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Abstract

Assessment of essay quality, also called essay scoring, is a task that has been always carried out
by human graders. Graders are usually asked to give their scores according to several deter-
mined linguistic/semantic criteria. These criteria are related to lexical, syntactical, semantical
and discourse features of the texts. In order to replace human graders, automated essay scoring
systems make use of statistics on the latter features in order to quantify the quality of the
essays. However, there is a subjective component within the evaluation of the text quality that
cannot be measured by artificial scorers. Text essays are a form of natural language communi-
cation and therefore they cause effects on readers and their cognitive functions. In the work
presented in this paper, the dynamic effects that a read text causes on the working memory
of readers are studied by means of a connectionist model of memory during reading. Besides,
the correlation of those effects with the essay quality scores and text linguistic features is also
analyzed. The biologically inspired model of memory includes mechanisms for emulating
bounded cognition, getting a little closer to the BICA Challenge achievement. The results
obtained also prove how BICA models can feedback Neuroscience and Psychology, thus closing
the interdisciplinary loop.
ª 2013 Elsevier B.V. All rights reserved.
Introduction

Paradoxically, Natural Language is artificially described by a
set of rules worldwide (Pinker, 2000). Human beings are
commonly taught to properly use language by following that
set of rules. This way, the quality of a language expression or
passage can be measured by contrasting it with the corre-
sponding normative description of the language. Thus,
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several linguistic features belonging to different language
levels (lexical, syntax, semantics, discourse, topic, etc.)
are frequently used to characterize language units (Wang
& Brown, 2007) and make comparisons with normative rules.

Nonetheless, Natural Language is a capacity developed
as a product of evolution, acquired for the main purpose
of communicating with other subjects (this is rather a mat-
ter for anthropologists (Duranti, 1997)) with the intention to
cause some effects on their feelings, thoughts and ulti-
mately their behavior (Pinker, 1995). From this point, lan-
guage processing can be considered as a form of coding/
decoding (emitter/receptor) of intentions and thoughts into
phonemes and graphemes. Consequently, human beings
have developed this processing ability and, as a mind abil-
ity, it requires cognitive processing and resources.

In turn, Natural Language is a dynamic entity in constant
evolution (Christiansen & Kirby, 2003). This evolution of
Natural Language has always favored the language use and
structures that facilitate communication. There are several
factors that can make communication easier, and one of
them lies in decoding simplicity and requirements: the less
cognitive processing and resources required for decoding
the better the understanding. From this statement, a good
quality coding implies a soft and easy decoding process
(coding means here language structure and composition).
Consequently, language quality can be measured in terms
of cognitive effects and requirements during the under-
standing process.

In spite of the advances in the field of neurophysiological
signal acquisition (EEG, fMRI, MEG, PET, etc.) (Démonet,
2005), the measure of dynamic cognitive load and effects
during language processing is still a challenge nowadays.
For this reason, this paper presents a computational model
of dynamic memory – Cognitive Reading Indexing Model
(CRIM) – that emulates the cognitive processing of human
beings during reading. Computational modeling allows mon-
itoring and measuring the use and capacity of the internal
mechanism and resources of the model. Unlike biologically
inspired related models such as the Cambrias et al.’s
(Cambria, Mazzocco, & Hussain, 2013), which is focused
on the static extraction of emotions and polarity that a
piece of text contains. The model used in this paper is based
on dynamic measurements of working memory usage and
capacity during essay reading. These dynamic measures
are confronted with the essay scores given by human grad-
ers in order to find a correlation between the text quality
and the effects on cognitive performance during reading.
It is worth noting that this work is not an attempt for a bet-
ter automated essay scorer. Firstly, it is a step ahead in the
development of mechanisms that emulate how perceived
stimuli modulate our cognitive functions (bounded cogni-
tion, Gigerenzer & Selten, 2002), which is a primary target
of the BICA challenge. Secondly, it is another proof of con-
cept on how biologically inspired models can help to give in-
sight into the cognitive processes of the human mind.

The next section presents the most important ap-
proaches to characterize language with quantitative mea-
sures at different linguistics levels, with the aim of
capturing the subjective essence of human criteria and
therefore replacing human graders with automated scorers.
Cognitive effects of language quality comments different
psychological evidence that confirms the influence of
language structure and form on the cognitive processing
of comprehension, and more concretely the role that work-
ing memory (WM from now on) plays in this process. In A
computational model of dynamic working memory during
reading, a computational working memory model for read-
ing is described, showing the monitoring capabilities that
it offers. Materials and empirical procedure presents the
experimental design and procedure to test the correlation
of the essay quality and memory effects, followed by the
significant results obtained. Finally, some concluding re-
marks and future work are discussed.
Automated measuring of language quality

One of the controversial matters regarding essay grading is
subjectivity, which is thought to cause the grade variation
between different human graders (Carrell, 1995). Subjectiv-
ity has often been considered as an unfair factor by students
being evaluated. In order to overcome this ‘‘problem’’ as
well as to save the long time spent in the essay assessment
(Mason & Grove-Stephenson, 2002), automated scorers
came out as a fine alternative (Valenti, Neri, & Cucchiarelli,
2003). The fundamentals of such systems is the quantifica-
tion, by means of observable linguistics features, of the
intrinsic variables that human raters take subjectively into
account (called trins Hearst, 2000). For instance, the num-
ber of words of a text would represent fluency; word length
variation would correlate with diction; and number of rela-
tive pronouns and different parts of speech (POS) would be
related to complexity of sentence syntax (Page, 1994).

The latter mentioned features belong to the lexical and
syntax levels. Other computational essay scoring systems
make use of features at the semantic level. Many of them
produce a statistics-based semantic representation
(Leacock, 2004) of the texts and compare it with the ideal
essay or master text (Jerrams-Smith, Soh, & Callear,
2001). Other systems extract features regarding the dis-
course/rhetorical level by measuring semantic coherence
between consecutive sentences or tracking topic shifts
(Burstein, Leacock, & Swartz, 2001; Higgins & Burstein,
2006; Higgins, Burstein, & Attali, 2006).

Although all these artificial scoring systems work rela-
tively fine for concrete domains, they carry some draw-
backs. Most of them apply some kind of machine learning
method, which is generally supervised and therefore needs
training data (Valenti et al., 2003). In this case, training
data is composed of texts annotated by human subjects.
Thus, training data is costly to construct, difficult to find
in turn, and it is still loaded of subjectivity. In addition,
most of the grading systems are optimized and evaluated
against scores given by human graders. This evaluation
and optimization methodology makes artificial systems
overfit the concrete human graders.

The primary aim of the creation of automated essay
grading systems was the ‘‘use of computers to increase
the understanding of the textual features and cognitive
skills involved in the creation and comprehension of written
texts’’ (Valenti et al., 2003). It seems that knowledge about
the correlation between textual features has been enriched
since the first automated scorers. However, the same
enrichment has not occurred in the cognitive counterpart.



1: LongTermWorkingMemory = empty

2: FOR every texti in the InputTextCollection

3: APPLY Stoplist to texti
4: LEMMATIZE words of texti
5: FOR every sentencek in texti
6: FOR every wordj in sentencek
7: IF wordj is not in LongTermWorkingMemory

8: Add wordj to LongTermWorkingMemory

9: Total_appearances_of_wordj = 0
10: Total_appearances_of_wordj

= Total_appearances_of_wordj + 1

11: FOR other words wordhin sentencek after
wordj

12: IF exists Connection(wordj;wordh)

13: Connection(wordj;wordh) =

Connection(wordj;wordh)+1

14: Connection(wordh;wordj) =

Connection(wordh;wordj)+1

15: ELSE

16: Add Connection(wordj;wordh) = 1

17: Add Connection(wordh;wordj) = 1

18: –– Normalize connection weights

19: FOR every wordi in LongTermWorkingMemory

20: FOR every Connection(wordi;wordj)

21: ConnectionWeight(wordi;wordj) =

Connection(wordi;wordj)/

Total_appearances_of_wordi
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A step forward in this latter aspect would have led to a bet-
ter quantification of the subjective features used by human
scorers. Note that these subjective features are not related
to human preferences or likings but to the subjective per-
ception of the text, i.e. the effects produced in the cogni-
tive processing of written language understanding. In this
sense, this paper presents a study of the effects of language
quality on the cognitive processing of reading comprehen-
sion, not a better alternative to the current computational
approaches of automated essay scoring.

Cognitive effects of language quality

As said before, natural language must be decoded to the cor-
responding meaning in order to be understood. This decoding
process implies the use of several cognitive resources and
processes. The participation of such mechanisms is even
more relevant if the language to be understood represents
a passage composed of different consecutive utterances
with a complete meaning (as an essay, for instance).

Among all the cognitive resources implied, working mem-
ory (WM) seems to be crucial (Carretti, Borella, Cornoldi, &
Beni, 2009). Specually, working memory capacity has been
strongly correlated to reading comprehension ability in the
literature (Carretti, Cornoldi, Beni, & Romanò, 2005). It is
not so related to the amount of concepts that could be re-
tained but rather with the keeping/elimination of irrelevant
concepts (Beni & Palladino, 2000). Consequently, a text
that introduces or makes the reader infer more irrelevant
concepts causes a more intensive use of WM and, therefore,
it makes comprehension more difficult. Additionally, WM
capacity has been proven to influence management of infor-
mation that contradicts the predictions made by the infer-
ences during reading (Otten & Berkum, 2009). Thus, a
contradictory text will cause a costly processing of WM. Last
but not least, WM contributes to the integration of meanings
in the construction of the situation model (Calvo, 2005): the
more diffuse a text, the harder the cognitive work carried
out by working memory.

The latter evidence points out the influence of the lan-
guage correctness, structure and style on the relation be-
tween reading comprehension and WM memory capacity,
on the one hand, and reading comprehension and function,
on the other hand. Besides, there exists evidence for the di-
rect effects of text structure and style on comprehension
too. Just in the late sixties, Frase (1969) stated that the or-
der of the sentences absolutely influences what is kept in
memory and, therefore, it is possible to program the mem-
ory inputs by rearranging the sentences. In this line, there
are studies that prove the effects of the combination of
short and long consecutive sentences on the memory recall
after reading (Saito & Miyake, 2004). The whole organiza-
tion of a text has been also proven to influence the late
memory recall (Yussen et al., 1991). Even the text format
(plain text vs. hypermedia) affects the language compre-
hension (Lee & Tedder, 2003).

In summary, a text that favors comprehension should not
overload the WM capacity and function. Texts that make
and let the reader infer and process causal relations, either
by means of clues (McDaniel, Hines, & Guynn, 2002) or
structural pauses (Sinclair, Healy, & Bourne, 1989), are
better understood by both good and poor comprehenders,
although the latter ones obtain benefits of such a feature
in a higher degree. So, from the existent evidence it seems
that text quality can be determined by measuring the cogni-
tive load and resources required during the reading/com-
prehension process. At this point is where computational
cognitive modeling can help.

A computational model of dynamic working
memory during reading

The model used in this work is called CRIM (Cognitive Read-
ing Indexing Model) (Serrano, del Castillo, & Iglesias, 2006).
This model emulates and modulates memory processes
(working memory and long-term memory) during reading
(Fig. 1). The model operates over a semantic–linguistic
knowledge previously acquired that is constructed as de-
scribed by Algorithm 1:

Algorithm 1. Construction of the Long-Term Semantic/
Linguistic Knowledge.
The knowledge acquired contains the semantic associa-
tions among concepts observed during the past experience
of reading, simulating the contents of a kind of long-term
working memory (Ericsson & Kintsch, 1995). This knowledge
is represented by a weighted net of asymmetrically inter-
connected concepts, where the weights of the connections



Fig. 1 Overall scheme of the dynamics of the computational model of working memory.
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denote the semantic relatedness of the connected con-
cepts. The semantic relatedness is given by the co-occur-
rence of concepts within the same sentence, so it is not
structured by predefined relationships, such as AffectNet
used in related works (Cambria et al., 2013; Cambria,
Olsher, & Kwok, 2012).

Given the long-term semantic/linguistic knowledge, the
model emulates reading of a natural language text and pro-
duces a semantic representation of it in WM (Fig. 1, middle).
This representation is a net of associated concepts, each of
them with a level of activation that indicates their significa-
tion within the text (Fig. 1, bottom). The model processes
each word sequentially in the order they appear in the text.
For each known word, i.e. present in the semantic knowl-
edge, the corresponding concept is retrieved into working
memory with a base level of activation. This level of activa-
tion recursively propagates to the associated concepts in
long-term memory by decreasing the activation proportion-
ally to the connection weights until reaching a minimum
level, in a similar manner to Cambria et al. (2012). All the
concepts reached by this propagation process are also re-
trieved into working memory with the propagated activation
level. If a concept retrieved into working memory is already
active on it, its activation onWM is increased by the retrieved
activation. This way, each time a word is read a process of
inferencemakes accessible other related concepts for future
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prediction matching. Besides, the model always has a repre-
sentation of the text at any time during reading. The follow-
ing pseudocode describes the reading process:

Algorithm 2. Reading process of the computational model.
1: WorkingMemory = empty

2: FOR every sentencek in InputText

3: FOR every wordi in sentencek
4: IF wordi is in LongTermWorkingMemory

5: Retrieve from LongTermWorkingMemory concepti of wordi

6: IF concepti already in WorkingMemory

7: Activation(concepti) = Activation(concepti) + BaseActivationLevel

8: ELSE

9: Add concepti to WorkingMemory

10: Activation(concepti) = BaseActivationLevel

11: - - - Infer associated concepts from the one just read

12: Spread(Activation(concepti),concepti, 1)
13: - - - Forget after each sentence. Decrease concept activation in WM

14: IF END_OF_SENTENCE(InputText)
15: FOR every conceptj in WorkingMemory

16: Activation(conceptj) = Activation(conceptj)*ForgettingFactor
17: IF Activation(conceptj) < PropagationThreshold

18: Remove conceptj from WorkingMemory

19: DEFINE Spread(activation; concept; level)
20: IF activation < PropagationThreshold AND level < PropagationLevel

21: FOR every neighborh of concept
22: activationPropagated = activation *ConnectionWeight(concept; neighborh)
23: IF neighborh already in WorkingMemory

24: Activation(neighborh) = Activation(neighborh) + activationPropagated

25: ELSE

26: Add neighborh to WorkingMemory

27: Activation(neighborh) = activationPropagated

28: Spread(Activation(neighborh),neighborh; level+1)
Over the course of reading, the concepts stored in WM
lose activation by the application of a decreasing factor at
specific time intervals. In this case, time is controlled by
the text structure itself because the decreasing factor is ap-
plied at the end of each sentence. Consequently, the con-
cepts might be completely deleted from memory
(forgotten) if they are not reactivated either by reading of
the corresponding word or the propagation from another
concept. In this sense, the model collects the influence of
the discourse and style of the text on the comprehension.
The model’s behavior is thus modulated by different param-
eters such as forgetting factor, propagation threshold for
both level and activation, base activation level, and WM
capacity (in terms of number of concepts and total activa-
tion). These parameters refer to the retention, inference,
attention and WM capacities, respectively. The setup of
the parameters’ values allows the model emulating the
reading skills of singular individuals. In this work, the
parameters were settled to emulate a skilled reader,
matching the graders who score text essays. The parameters
concerning WM capacity were ignored by setting them to
infinite values. Since the target of the work is the study of
the WM usage caused by the input text, no restrictions in
WM capacity were imposed. All design aspects of the model
have been created from psycholinguistics evidence in order
to keep the model as plausible as possible (Serrano, del
Castillo, & Iglesias, 2009b, 2009a).
WM load and activation of the model can be measured at
any time, thus allowing the monitoring of the cognitive re-
sources used. Fig. 2 shows the memory activation trace
for all the concepts during the reading of the following text:

‘‘There was once a man who traveled the land all over in
search of a wife. He saw young and old, rich and poor,
pretty and plain, and could not meet with one to his
mind. At last he found a woman, young, fair, and rich,
who possessed a right arm of solid gold. He married
her at once, and thought no man so fortunate as he
was. They lived happily together, but, though he wished
people to think otherwise, he was fonder of the golden
arm than of all his wife’s gifts besides.’’

The model has been used in the past to correlate other
factors such as prior knowledge, individual interest and
reading engagement with memory and inference capacity
(Serrano, del Castillo, & Iglesias, 2007; Serrano, del Castillo,
& Iglesias, 2009a). In this paper, the target of the study is
the relationship between text quality and style and dynamic
working memory usage. Particularly, text quality is deter-
mined by human raters; memory usage is characterized by



Fig. 2 Memory activation trace for all the concepts read and inferred in an example text. Activation levels (color intensity) for the
different concepts (y-axis) at the end of each sentence (x-axis) are presented.
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the factors described next, which represents a summariza-
tion of the memory activation trace. Notice that all factors
presented below rely on the activation values of the con-
cepts in WM at the end of each sentence of the read text
(Fig. 2, bottom table):

� Mean Activation per Concept (MAC): At the end of each
sentence the activation per concept is calculated as
the mean activation of the concepts currently in WM.
The MAC value is the mean of the activation per concept
across all sentences.

MAC ¼
Pi

n sentences
total activation of WM after sentence i

concepts in WM after sentence i

n

being n the number of sentences of the text.
� Mean Deviation per Concept (MDC): In addition to the
mean activation of the concepts, the standard deviation
of that mean is also calculated at the end of each sen-
tence. The MDC value is the mean of the standard devia-
tions per concept across all sentences.

MDC ¼
Pi

n sentences Stdð
total activation of WM after sentence i

concepts in WM after sentence i
Þ

n

being Std the Standard Deviation.
� Mean Absolute Difference (MAD): It stands for the differ-
ence of MAC value minus MDC value.

MAD ¼ MAC�MDC

� Mean Relative Difference (MRD): It is calculated as MAD
divided by the maximum among MAC and MDC.



1 http://www.collegeboard.com/student/testing/sat/prep_one/
essay/pracStart.html.
2 http://rwc.hunter.cuny.edu/reading-writing/on-line/scoring-

and-sample-essays.html.
3 http://www.mathenglish.com/Program/Essay/Info/DrLi-writ-

ing-Scoring-Samples.htm.
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MRD ¼ MAD

maxðMAC;MDCÞ

� Average Activation (AA): It refers to the average of the
current WM activation values at the end of each
sentence.

AA¼
Pi

n sentences total activation of WM after sentence i

n

� Maximum Activation (MA): It is the maximum activation
value of WM among all sentences.

MA¼maxin sentencesðtotal activation of WMafter sentence iÞ

� Average Concepts (AC): It stands for the average number
of concepts of WM across all sentences.

AC ¼
Pi

n sentences number of concepts in WM after sentence i

n

� Maximum Concepts (MC): It quantifies the maximum
number of concepts in WM among all sentences.

MC¼maxi
n sentencesðnumber of concepts in WM after sentence iÞ

� Activation Difference (AD): It just represents the differ-
ence of MA minus AA.

AD ¼ MA� AA

� Concept Difference (CD): It is the difference of MC minus
AC.

CD ¼ MC� AC

� Final Mean Activation per Concept (fMAC): Mean activa-
tion of the concepts currently in WM at the end of the
text (analogous to MAC).
� Final Mean Deviation per Concept (fMDC): In addition to
the final mean activation of the concepts, the standard
deviation of that mean is also calculated at the end of
the text (analogous to MDC).
� Final Mean Absolute Difference (fMAD): It stands for the
difference of fMAC value minus fMDC value.

fMAD ¼ fMAC� fMDC

� Final Mean Relative Difference (fMRD): It is calculated as
fMAD divided by the maximum among fMAC and fMDC.

fMRD ¼ fMAD

maxðfMAC; fMDCÞ

� Reading Time (RT): Time in milliseconds spent by the
model in reading the text.

Materials and empirical procedure

For the construction of the linguistic knowledge of the mod-
el, the well-known Reuters-21578 Text Collection Data Set
was used. It is composed of 21,578 texts in English from
the Reuters newswire on 1987. The documents were pro-
cessed and made available by Reuters Ltd. and Carnegie
Group, Inc. It contains about 218 million words (actually to-
kens) in total.
For the study, the text material used consisted of three
collections of essays: firstly, nine sample essays from Col-
lege Board web site,1 each of them scored by two experi-
enced high school teachers (CB collection from now on),
with mean scores 6, 6, 5, 5, 4, 4, 2, 3, 1, respectively; sec-
ondly, seven essays of Hunter College web site,2 each of
them scored by two human graders with mean scores of 6,
5, 4, 3, 2, 1, 1, respectively (denoted as HC collection); fi-
nally, seven essays of Dr. Li’s Secret web site,3 each of them
scored by one experienced teacher with scores 6, 5.5, 5, 5,
3.5, 3, 2.5, respectively (ME collection from now on). The
given scores are on the 6–1 scale, being 6 the highest and
1 the lowest. All the essays were written by students apply-
ing for SAT (Scholastic Assessment Test). Within each of the
three collections, the topic of the essays remains
constant.

The model is modulated by certain parameters of mem-
ory capacity, inference depth and concept retention that
determine the reading skills or ability. Consequently, these
parameters were settled to the best possible values in order
to match the degree of expertise of the human graders
(Serrano et al., 2009b, 2009a).

Each text was then input into the model for reading, and
for each text reading all the factors described in the previ-
ous section were measured and stored. Then, a correlation
analysis between those factors and the scores of the texts
was carried out.

Results

After applying the model to the input texts, the factor val-
ues (columns) from the reading of each of them (rows) were
obtained and presented in Table 1.

Next, the Pearson correlation coefficients r between
each factor (columns) and the score are presented in Ta-
ble 2, either for each of the three essays collections and
for all the essays together (rows).

The results show a direct correlation between the scores
and the factors related to total values of both activation
(AA, MA) and number of concepts (AC, MC) in WM, although
it is only statistically significant for AA in the three collec-
tions of essays. Consequently, the higher scored text the
more activation and concepts in WM. This implies that a
high scored text contains related concepts that appear fre-
quently in consecutive sentences, which makes the activa-
tion increase, and that there are slight changes to related
topics along the text, which makes the number of concepts
grow while keeping the previous ones active in WM. From
here, it is derived that text quality can be determined to
some extent in terms of several factors concerning the dy-
namic use and state of WM (the activation rather than the
number of items) during reading.

Although the tendencies of the results are similar for the
three collections of texts, the correlation values are higher

http://www.mathenglish.com/Program/Essay/Info/DrLi-writing-Scoring-Samples.htm
http://www.mathenglish.com/Program/Essay/Info/DrLi-writing-Scoring-Samples.htm
http://www.mathenglish.com/Program/Essay/Info/DrLi-writing-Scoring-Samples.htm
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http://www.mathenglish.com/Program/Essay/Info/DrLi-writing-Scoring-Samples.htm
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Table 1 Dynamic factor values measured from the reading of the input texts by the computational model (CB = College Board, HC = Hunter College, ME = Mathenglish).

Source Score MAC MDC MAD MRD AA MA AC MC AD CD fMAC fMDC fMAD fMRD RT

CB 1 0.055 0.260 �0.205 �0.805 10.43 19.89 89.00 168 9.47 79.00 0.098 0.350 �0.252 �0.720 0.110
CB 2 0.141 0.342 �0.200 �0.607 21.73 35.86 104.00 127 14.13 23.00 0.244 0.481 �0.237 �0.492 0.078
CB 3 0.077 0.279 �0.202 �0.759 40.15 79.73 276.25 511 39.57 234.75 0.159 0.455 �0.296 �0.650 0.760
CB 4 0.080 0.246 �0.166 �0.696 29.63 45.24 157.50 240 15.61 82.50 0.119 0.319 �0.200 �0.627 0.211
CB 4 0.068 0.254 �0.187 �0.752 43.91 68.63 306.21 454 24.72 147.79 0.090 0.297 �0.207 �0.698 0.780
CB 5 0.075 0.250 �0.175 �0.711 50.12 69.59 308.00 477 19.48 169.00 0.110 0.334 �0.224 �0.671 0.738
CB 5 0.064 0.238 �0.174 �0.764 35.42 62.42 207.83 407 27.00 199.17 0.118 0.337 �0.219 �0.649 0.561
CB 6 0.070 0.227 �0.157 �0.722 36.58 69.69 233.57 448 33.10 214.43 0.131 0.347 �0.216 �0.622 0.392
CB 6 0.073 0.244 �0.171 �0.714 36.25 52.63 205.00 300 16.38 95.00 0.099 0.285 �0.185 �0.652 0.346

HC 1 0.062 0.257 �0.195 �0.788 16.88 31.11 148.43 279 14.23 130.57 0.116 0.414 �0.297 �0.719 0.255
HC 1 0.079 0.298 �0.219 �0.771 16.53 31.75 134.60 222 15.22 87.40 0.148 0.442 �0.294 �0.665 0.184
HC 2 0.082 0.290 �0.207 �0.746 20.63 35.60 134.73 228 14.97 93.27 0.150 0.438 �0.287 �0.656 0.222
HC 3 0.072 0.251 �0.179 �0.743 43.52 78.84 358.44 565 35.32 206.56 0.119 0.341 �0.221 �0.650 1.263
HC 4 0.110 0.330 �0.220 �0.708 87.70 161.88 439.25 757 74.18 317.75 0.171 0.397 �0.226 �0.570 3.369
HC 5 0.095 0.292 �0.197 �0.718 69.85 152.06 431.53 669 82.22 237.47 0.186 0.436 �0.250 �0.572 3.455
HC 6 0.107 0.304 �0.197 �0.695 94.61 165.99 533.18 807 71.38 273.82 0.211 0.459 �0.248 �0.540 6.940

ME 2.5 0.084 0.272 �0.188 �0.703 34.67 47.85 232.00 350 13.18 118.00 0.112 0.320 �0.208 �0.649 0.489
ME 3.5 0.128 0.364 �0.235 �0.683 23.78 46.22 94.47 164 22.44 69.53 0.213 0.485 �0.272 �0.560 0.197
ME 3 0.056 0.210 �0.153 �0.741 30.17 50.23 246.85 407 20.06 160.15 0.098 0.294 �0.196 �0.666 0.494
ME 5.5 0.065 0.227 �0.161 �0.724 46.83 89.86 285.52 515 43.03 229.48 0.119 0.339 �0.220 �0.649 1.037
ME 5 0.074 0.250 �0.176 �0.723 56.29 91.94 382.36 526 35.65 143.64 0.130 0.381 �0.252 �0.660 1.705
ME 5 0.062 0.227 �0.165 �0.743 52.18 98.63 330.26 607 46.45 276.74 0.115 0.328 �0.213 �0.649 1.457
ME 6 0.069 0.267 �0.197 �0.760 53.08 88.34 317.17 538 35.27 220.83 0.087 0.310 �0.224 �0.721 1.129
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Fig. 3 Box diagram of the scores of the two clusters of texts
obtained by the k-median algorithm (*p < .01).

Effects of text essay quality on readers’ working memory by a computational model 47
for the Hunter College collection. Besides, there also exists
a difference in the sign of the correlation concerning the
factors related to the activation per concept (MAC, MDC,
fMAC, fMDC) in CB and ME collection with respect to HC
collection.

For a more detailed characterization of the text scores in
terms of the model’s factors, a clustering algorithm (k-med-
ian) was applied to the dataset. The six most globally corre-
lated factors, which also presented significant correlation in
one of the three collections at least (i.e. AA, MA, AC, MC,
AD, CD), were selected as the input features to the cluster-
ing algorithm. The target of the algorithm was to find two
clusters of texts that were significantly separated in the
space formed by the input features. The results are shown
in Fig. 3 and Table 3. This table presents average values
of the centroids corresponding to the two clusters. In the
last two rows, the average (standard deviation) and median
scores of the texts belonging to each of the two clusters are
shown.

The values obtained indicate that the algorithm grouped
the texts by score. Cluster 1 represents the texts of higher
scores, with a median score of 5.00, while Cluster 2 repre-
sents the texts with lower scores, with a median value of
2.00. All the model factors considered are significantly high-
er for Cluster 1. Therefore, the results show that good qual-
ity is related with intensive use of WM, in terms of
activation and number of concepts. Intensive use here does
not mean high load and effort, as it is discussed below.

Besides, the time that the model takes to read each text
(RT) also seems to be directly correlated to the scores as-
signed (only statistically significant for the Hunter College
collection). This might be due to several features of the
texts, such as the number of words, the frequency of cen-
tral words or the length of the sentences. These and other
linguistic properties of the scored essays can be the source
of the correlations found. In order to get deep into this
question, Pearson correlation coefficients between diverse
linguistic properties of the texts and the WM model factors
are presented in Table 4 (only statistically significant values
at p < :05 are presented for the sake of simplicity).



Table 3 Average values of the centroids of the two clusters
of texts obtained by the k-median algorithm. Differences in
all the rows are statistically significant (U Mann-Whitney,
*p < .05).

Cluster 1 Cluster 2

AA 56.00 25.00
MA 101.00 41.00
AC 350.00 159.00
MC 572.00 262.00
AD 45.03 16.00
CD 222.00 103.00
Avg. score (std.) 4.00 (1.08) 2.00 (1.00)
Median score 5.00 2.00
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The linguistic properties were extracted with the Coh-
Metrix 2.0 tool (Graesser, McNamara, Louwerse, & Cai,
2004). Coh-Metrix has been developed at the Department
of Psychology, University of Memphis. This tool is based in
the concept of cohesion that the authors explicitly define
as ‘‘characteristics of the explicit text that play some role
in helping the reader mentally connect ideas in the text’’
(Graesser, McNamara, & Louwerse, 2004). It provides up
to fifty four indexes representing properties of the texts
concerning the mentioned concept of cohesion, ranging
from lexical to discourse levels. From all output indexes,
only the Coh-Metrix indexes that presented statistically sig-
nificant correlation coefficients with the WM model factors
are shown in Table 4 (Coh-Metrix features are named as
their original identifiers).

The results can be divided in four groups as follows. First,
the text features that are directly correlated with factors
related to the average and maximum activation and number
of concepts (AA, MA, AC, MC, AD, CD), and reading time (RT)
of the WM model. The text features that present this kind of
correlation are DENCONDi, DENNEGi, CONi and SYNHw.
DENCONDi, refers to the number of conditional expressions
per 1000 words; DENNEGi, refers to the number of negations
per 1000 words; CONi denotes the number of connectives
Table 4 Statistically significant Pearson correlation coefficients b
from the model of the graders (p < .05).

Coh-Metrix Concept MAC MAD MRD AA MA

CAUSVP
CONTPpi
CONADni 0.428
CONi 0.438
DENCONDi 0.562 0.550
DENNEGi 0.505 0.437
DENLOGi
HYNOUNaw �0.486
SYNNP �0.446 �0.456
SYNHw 0.431 0.457
TYPTOKc 0.441
WORDCacw �0.423 �0.438
CONLGpi
CONLGni 0.436 0.482
per 1000 words. Finally, SYNHw represents the mean num-
ber of higher level constituents (noun phrases and verb
phrases) per word, so that it provides a measure of the
structural (syntactic) density of the sentences. This way, a
high number of conditional, negative expressions and con-
nectives as well as a higher syntactic density make the mean
activation and number of concepts increase in WM, as well
as reading time spent by the model.

Second, the text features that correlate inversely with
the model factors concerning the mean and maximum acti-
vation and number of concepts in WM, as well as reading
time, are HYNOUNaw, SYNNP and WORDCacw. HYNOUNaw
refers to the mean number of hypernyms (in Wordnet taxon-
omy) per noun; SYNNP is the mean number of modifiers per
noun phrase (articles, adjectives, quantifiers, etc.); WORD-
Cacw denotes the mean value of concreteness (rating from
the MRC Psycholinguistics Database Wilson, 1988) of content
words (nouns, adverbs, adjectives, main verbs, and other
categories with rich conceptual content). The three men-
tioned features denote the same one way or another, that
is, a kind of measure of how concrete or abstract the words
in the text are (notice that the more modifiers has a noun
the more concrete it becomes). Therefore, the more con-
crete words the less activation and number of concepts in
WM and the shorter time spent in reading.

Third, another group of results can be formed by the text
features that positively correlate with the model factors re-
lated to the mean activation and standard deviation per
concept in WM (MAC, MAD, MRD, fMAD, fMRD). These fea-
tures are CONLGni and CONADni. CONLGni refers to the
number of negative logical connectives (such as ‘‘nor’’ or
‘‘neither’’) per 1000 words; CONADni denotes the number
of negative additive connectives (such as ‘‘however’’ or
‘‘but’’) per 1000 words. Thus, the higher number of nega-
tive connectives the more activated the concepts in WM
and the higher relative difference between the mean acti-
vation per concept and the standard deviation of such mean
or, in other words, a more heterogeneous distribution of the
activation of the concepts in WM.

Fourth, a final group of correlation results that can be
mentioned is the one corresponding to the text feature that
etween the Coh-Metrix indexes of texts and each factor values

AC MC AD CD fMAC fMRD RT

0.436
0.457

0.432 0.443 0.475
0.613 0.571 0.507 0.445 0.714
0.532 0.458 0.681

0.571
�0.562 �0.550
�0.442 �0.470
0.460

�0.429 �0.574
0.417 0.471

0.418 0.426
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is negatively correlated with the factors related to the
mean activation per concept in WM. That feature is TYP-
TOKc, and it refers to the mean number of times that any
word occurs within the text. Consequently, it can be viewed
as a measure of the incidence of repetition of the words. In
this case, the higher incidence of repetition of the words
(corresponding to lower values of TYPTOKc) the higher dif-
ference between the mean activation per concept and the
standard deviation. Therefore, the repetitive occurrences
of the words produce a more heterogeneous distribution
of the activation of the concepts in WM.

From the correlation results presented, it is derived that
all the WM factors are modulated by one or more features of
the texts belonging to different linguistics levels.
Discussion

The main effect of text quality on WM found is an increasing
of the WM average activation and number of concepts with
increasing scores. This might seem contradictory with the
argument stated in the introduction that a good text should
facilitate the cognitive process of comprehension by an
optimum usage of WM. However, cognitive cost is mainly
due to retrieval of concepts from long-term memory and
inference processes. Concepts already present in WM are
not needed to be retrieved from long-term memory when
their reference term is perceived again or when they are in-
ferred from a perceived associated concept. In addition, the
more activated corresponding concepts in WM, the easier
concept mapping during the perception process as well as
the inference making. Consequently, if WM contains and
keeps most of the concepts that will appear or be inferred
along the text with a high activation, the comprehension
process (perception, integration, inference) will be more
straight and easier. This is what the correlation found actu-
ally means. Besides, there is evidence that confirms that
keeping a high number of highly activated concepts in WM
requires just attention and engagement (Awh, Vodel, &
Oh, 2006). Therefore, extensive use and activation of WM
do not mean here a high cognitive effort. In fact, they cor-
relate with an optimum WM usage. It is also worth noting
that high activation and usage are relative to the texts used,
and they do not necessarily mean absolute high values.

In the result section, a certain variability of results
among the three collections has been found. This diver-
gence might be due to the differences among the distribu-
tions of scores in the three collections (Wang & Brown,
2007), being the Hunter College distribution the most homo-
geneous. These differences could also explain the inverse
correlation between scores and factors related to the mean
activation per concept, either along the text or at the end
of it (MAC, MDC, fMAC, fMDC), both in College Board and
in Mathenglish collections in contrast with Hunter College
collection. The mean scores for CB and ME collections are
4.00(±1.73) and 4.36(±1.35), respectively. The mean score
for HC collection is 3.14(±1.95). Consequently, in addition
to the uniformity of the distributions, the mean quality of
the studied essays must be a determinant factor. This
way, it could be hypothesized that there exists a criterion
for a fine-grained assessment of the quality of the best
scored essays. So, among good essays, the best scored ones
produce a more uniform and homogeneous distribution of
the activation of concepts in working memory. This uniform
and homogeneous distribution means a low average (and
standard deviation) activation of the concepts. This might
happen either because of long sentences or because the
majority of the concepts in WM have been inferred and
not directly perceived from the text. Since no correlation
between WM usage and sentence length was found, the sec-
ond argument is the most plausible. Nonetheless, the vari-
ability among collections could also be caused by the
different human graders that scored each of them. Further
research is needed to determine the source of this
variability.

Among all correlation results, two relations are specially
interesting to discuss. The first one concerns with the direct
correlation between the assigned score and the difference
between the average and maximum activation, and the
average and maximum number of concepts. That is to say,
the difference grows as the score increases. Consequently,
a good text would induce a maximum level of activation
and number of concepts at some instant that is much higher
than the levels achieved during the rest of the text. It would
be interesting to study where that maximum is reached for
such high-scored texts. It could be hypothesized that the
maximum is reached either at the beginning, where most
concepts would be introduced and then sequentially elabo-
rated along the text, or at the end, where most treated con-
cepts would be summarized.

The second interesting evidence comes from the nega-
tive correlation between the repetition incidence of words
(TYPTOKc, note that a high value of this parameter means
a low repetition incidence) and the average activation dif-
ference per concept (MAD), i.e. the difference between
the mean activation per concept and its corresponding stan-
dard deviation. If the words are not repeated along the text,
their associated concepts will keep at decreasing low levels
of activation, in contrast with the high level of activation of
concepts corresponding to frequent and function words.
However, this effect requires not only a low incidence of
repetition, but also the presence of non-related words. If
the words are somehow related, the presence of some of
them would trigger the inference of the others, thus com-
pensating the effects of the lack of repetition. So, the use
of a varied vocabulary is profitable when the terms are
semantically related. Otherwise, a sparse distribution of
concepts in working memory is induced, which in turn hin-
ders retrieval and inference and, hence, the reading
process.

No correlation concerning the number of words, the
number of sentences, the average size of the sentences,
or any other statistic related to the text size has been
found. Most automated essay scorers and measures of text
quality are highly influenced by the size of the texts or sen-
tences. However, these features have no significant influ-
ence in the WM usage, although it is also true that most
factors measured from the model are average values.

Finally, it must be said that the same model configura-
tion has been used for all the texts, while the human graders
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were at least different in each collection. In an ideal condi-
tion, the model should represent and fit each individual
grader in an isolated manner. However, the model is repre-
senting here a general good grader. Nevertheless, the error
introduced by this generalization is not relevant for the pur-
pose of the present work. It is also important to mention
that only the aspects of quality related to text vocabulary,
local coherence and grammatic and discourse structure
have been considered in the study (since WM usage mea-
sures and model behavior depend on how the text is struc-
tured by sentences and their length). The extent to what
the requested topics have been covered within the essays
has not been taken into account.

Concluding remarks

The assessment of text quality is usually done by human
graders. In order to avoid the subjectivity contained in their
evaluations, the artificial scorers appeared as an objective
alternative because they are based on quantitative linguis-
tic features. The ultimate aim of using Natural Language
is the communication among subjects. Consequently, if
communication succeeds (it is correctly and easily compre-
hended), the quality of the original message will be high.
Since the comprehension of natural language implies
cognitive functions and resources, the text quality can be
measured by characterizing the use of those cognitive re-
sources and processes.

Given that current brain imaging techniques are not
capable of acquiring a fine-grained measure of the underly-
ing cognitive process, this paper has presented a computa-
tional cognitive model of Working Memory instead. The
aim of this work is to unveil the effects of text quality
and features in WM usage. The model emulates the cogni-
tive dynamics of Working Memory during reading and allows
monitoring memory usage and state. This way, the text
quality can be correlated with some numerical factors that
summarize and quantify the use of WM during the reading
process of natural language texts. The results of the carried
out experiments have shown how several factors concerning
the average memory load and the average significance of
concepts in memory determine the text score assigned by
human scorers, thus proving the influence of text quality
on the cognitive processing of the texts. More concretely,
the results have revealed that as the score of the texts in-
creases the activation of concepts in WM gets higher and
more homogeneous.

Additionally, the effects of particular linguistic features
of the text on WM have been studied. In this sense, the re-
sults have shown that the use of conditional, negative and
connective expressions, and complex syntactic structures
leads to an increment of the concepts and total activation
in WM. In contrast, a high number of concrete words (non-
generic) and highly qualified nouns produce a decrease in
the number of concepts and total activation in WM. Besides,
the incidence of negative and additive connectives together
with the incidence of repetition of words are positively re-
lated to the average activation of each single concept in WM.

In the BICA context, the study and results presented here
point to two broader conclusions. First, the presented
model emulates a differentiated aspect of the mind, the
so-called Bounded Cognition (Gigerenzer & Selten, 2002),
which states that cognitive performance is influenced not
only by the inherent cognitive capacity, but also by the
information perceived and the environment. The inclusion
of bounded cognition in BICA models means a step ahead
in the achievement of the BICA Challenge. Second, the work
described here means another example of how BICA models
can feedback Psychology and Neuroscience, thus closing the
interdisciplinary loop (Neuroscience/Psychology inform and
inspired BICA models, which can be used to prove hypothesis
from the former fields and generate new ones).

Other computational models of reading exist, but they
search for an assessment of a theory of reading rather than
for a biologically inspired approach. Most of them are based
on connectionist networks inspired by the Construction–
Integration model (Kintsch, 1988) and focus on different
stages of reading and targets: in Rapaport and Shapiro
(1999) a study of different ways of representing and under-
standing fiction in an associative net is presented. The inter-
action of different knowledge sources at sentence level
during reading is treated in Mahesh, Eiselt, and Holbrook
(1999). Representation of language for complex narrative
understanding is studied in Domeshek, Jones, and Ram
(1999). In Lange and Wharton (1993), the reminding process
during reading is explained by inferencing and disambigua-
tion and a connectionist model of episodic memory is pro-
posed. A modification of the Construction–Integration
model for narrative comprehension is presented in Lang-
ston, Trabasso, and Magliano (1999). In Meyer and Poon
(2001) the importance of text structure and writing style
for comprehension is highlighted. Even creativity is the tar-
get of studies in Moorman and Ram (1999) by the compre-
hension of novel concepts. The works just mentioned
show that there is a high number of complex cognitive pro-
cesses underlying reading. The model proposed here, CRIM,
is a simple model that takes into account only a few those
cognitive processes focused in WM. However, it is inspired
by and slightly closer to humans than the other systems in
the same application field.

For a better support of the results, it is planned to ex-
tend the collections of human-scored essays, and fit the
model to each individual grader in an isolated manner, thus
carrying out the same correlation analysis on the measures
obtained from the models. Future work will also include a
correlation study between the WM factors and the quantita-
tive linguistic features of the texts modeling poor readers,
instead of skilled graders, in order to unveil the effects of
text quality under different cognitive capabilities. It is also
planned to assess the plausibility of the model by modifying
the low-quality texts according to the correlations found in
this study in order to improve them in terms of the
effect caused in WM. These modifications will be assessed
afterwards by human graders, thus closing the loop
human-model-improvement-human, which is a core aim of
computational cognitive modeling.
Acknowledgment

This work has been funded by FGCSIC, Obra Social la Caixa
and CSIC.



Effects of text essay quality on readers’ working memory by a computational model 51
References

Awh, E., Vodel, E. K., & Oh, S. H. (2006). Interactions between
attention and working memory. Neuroscience, 139, 201–208.

Beni, R. D., & Palladino, P. (2000). Intrusion errors in working
memory tasks: Are they related to reading comprehension
ability? Learning and Individual Differences, 12(2), 131–143.

Burstein, J., Leacock, C., & Swartz, R. (2001). Automated evalu-
ation of essay and short answers. In M. Danson (Ed.), Proceed-
ings of the sixth international computer assisted assessment
conference. Loughborough, UK.

Calvo, M. G. (2005). Relative contribution of vocabulary knowledge
and working memory span to elaborative inferences in reading.
Learning and Individual Differences, 15(1), 53–65.

Cambria, E., Olsher, D., & Kwok, K., (2012). Sentic activation: A
two-level affective common sense reasoning framework. In
Proceedings of AAAI conference on artificial intelligence.

Cambria, E., Mazzocco, T., & Hussain, A. (2013). Application of
multi-dimensional scaling and artificial neural networks for
biologically inspired opinion mining. Biologically Inspired Cog-
nitive Architectures, 4(0), 41–53.

Carrell, P. L. (1995). The effect of writers’ personalities and raters’
personalities on the holistic evaluation of writing. Assessing
Writing, 2(2), 153–190.

Carretti, B., Borella, E., Cornoldi, C., & Beni, R. D. (2009). Role of
working memory in explaining the performance of individuals
with specific reading comprehension difficulties: A meta-analy-
sis. Learning and Individual Differences, 19(2), 246–251.

Carretti, B., Cornoldi, C., Beni, R. D., & Romanò, M. (2005).
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