). Both graphs show smaller deviation

from the target AHI in the case of MLPr
AF�RRV and AHIc.

These models also reached less dispersion in the scatter of

the points, which is reflected in the corresponding 95 %

confidence interval: [-15.6, 19.9] e/h in the case of

MLPr
AF�RRV and [-16.6, 19.3] e/h for AHIc.

3.3.2 Diagnostic performance of the models

To complete the analysis, we evaluated the diagnostic

ability of the four AHI estimations obtained from the test

group. Table 3 shows sensitivity (Se), specificity (Sp),

accuracy (Acc), positive predictive value (PPV), and neg-

ative predictive value (NPV) for each method. The highest

performance was achieved by MLPr
AF�RRV, which reached

92.5 % Se, 89.5 % Sp, 91.5 % Acc, 94.9 % PPV, and

85.0 % NPP. MLRc
AF�RRV and RBFr

AF also outperformed

AHIc at each statistic.
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Fig. 3 MLP design stage: ICC for different NH and t values. Optimum values of: t marked in solid line; NH marked in vertical line
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Fig. 4 RBF design stage: ICC for different NB and s values. Optimum values of: s marked in solid line; NB marked in vertical line
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4 Discussion and conclusions

In this study, we addressed the estimation of AHI by pat-

tern recognition in single-channel AF. Our approach

focused on the exhaustive analysis of AF and RRV signals.

Thus, spectral, nonlinear, and statistical features were

obtained from all recordings. FCBF algorithm filtered these

features, discarding those non-relevant or redundant. After

filtering, both linear and nonlinear features from AF and

RRV were selected. Moreover, all the features selected

from the spectral bands of interest were more relevant in

terms of SU than those selected from the full PSDs. The

FCBF method was also useful in the design of MLP and

RBF. Thereby, optimum less complex networks were

selected in both cases when using reduced patterns (Pr
AF,

Pr
RRV, and Pr

AF�RRV) instead of complete patterns (Pc
AF,

Pc
RRV, and Pc

AF�RRV). These results support the use of the

AF and RRV signals, as well as the methodology con-

ducted to characterize them.

During the test stage, the agreement between the AHI

estimations and the true AHI was evaluated. We selected

specific models according to their ICC. Both ICC and

graphical analysis supported MLPr
AF�RRV and AHIc as the

best in terms of agreement. The conventional approach,

however, systematically overestimated AHI in the SAHS-

negative sample (15 out of 19 subjects) and underestimated

AHI in the SAHS-positive sample (27 out of 40 subjects)

(Fig. 5 b). These two effects may have caused that, despite

having lower ICC values, MLRc
AF�RRV and RBFr

AF reached

higher global diagnostic ability than AHIc.

The diagnostic ability of the methods was also assessed.

The highest performance was achieved by the AHI esti-

mation derived from the MLPr
AF�RRV model. This model

reached high sensitivity (92.5 %), specificity (89.5 %), and

accuracy (91.5 %). Only 2 out of 19 SAHS-negative sub-

jects (false positives) and 3 out of 40 SAHS-positive sub-

jects (false negatives) were misclassified. Additionally,

three out of them have borderline true AHI values (5.7, 10,

and 15.8 e/h). Thus, 94.9 % of subjects that our model

estimated SAHS-positive were actually suffering from

SAHS. Moreover, 85.0 % of subjects that our model pre-

dicted SAHS-negative were not SAHS patients. These

findings confirmed the usefulness of combining relevant

and non-redundant features from AF and RRV.

Recent studies aimed at identifying SAHS (AHI

threshold = 10 e/h) from single-channel AF. Most of them

detected and scored respiratory events to estimate AHI.

Shochat et al. [36] investigated the usefulness of Sleep-

StripTM for this purpose. They acquired AF through a

thermistor and involved 288 subjects. Sensitivity was

86.0 %, but specificity reached low values (57.0 %).

Nakano et al. [30] scored events supported by a spectral

analysis of AF. The best performance was achieved using

116 AF recordings acquired with a thermocouple: 92 % Se

and 90 % Sp. Their results are similar to ours from

MLPr
AF�RRV. Nonetheless, no further comparison was

possible since no data were reported to obtain Acc, PPV or

NPV. Nasal prong pressure sensor (NPP) has been widely

used to acquire AF in portable diagnostic devices. Thus, De

Almeida et al. assessed SleepCheckTM [11]. The authors

reported 85.7 % Se and 87.5 % Sp by using a small sample

size (30 subjects). Additionally, Wong et al. [39] evaluated

FlowWizardTM. They achieved high diagnostic perfor-

mance: 92 % Se, 86 % Sp, 96 % PPV, and 75 % NPV.

However, only 27 SAHS-positive subjects and 7 SAHS-

negative subjects were used. Finally, ApenaLinkTM was

recently evaluated by BaHammam et al. [5]. The study

involved 95 AF recordings. Specificity and PPV reached

high values (89.0 and 91.0 %, respectively), but sensitivity

(70.0 %) and NPV (63.0 %) were low. In contrast to the

conventional approach conducted in these studies, our

methodology took into account not only the apnoeic events

but also data from the whole single-channel AF. A similar

approach was performed in a recent study of our research

group [15]. The utility of AF and RRV signals was

assessed by the use of a logistic regression model, i.e. into

a binary classification task. After a loo-cv process, the

diagnostic performance reached 88 % Se, 70.8 % Sp,

82.4 % Acc, 86.3 % PPV, and 73.9 % NPV.

There also exist SAHS studies not aimed at assessing the

diagnostic ability of a given methodology, but focused on

evaluating how well this methodology detects apnoeas

Table 2 ICC obtained from MLR, MLP, RBF, and the conventional

approach (AHIc)

ICC test

AF RRV AF-RRV

AHIc 0.840 – –

MLR

Pc 0.796 0.710 0.809

Pr 0.650 0.689 0.777

MLP

Pc 0.782 ± 0.002 0.644 ± 4.3 e-4 0.808 ± 1.7-5

Pr 0.743 ± 0.002 0.685 ± 1.1 e-4 0.849 – 0.002

RBF

Pc 0.594 ± 0.094 0.617 ± 0.022 0.632 ± 0.170

Pr 0.748 – 0.037 0.703 ± 0.006 0.732 ± 0.016

Best performance for each method in bold

Pc complete patterns, Pr reduced patterns

Fig. 5 Bland–Altman plots (a, c, e, g) and ‘‘estimated versus true

AHI’’ (b, d, f, h), for the specific models and the conventional

approach (AHIc). Results derived from the test group. TP true

positives, FP false positives, TN true negatives, FN false negatives

c
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and/or hypopnoeas. Han et al. [16] used AF recordings

from NPP, along with an automatic algorithm based on the

mean magnitude of the second derivative, to detect apno-

eas. They reported 92.4 % Se and 88.3 % Sp when com-

paring their methodology with the manual score of the

events. Álvarez-Estévez and Moret-Bonillo [3] applied a

fuzzy algorithm to AF, SpO2, and respiratory movement

recordings in order to detect respiratory events and classify

them into apnoeas or hypopnoeas. Their results showed

87 % Se and 89 % Sp in the detection task, whereas they

reported 92/85 % Se and 85/92 % Sp in the classification

task (apnoeas/hypopnoeas). Otero et al. [31] propose sev-

eral algorithms to detect different pathological events from

polysomnographic recordings. Their results showed 97.4

and 94.0 % PPV when detecting apnoeas and hypopnoeas,

respectively.

Pattern recognition techniques have been already shown

to be useful in SAHS detection. Varady et al. [37] trained

four feed-forward artificial neural networks to detect ap-

noeic segments in AF recordings. Data from AF and

respiratory inductive plethysmography (RIP) were used.

Up to 93 % of patterns were correctly classified into nor-

mal, apnoea, or hypopnoea categories. No assessment of

diagnostic ability was performed. El-Shol et al. [12] trained

a MLP network to predict AHI from demographic and

clinical variables of subjects. Sensitivity and specificity

reached 94.9 and 64.7 %, whereas PPV and NPV were 87.9

and 85.2 %, respectively. Additionally, in other study of

our research group [26], 14 features extracted from 240

SpO2 recordings were used along with MLR and MLP

algorithms. The ICCs were 0.80 and 0.91, respectively. The

MLP model showed the highest diagnostic performance:

89.6 % Se, 81.2 % Sp, 86.8 % Acc, 90.5 % PPV, and

79.6 % NPV.

Although our methods have revealed the usefulness of

AF and RRV in SAHS detection, some limitations have to

be addressed. A larger sample size would improve the

generalization of our results. Accordingly, the validation of

the proposed algorithms using different databases would be

of great interest to enhance their statistical power [22].

Moreover, the use of subjects without previous suspects of

suffering from SAHS would complement our findings.

Nonetheless, this issue has no easy solution since subjects

usually undergo overnight PSG after referring some

symptoms. The cut-off AHI = 10 e/h is widely used to

determine SAHS [5, 30, 36, 39]. Hence, our methodology

was optimized according to this threshold. Future works,

however, could assess our methodology for other common

cut-offs such as 5 or 15 e/h. Another limitation is the use of

a thermistor, instead of a thermistor and a NPP simulta-

neously. The AASM recommends using both sensors to

acquire AF [19], due to weaknesses in the two of them [4].

Additionally, it is well known that NPP outperforms

thermistor when recording respiratory events [4]. However,

this work has shown that a global analysis of single-

channel AF from thermistor can achieve high diagnostic

performance and improve the results reported in recent

studies only involving NPP [5, 11, 39]. The application of

our methodology to AF recordings from NPP is a future

goal. Another future goal is to assess relationships between

the proposed features and the apnoeic events in order to

clarify their physiological meaning. Additionally, our

methodology does not offer flexibility to the physicians in

order to change the AHI based on their expertise. However,

the results reported in this study measure to what extent

physicians can trust our AHI estimations. Finally, the main

benefit of our approach would be obtained by applying our

algorithms to single-channel AF recordings acquired at

patient’s domicile. Although there exist several portable

devices to obtain AF [5, 11, 36, 39], these have limitations

and need further investigation to ensure their reliability in

unattended studies at home.

In summary, single-channel AF from thermistor can be

used to assist in SAHS detection and simplify diagnosis.

The methodology conducted over AF and RRV signals has

shown its usefulness to estimate AHI. Particularly, the

FCBF algorithm was successfully used to discard redun-

dant and non-relevant information from recordings, which

in turn decreased the complexity of the models obtained

through neural networks. An MLP model, trained with

relevant and non-redundant features from AF and RRV,

achieved high results in terms of agreement with true AHI

and diagnostic ability. It outperformed a conventional

approach, based on scoring apnoeas and hypopnoeas,

conducted over the same database. Additionally, the MLP

approach also improved the diagnostic ability of the con-

ventional one conducted in other studies. Our results sug-

gest that AF and RRV complement each other in the AHI

estimation and can help in SAHS diagnosis.
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M (2008) Comparison of respiratory rates derived from heart rate

variability, ECG amplitude, and nasal/oral airflow. Ann Biomed

Eng 36:2085–2094

11. De Almeida FR, Ayas NT, Otsuka R, Ueda H, Hamilton P, Ryan

FC, Lowe AA (2006) Nasal pressure recordings to detect

obstructive sleep apnea. Sleep Breath 10:62–69

12. El-Solh AA, Mador MJ, Ten-Brock E, Shucard DW, Abul-

Khoudoud M, Grant BJB (1999) Validity of neural network in

sleep apnea. Sleep 22:105–111

13. Fernández-Navarro F, Hervás-Martı́nez C, Ruiz R, Riquelme JC

(2012) Evolutionary generalized radial basis function neural

networks for improving prediction accuracy in gene classification

using feature selection. Appl Soft Comput 12:1787–1800

14. Flemons WW, Littner MR, Rowley JA, Gay P, Anderson WM,

Hudgel DW, McEvoy RD, Loube DI (2003) Home diagnosis of

sleep apnea: a systematic review of the literature. Chest

124:1543–1579

15. Gutiérrez-Tobal GC, Hornero R, Álvarez D, Marcos JV, del
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