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This study is aimed at assessing the usefulness of different feature selection and classification method-
ologies in the context of sleep apnea hypopnea syndrome (SAHS) detection. Feature extraction, selection
and classification stages were applied to analyze blood oxygen saturation (SaO2) recordings in order
to simplify polysomnography (PSG), the gold standard diagnostic methodology for SAHS. Statistical,
spectral and nonlinear measures were computed to compose the initial feature set. Principal component
analysis (PCA), forward stepwise feature selection (FSFS) and genetic algorithms (GAs) were applied
to select feature subsets. Fisher’s linear discriminant (FLD), logistic regression (LR) and support vec-
tor machines (SVMs) were applied in the classification stage. Optimum classification algorithms from
each combination of these feature selection and classification approaches were prospectively validated on
datasets from two independent sleep units. FSFS +LR achieved the highest diagnostic performance using
a small feature subset (4 features), reaching 83.2% accuracy in the validation set and 88.7% accuracy in
the test set. Similarly, GAs+ SVM also achieved high generalization capability using a small number of
input features (7 features), with 84.2% accuracy on the validation set and 84.5% accuracy in the test set.
Our results suggest that reduced subsets of complementary features (25% to 50% of total features) and
classifiers with high generalization ability could provide high-performance screening tools in the context
of SAHS.

Keywords: Sleep apnea hypopnea syndrome; oximetry; blood oxygen saturation; feature selection; princi-
pal component analysis; stepwise selection; genetic algorithms; Fisher’s discriminant; logistic regression;
support vector machines.
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1. Introduction

The sleep apnea hypopnea syndrome (SAHS) is
a respiratory disorder characterized by frequent
breathing cessations (apneas) or partial collapses
(hypopneas) during sleep. These respiratory events
lead to deep oxygen desaturations, blood pressure
and heart rate acute changes, increased sympa-
thetic activity and cortical arousals.1 Daytime hyper-
somnolence, neurocognitive dysfunction, metabolic
deregulation and/or cardiovascular and cerebrovas-
cular diseases could affect people having undiagnosed
SAHS.1,2 Common epidemiological data reflects a
high SAHS prevalence in western countries: 1% to
5% of adult men and 2% of women. However, recent
studies suggest that 20% of adults have at least mild
SAHS and 7% of adults have moderate-to-severe
SAHS.3 Unlike its high prevalence and negative influ-
ence in the quality of life, it is estimated that 90%
of cases in men and 98% of cases in women may be
undiagnosed for many years.2

The gold standard method for SAHS diag-
nosis is in-hospital, technician-attended overnight
polysomnography (PSG).4 However, this method-
ology is labor-intensive, expensive and time-
consuming,4 which has led to large waiting lists,
delaying diagnosis and treatment.5 Thus, there is
a great demand on new techniques aimed at sim-
plifying the standard procedure and/or reducing
the number of PSGs needed.6 The main alterna-
tives to PSG focus on developing automated analysis
using a reduced set of cardiorespiratory-derived sig-
nals. Blood oxygen saturation (SaO2) from overnight
oximetry provides relevant information to detect
apneas, it can be easily recorded ambulatory and it
is less expensive and highly reliable.6 However, there
is still a great demand on new studies to improve the
usefulness of SaO2 in SAHS diagnosis.7

Several studies applied multivariate analysis to
assist in SAHS detection.8–11 Multivariate adap-
tive regression splines8 and stepwise linear regres-
sion9 have been used to classify subjects from con-
ventional oximetric indexes. Discriminant analysis,
logistic regression and neural networks have also
been applied in the context of SAHS.10–12 However,
few studies applied feature selection before classifi-
cation, which could improve diagnostic performance.

In the present study, feature extraction, selec-
tion and classification procedures were carried

out to analyze SaO2 recordings. Signal processing
techniques were applied to compose an initial feature
set: statistical, spectral and nonlinear measures were
computed to obtain as much information as possi-
ble from oximetry. At this point, we hypothesized
that an exhaustive analysis of the search space by
means of variable selection could provide further
knowledge on SaO2 dynamics. Dimensionality reduc-
tion and feature selection techniques could be very
useful to derive a smaller but optimal subset for
classification purposes. There are many potential
benefits of variable selection after feature extrac-
tion13,14: simplifying data representation, reducing
measurement, storage and computational require-
ments, avoiding redundant and noisy information,
selecting complementary features and defying the
curse of dimensionality to improve classification
accuracy. Feature subset selection methodologies are
essentially divided into wrapper, filter and embed-
ded methods.14,15 Wrapper methods use a classifier
of interest to score subsets of variables according to
their predictive power, whereas filter methods select
subsets of variables as a pre-processing stage inde-
pendent of the predictor. Finally, embedded methods
integrate variable selection into the learning machine
training process. Additionally, feature construction
and dimensionality reduction techniques are a differ-
ent and useful approach when the number of vari-
ables is not too large and time and computational
cost is not a concern.14,16 Filter, wrapper and embed-
ded techniques select features in the original space,
which makes new subsets easy to interpret. On the
other hand, feature construction approaches select
variables in a transformed space, providing a more
efficient representation of patterns. However, new
features could not have clear physical meaning.17 In
the present study, three different approaches were
assessed for feature selection: conventional princi-
pal component analysis (PCA),18 forward stepwise
feature selection (FSFS)19 and genetic algorithms
(GAs).20 Additionally, three classifiers were used to
investigate classification performance: Fisher’s linear
discriminant (FLD),13 logistic regression (LR)18 and
support vector machines (SVMs).21 Previous stud-
ies already applied these feature selection algorithms
in different contexts, such as image processing,22

signal monitoring,23,24 structural monitoring25,26 or
model optimization.27–29 Similarly, FLD and LR are
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conventional classifiers extensively assessed in many
fields11,13,30,31 and SVMs are optimal state-of-the-
art classifiers widely applied in different contexts,
such as fMRI data analysis,31 document classifica-
tion,32 biomedical signal processing33,34 or motor
pump faults detection.35

The goal of this study is to assess the useful-
ness of these algorithms for feature selection and
classification in the context of SAHS diagnosis. We
hypothesized that a prospective evaluation of differ-
ent feature subsets from oximetry could provide fur-
ther knowledge on SaO2 dynamics. Thus, we wanted
to test if the proposed classification schemes will be
suitable for applying at another sleep laboratory. To
achieve this goal, oximetric recordings from two inde-
pendent sleep units were analyzed.

2. DataSet

Subjects under study were recruited from two
independent sleep units: the “Rı́o Hortega Hos-
pital” (RHH) from Valladolid (Spain) and the
“Philipps University Hospital” (PUH) from Marburg
(Germany). First, a population set composed of 249
consecutive subjects (191 males and 58 females) was
studied, with a mean ± standard deviation (SD) age
of 52.2± 13.5 years and an average body mass index
(BMI) of 29.9± 4.9 kg/m2. All subjects were derived
to the sleep unit of the RHH due to a suspicion of suf-
fering from SAHS. This population set was divided
into training set and validation set. Table 1 shows the
demographic and clinical characteristics of the popu-
lation groups. The training set was used to compose
optimum feature subsets from oximetric features and
build the classifiers, whereas the validation set was
subsequently used to assess their performance. In
order to test whether proposed classification schemes
will fit recordings from another sleep laboratory,
optimum classifiers were further assessed on an inde-
pendent test set. The Marburg subset (71 recordings)
of the SIESTA database from the PUH was used. In
this dataset, healthy subjects with no sleep distur-
bances composed the control group, whereas patients
with a positive diagnosis of SAHS from PSG com-
posed the SAHS-positive group. Table 2 shows the
demographic and clinical features of this population.

The standard apnea–hypopnea index (AHI) from
PSG was used to diagnose SAHS. Apnea was defined
as a drop in the airflow signal greater than or equal

Table 1. Demographic and clinical features of the pop-
ulation from the RHH sleep unit.

SAHS- SAHS-
Features All negative positive

Recordings (n) 249 84 165
Age (years) 52.2± 13.5 47.2± 11.5 54.7± 13.7
Males (n) 191 52 139

BMI (kg/m2) 29.9± 4.9 28.0± 4.5 31.3± 4.7
Time (h) 7.2± 0.6 7.2± 0.4 7.2± 0.6
AHI (e/h) 3.9± 2.4 37.1± 25.8

Training SAHS- SAHS-
Features set negative positive

Recordings (n) 148 48 100
Age (years) 52.9± 14.1 48.3± 11.8 55.2± 14.6
Males (n) 116 32 84

BMI (kg/m2) 29.8± 5.6 27.3± 6.3 30.8± 5.0
Time (h) 7.2± 0.4 7.2± 0.4 7.2± 0.4
AHI (e/h) 4.1± 2.4 40.9± 27.6

Validation SAHS- SAHS-
Features set negative positive

Recordings (n) 101 36 65
Age (years) 51.1± 12.7 45.8± 11.2 54.1± 12.5
Males (n) 75 20 55

BMI (kg/m2) 29.0± 1.6 27.9± 0.8 30.8± 0.4
Time (h) 7.3± 0.7 7.2± 0.3 7.3± 0.9
AHI (e/h) 3.5± 2.3 31.4± 21.8

Table 2. Demographic and clinical features of the pop-
ulation from the PUH sleep unit.

Normal SAHS-
Features Test set subjects positive

Recordings (n) 71 50 21
Age (years) 40.37± 12.36 36.72± 11.59 49.05± 9.66
Males (n) 46 25 21

BMI (kg/m2) 25.82± 5.86 22.93± 3.37 32.67± 4.68
Time (h) 7.7± 0.8 7.7± 0.7 7.9± 0.9
AHI (e/h) 0.60± 1.94 55.27± 33.44

to 90% from baseline lasting at least 10 s, whereas
hypopnea was defined as a drop greater than or equal
to 50% during at least 10 s accompanied by a desatu-
ration greater than or equal to 3% and/or an arousal.
Subjects with an AHI ≥ 10 events per h (e/h) were
diagnosed as suffering from SAHS. Regarding the
population under study from the RHH, a positive
diagnosis of SAHS was confirmed in 165 patients.
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The training set from the RHH was composed of
148 patients (48 SAHS-negative and 100 SAHS-
positive), whereas the validation set was composed
of 101 patients (36 SAHS-negative and 65 SAHS-
positive). Every subject contributed one PSG study
each (7.2± 0.6 h of recording, mean±SD). On the
other hand, nocturnal PSG was carried out during
two consecutive nights at the PUH sleep unit. In
the test set from the PUH, 50 PSG studies from
26 healthy subjects composed the control group (24
subjects contributed two recordings each and two
subjects contributed one recording each), whereas
21 PSG studies from 11 SAHS-positive patients
composed the SAHS-positive group (10 patients con-
tributed two recordings each and 1 patient con-
tributed with a single recording).

All SaO2 recordings from PSG were saved to sep-
arate files and processed offline to compose the initial
oximetric feature set. SaO2 was recorded at a sam-
pling rate of 1Hz. SaO2 signals presented zero sam-
ples at the beginning of the acquisition process and
drops to zero due to patient movements along the
recording time. An automatic signal pre-processing
stage was carried out to remove these artifacts.

3. Methodology

Our methodology was divided into three stages: fea-
ture extraction, feature selection and classification.
A total of 16 features composed the initial feature
set from oximetry, which was the input to the subse-
quent feature selection stage. Three feature selection
algorithms were evaluated: PCA, FSFS and GAs.
Three classifiers were applied to assess classification
performance in the third stage: FLD, LR and SVMs.
Therefore, nine different classification schemes were
proposed: PCA+FLD, PCA+LR, PCA+SVM,
FSFS +FLD, FSFS +LR, FSFS +SVM, GAs +
FLD, GAs +LR and GAs +SVM. Training and a
double testing process were carried out. The training
set was used to perform feature selection and com-
pose classifiers, where a number of optimum feature
subsets were automatically selected. Every optimum
classifier from each proposed classification schema
was subsequently assessed on two test sets: a valida-
tion group from the same sleep unit as the training
set and a test set from an independent sleep unit.
Figure 1 shows a block diagram to illustrate this
methodology.

Fig. 1. System block diagram of the proposed method-
ology for feature extraction, selection and classification.

3.1. Feature extraction stage

Oximetric recordings were parameterized by means
of 16 features from 4 feature subsets: time domain
statistics, frequency domain statistics, conventional
spectral measures and nonlinear features. All fea-
tures were computed for each whole overnight
recording.

3.1.1. Time domain statistics

The amplitude (%) of each SaO2 signal was used to
compute the normalized histogram. First to fourth-
order statistical moments were computed36:

(i) Arithmetic mean (M1t), which is a measure of
the central tendency of the data distribution:

M1t ≡ E[x] = µ =
1
N

N∑
n=1

xn. (1)

(ii) Variance (M2t), which quantifies the amount
of dispersion in data, assigning higher values to
higher variation:

M2t ≡ E[(x − µ)2] = σ2

=
1

N − 1

N∑
n=1

(xn − µ)2. (2)
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(iii) Skewness (M3t), which is a measure of symme-
try in the data distribution. Large negative val-
ues suggest skewness (asymmetry) to the left
while relatively large positive values suggest
skewness to the right:

M3t =
1
σ3

E[(x − µ)3], (3)

where σ is the SD.
(iv) Kurtosis (M4t), which quantifies the peaked-

ness, i.e. the frequency of data in the middle
of the distribution. Positive peakedness suggests
large concentration of probability in the center
around µ accompanied by relative long tails,
while negative values indicate relatively short
tails:

M4t =
1
σ4

E[(x − µ)4]. (4)

3.1.2. Frequency domain statistics

The power spectral density (PSD) of each oximet-
ric recording was estimated by applying the Welch’s
method. A 512-sample Hanning window with 50%
overlap and 1024-points discrete Fourier transform
were used. The following statistics were computed:

(i) First to fourth-order moments (M1f–M4f)
in the frequency domain.36 The amplitude
(W/Hz) of the PSD function at each single spec-
tral component was used to obtain the normal-
ized histogram.

(ii) Median frequency (MF), which is defined as the
spectral component which comprises 50% of the
total signal power37:

0.5
0.5fS∑

fj=0Hz

PSD(fj) =
MF∑

fj=0Hz

PSD(fj). (5)

(iii) Spectral entropy (SE), which is a disorder quan-
tifier related to the flatness of the spectrum37:

SE = −
∑

j

pj ln(pj), (6)

where pj is the normalized value of the PSD at
each frequency component:

pj =
PSD(fj)∑0.5fs

fj=0 Hz PSD(fj)
. (7)

3.1.3. Conventional spectral features

The frequency band from 0.014 to 0.033 Hz proposed
by Zamarrón et al. was parameterized. A significant
power increase linked with suffering from SAHS was
found in this frequency band.38 The following mea-
sures were computed:

(i) Total spectral power (PT ), which is computed
as the total area under the PSD.

(ii) Peak amplitude (PA) in the apnea frequency
band, which is the local maximum of the spec-
tral content in the apnea frequency range 0.014–
0.033Hz.

(iii) Relative power (PR), which is the ratio of the
area enclosed under the PSD in the apnea fre-
quency band to the total signal power.

3.1.4. Nonlinear features

Linear methods cannot capture all the information
from biological signals due to their nonlinearities and
nonstationary behavior.39–42 Therefore, nonlinear
measures of irregularity, variability and complexity
were applied to obtain additional and complemen-
tary information from SaO2 dynamics.30,43,44

(i) Sample entropy (SampEn), which is a nonlin-
ear measure of irregularity in time series, with
larger values corresponding to more irregular
data45:

SampEn(m, r, N) = − ln
[

Am(r)
Bm(r)

]
, (8)

where Am and Bm are the average number of
(m)-length and (m + 1)-length segments Xm(i)
(1 ≤ i ≤ N − m + 1) with d[Xm(i), Xm(j)] ≤
r(1 ≤ j ≤ N − m, j �= i), respectively, and

d[Xm(i), Xm(j)]

= max
k=0,...,m−1

(|x(i + k) − x(j + k)|). (9)

(ii) Central tendency measure (CTM ), which is a
nonlinear measure of variability from second-
order difference plots, assigning larger values to
lower variability46,47:

CTM =
1

N − 2

N−2∑
i=1

δ(di), (10)
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where

δ(di) =




1 if [(x(i + 2) − x(i + 1))2

+ (x(i + 1) − x(i))2]1/2 < ρ

0 otherwise

.

(11)

(iii) Lempel–Ziv complexity (LZC ), which is a non-
linear measure of complexity linked with the
rate of new subsequences and their repetition
along the original sequence.48,49 The complex-
ity counter c(n) is increased every time a new
subsequence is encountered:

LZC =
c(n)
b(n)

, (12)

where b(n) is a normalization parameter.48

3.2. Pre-processing stage

Units used to measure input variables or changes in
scale of measurement can influence the performance
of classifiers.13,50 Therefore, standardizing each fea-
ture by subtracting its mean and dividing by its SD
is a common practice in the context of pattern recog-
nition.50,51 A linear re-scaling of each individual vari-
able was carried out to obtain a zero mean and unit
variance distribution for each input feature:

xk(i) =
xraw

k (i) − x̄k

σxk

, k = 1, . . . , p, (13)

where xk(i) is the standardized value for sample i of
feature k, xraw

k (i) is the original raw value for sample
i of feature k, x̄k is the mean value of feature k and
σxk

is its SD.

3.3. Feature selection stage

3.3.1. Principal component analysis

PCA is probably the best-known orthogonal trans-
form for variable construction, which has been widely
used as reference methodology for dimensionality
reduction in pattern recognition.16,17 As a variable
construction technique, PCA is aimed at finding an
appropriate transform that maps the pattern vector
x(i) from the original p-dimensional feature space to
a new d-dimensional feature space, where d ≤ p.17

When the number of features in the original space is
large, the high correlation between variables under
study becomes a problem in multivariate analysis.
In order to avoid this issue, all variables or principal

components from PCA in the new d-dimensional
space are uncorrelated and mutually orthogonal.13,18

New variables from PCA are linear transforma-
tions of the original features in a d-dimensional
space, providing pattern representation with mini-
mum mean-squared error for a given dimension d.17

In the transformed space, new patterns are the pro-
jection of the original observations onto the eigen-
vectors of the original covariance matrix.13,17 Each
eigenvector accounts for a portion of the total vari-
ation of original data and the variance linked with
each eigenvector is represented by its associated
eigenvalue.13,18 The portion of the total variation
accounted for by the eigenvalue λd is given by its
explained variance (EV ):

EV =
λd∑p

k=1 λk
. (14)

Regarding dimensionality reduction, PCA is com-
monly applied as a filter method to select variables
in the transformed space as a pre-processing stage
independent of the classifier. PCA allows discard-
ing the components with lower EV to deal with a
transformed space with lower dimension without sig-
nificant loss of information.18 The optimum number
of components to accomplish dimensionality reduc-
tion can be estimated using some cut-off proportion.
In this study, new variables from PCA were ranked
according to their EV and the average criterion or
eigenvalue-one-criterion was used as threshold to fil-
ter principal components. According to this rule,
the components whose variance (λj , j = 1, . . . , p)
exceeds the average variance λ̄ were selected:

λj > λ̄ =
p∑

j=1

λj

/
p. (15)

In the present study, we applied PCA to the original
dataset of 16 features from oximetry. PCA+FLD,
PCA+LR and PCA+ SVM classification schemes
were subsequently built using the principal compo-
nents automatically selected.

3.3.2. Forward stepwise feature selection

Sequential forward selection and backward elim-
ination algorithms allow exploring the original
p-dimensional feature space looking for a small sub-
set that could reasonably describe the original data
and avoiding the need to compute all possible 2p

combinations, which becomes impracticable when p
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is large.19,52 Both forward selection and backward
elimination techniques yield nested subsets of fea-
tures, where variables are progressively added into
larger and larger subsets or progressively removing
the least promising ones starting from the complete
set of variables, respectively.14 Advantages of both
methodologies of feature selection are computational
efficiency and robustness against overfitting. On the
other hand, their main limitation is that once a vari-
able has been included or removed from the subset,
there is not a feedback process to modify the inclu-
sion or exclusion of previous variables, which could
improve the information provided by the model.17

Forward stepwise selection and backward stepwise
elimination improve sequential approaches by con-
sidering both feature addition and feature deletion
at each step.53

Forward and backward stepwise strategies are
usually classified as wrapper feature selection meth-
ods.14,15 However, they can also be used as an
embedded method if the criterion to decide whether
or not to include or exclude a feature is not based
directly on the accuracy of a classifier but on another
objective function.17 In the present study, we used a
forward stepwise classifier-building strategy to find
the simplest feature subset that still significantly
explains original data.19 Bidirectional FSFS decides
to add or to remove a variable from the current
feature subset through an iterative process. FSFS
selects the strongest variables in the dataset and
removes variables that provide redundant informa-
tion in terms of statistical significant differences: at
each iteration, the stepwise method performs a test
for backward elimination followed by a forward selec-
tion procedure.19 Different tests of statistical signif-
icance are used to compare models differing in one
degree of freedom (1 input variable) depending on
the output of the classifier. FSFS +FLD, FSFS + LR
and FSFS +SVM schemes were analyzed in this
study. The likelihood ratio test is used when output
values can be interpreted as probabilities, such as in
LR.19 The output of a SVM can also be mapped
to pseudo-probabilities using a logistic function.54

In stepwise linear problems, an F -test is used since
the errors are assumed to be normally distributed.19

Therefore, the Rao’s R approximate F -test was used
for FLD.

In FSFS, a new variable is selected if the p-value
associated to the statistical test was lower than a

significance level αE , which usually varies between
0.05 and 0.25.19 Similarly, a variable was removed if
the p-value was higher than a significance level αR,
commonly between 0.20 and 0.9019:

p
(step)
feature = min(p(step)

j ) < αE → add feature, (16)

p
(step)
feature = max(p(step)

j ) > αR → remove feature.
(17)

The FSFS algorithm stops when all variables from
the original feature set are selected or when all vari-
ables in the model have p-values lower than αR and
the remaining variables have p-values greater than
αE . In the present study, we used the less restrictive
αE = 0.25 and a moderate αR = 0.40 significance
thresholds to let the algorithm significantly explore
the original feature space.19

3.3.3. Genetic algorithms

GAs are usually used as optimization schema to
efficiently inspect the search space of variables or
parameters that govern a model.28,29 They encode a
potential solution as a chromosome-like data struc-
ture and apply recombination operators on these
structures.24 A population from a GA optimization
procedure comprises a group of chromosomes or can-
didate solutions that are modified iteratively: A par-
ticular group of chromosomes (parents) are selected
from an initial population to generate the offspring
by means of predefined genetic operations (crossover
and mutation). The offspring replaces chromosomes
in the current population based on certain replace-
ment strategies.28 The optimization process is car-
ried out in cycles called generations.

In this study, GAs were applied as a wrapper fea-
ture selection procedure to obtain the optimum input
feature subset of a classifier in terms of classification
performance. In this case, an individual or chromo-
some from the population is just a combination of a
predetermined number of features from SaO2 record-
ings.24 While conventional approaches just evaluate
and improve a single feature subset, a GA intensively
analyzes the whole feature space by modifying and
improving a group of subsets at the same time.

A feature subset in the GA search space is cod-
ified with a finite binary sequence, where the kth
bit denotes the absence (0) or the presence (1) of
the kth feature. Each sequence has p bits, where
p is the dimension of the original space, i.e. the
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number of features in the whole set.20 The classi-
fication accuracy is used as the objective value, in
order to assess each chromosome performance and
to achieve parent selection. A fitness function is used
to map each objective value to a proportional prede-
fined fitness interval. In this study, a proportional fit-
ness scaling function was used. Additionally, roulette
and tournament schemes were used as parent selec-
tion strategies. One-point crossover was applied to
produce offspring: a crossover point is randomly
selected and the portions of both parents beyond
this point are exchanged to form the offspring.28

Uniform mutation was applied to introduce varia-
tions into the offspring. In the present study, prob-
ability of crossover (Pc) values between 0.5 and 0.9
and probability mutation rate (Pm) values between
0.01 and 0.09 were used.20 The elite or percentage of
the best individuals in the old population preserved
after each generation were varied between 0% and
25%. A number of realizations were carried out vary-
ing the parent selection strategy, Pc, Pm and elite.
Each implementation of the GA was run with an
initial population size of 16 individuals during 100
generations.24 For each realization, the feature sub-
set with the highest accuracy at the last generation
was saved. Finally, the optimum feature subset in
terms of diagnostic performance was selected. In this
study, GAs +FLD, GAs + LR and GAs +SVM clas-
sification schemes were assessed.

3.4. Feature classification stage

3.4.1. Fisher’s linear discriminant

In a binary (two class) context, FLD performs a lin-
ear projection of p-dimensional input data to a one-
dimensional space:

y = wT x, (18)

where w is the projection weight matrix whose com-
ponents maximize the class separation in the trans-
formed space.13 The Fisher criterion can be written
as follows:

J(w) =
wT SBw

wT SW w
d, (19)

where SB is the between-class covariance matrix and
SW is the total within-class covariance matrix. Dif-
ferentiating J(w) with respect to w, the separation of
classes in the projected space is maximized when13:

w ∝ S−1
W (m2 − m1), (20)

where mi is the mean vector of the class i. The pro-
jected data can be used to construct a discriminant
by choosing a threshold y0 so that we classify a new
point as belonging to C1 if y(x) ≥ y0 and classify it
as belonging to C2 otherwise.

3.4.2. Logistic regression

LR relates a categorical dependent variable Y with a
set of input features Xi. For dichotomous problems,
input patterns are classified into one of two mutu-
ally exclusive categories (SAHS-positive or SAHS-
negative in the context of SAHS diagnosis) and the
probability density for the response variable can be
modeled by a Bernoulli distribution18:

f(y | p(d)) = [p(d)]y[1 − p(d)](1−y), (21)

where

p(d) = p(β0 +
p∑

i=1

βixi), (22)

models the linear relationship between input features
Xi. The maximum likelihood criterion is used to opti-
mize coefficients of the independent input features.18

LR classifiers assign an input vector to the class with
the maximum a posteriori probability value. The LR
model is expressed as follows18:

ln
[

p

1 − p

]
= β0 +

p∑
i=1

βixi. (23)

3.4.3. Support vector machines

SVMs are binary classifiers that search for the
optimum separating hyperplane between classes.13

The hyperplane is built in a transformed high-
dimensional space in order to maximize separation,
resulting in the following mapping function:

y(x, w) = wT z + w0, (24)

where x ∈ �p is the input pattern, z = ϕ(x) | z ∈
�d, d > p performs the transformation of input data
to a high-dimensional space, y is the output of the
classifier and w is the weight vector. w is obtained
by minimizing the following functional21:

Ec(w, ξ) =
1
2
‖w‖2 + C

N∑
n=1

ξn, (25)
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subject to the constrains

tn(wT zn + w0) ≥ 1 − ξn and ξn ≥ 0

n = 1, . . . , N, (26)

where N is the number of observations in the train-
ing set, tn is the target or desired output (+1 for
the positive class and −1 for the negative class), ξn

measures a deviation of a data point xn from the
ideal condition of separability (nonseparable classes)
in the transformed space and C is a regularization
parameter that controls the trade-off between the
maximum margin of separation between classes and
minimizing the classification error.55 This optimiza-
tion problem is commonly reformulated in terms of
Lagrange multipliers ηn, so that the weight vector is
expressed as follows:

w =
N∑

n=1

ηntnϕ(xn). (27)

Only the support vectors, those for which their
Lagrange multipliers are nonzero, contribute to the
definition of the decision boundary. The output of
the SVM classifier is expressed in terms of these sup-
port vectors as follows21:

y =
∑
n∈S

ηntnK(xn, x) + w0, (28)

where S is a subset of the indices {1, . . . , N} cor-
responding to the support vectors and K(·, ·) rep-
resents the inner product kernel function in the
transformed space. In the present study, a linear ker-
nel is used. The linear combination of inputs is the
simplest but most useful kernel for SVM classifica-
tion in many contexts, such as fMRI data analysis31

or document classification.32 Leave-one-out cross-
validation (loo-cv) was carried out in the training
set to obtain the optimum value of the regularization
parameter C for each SVM classifier. The following
values were assessed: 10−4, 10−3, 10−2, . . . , 103, 104.
For each value of C, we computed the accuracy of
the classifier applying loo-cv. The value of C that
achieved the highest accuracy was selected and the
classifier was re-trained using the whole training set.

3.5. Statistical analysis

Matlab R2012a (7.14.0.739) and IBM SPSS Statis-
tics 20 were used to implement feature extrac-
tion methods and to develop the feature selection

and classification stages. Sensitivity (proportion of
SAHS-positive patients correctly classified), speci-
ficity (proportion of SAHS-negative subjects rightly
classified) and accuracy (the total percentage of sub-
jects correctly classified) were computed to quan-
tify classification performance. For every classifier, a
ROC analysis was carried out to obtain its optimum
decision threshold in the training set. This threshold
was applied on further assessments in the validation
and test sets.

4. Results

4.1. Training

Feature extraction was carried out for each
SaO2 recording from the populations under study.
Figure 2(a) shows the nocturnal SaO2 profile of
a common SAHS-negative subject and a com-
mon SAHS-positive patient from the training set.
Figure 2(b) shows the normalized averaged his-
togram envelope of recordings in the time domain for
the whole SAHS-negative (dashed black) and SAHS-
positive (dotted gray) groups in the training set. We
can observe that the histogram envelope correspond-
ing to the SAHS-negative group showed higher mean,
skewness (symmetry) and kurtosis (peakedness) and
lower variance in the time domain than that cor-
responding to SAHS-positive patients. This agrees
with the fact that recordings from subjects without
sleep apnea tend to remain constant around 96%,6

i.e. higher mean and peakedness, whereas SAHS
patients show deep desaturations during the night,
i.e. higher variability and lower symmetry due to the
left tail of the histogram envelope as a result of lower
saturation values. Figure 2(c) shows the normalized
averaged PSD for the whole SAHS-negative (dashed
black) and SAHS-positive (dotted gray) groups in
the training set. In the frequency domain, spectral
power of oximetric recordings from SAHS-negative
subjects concentrates on very low frequencies, show-
ing lower mean and variance and higher skewness
and kurtosis than SAHS-positive patients due to the
continuous component (baseline) in the time domain
around 96%. We can observe from Fig. 2(c) that
spectral power of recordings from SAHS-positive
patients spreads in a wider frequency band due to
the repetitive apnea events during the night, lead-
ing to higher MF and SE. As a result, PT , PA and
PR from SAHS-positive patients were also higher
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Overnight SaO2 profiles for a common SAHS-negative subject and a common SAHS-positive patient (a) from the
RHH hospital database and (b) from the PUH database. Average histogram envelopes in the time domain for the whole
SAHS-negative and SAHS-positive group (b) in the training set from the RHH and (e) in the test set from the PUH.
Average PSD functions for the whole SAHS-negative and SAHS-positive group (c) in the training set from the RHH and
(f) in the test set from the PUH.

than conventional spectral measures from the SAHS-
negative group. Finally, common oximetric record-
ings in the time domain plotted in Fig. 2(a) show
marked changes in the SaO2 profile due to recur-
rent desaturations during the night in SAHS-positive
patients, leading to higher irregularity (Samp-
En), variability (lower CTM ) and complexity (LZC )
than non-SAHS subjects. This trend was also present
in the test set, although some differences between
patient groups from both sleep units under study
(RHH versus PUH) can be seen both in time and
frequency domains. Figure 2(d) shows the SaO2 pro-
file of a normal subject and a SAHS patient from
the PUH database, whereas Figs. 2(e) and 2(f) show
the normalized averaged histograms and PSDs for
the whole normal (dashed black) and SAHS-positive
(dotted gray) groups in this test set. Differences
between databases agree with heterogeneity of popu-
lation commonly derived to sleep units. Additionally,

the histogram envelope in the time domain of the
normal group from the PUH shows a marked peak,
higher than that corresponding to the RHH. This is
due to the fact that the dataset from the PUH is com-
posed of non-SAHS subjects with lower average AHI
than SAHS-negative patients from the RHH. Simi-
larly, the PSD of the SAHS-positive group from the
PUH show higher power increase in the apnea fre-
quency band than SAHS-positive patients from the
RHH due to the fact that, on average, they have
higher SAHS severity.

PCA, FSFS and GAs were applied for fea-
ture selection in the training set and a number
of FLD, LR and SVM classifiers were composed.
Table 3 shows principal components from PCA in
the training set ranked in decreasing order of their
EV. The three first consecutive principal compo-
nents were selected according to the average cri-
terion. Table 4 summarizes the performance of
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Table 3. Explained variance for each principal
component from PCA in the training set.

Principal components EV

First principal component 42.60994
Component 2 26.69255
Component 3 11.82037
Component 4 6.00241
Component 5 3.64536
Component 6 3.24952
Component 7 1.69924
Component 8 1.48557
Component 9 1.23793
Component 10 0.88975
Component 11 .33337
Component 12 0.20245
Component 13 0.06906
Component 14 0.05557
Component 15 0.00690
Component 16 0.00001

feature selection and classification schemes under
study. Regarding PCA dimensionality reduction,
PCA+ LR achieved the highest diagnostic accuracy
in the training set (90.5%), while PCA+FLD and
PCA+ SVM achieved similar but lower performance
than LR (83.8% and 84.5%, respectively). Simi-
larly, FSFS + LR also achieved the highest accu-
racy (91.9%) after bidirectional feature selection in
the training set. A reduced LR model composed
of 4 features was built. FSFS +FLD (8 features)
and FSFS + SVM (5 features) achieved slightly
lower performance (90.5% and 87.8%, respectively).

Table 4. Optimum feature subsets for each feature selection and classification methodology and their performance in
the training set.

Algorithm n Features Se Sp Ac

PCA +FLD 3 3 principal components 80.0 91.7 83.8
PCA +LR 3 3 principal components 92.0 87.5 90.5
PCA +SVM 3 3 principal components 81.0 91.7 84.5

FSFS+FLD 8 M1t, M3t, M4t, SE, PR, SampEn, CTM, LZC 90.0 91.7 90.5
FSFS+LR 4 M2t, M4t, PR, LZC 92.0 91.7 91.9
FSFS+SVM 5 M4t, PA, PR, SampEn, LZC 87.0 89.6 87.8

GAs+ FLD 7 M1t, M3t, M4t, M1f , SE, SampEn, LZC 94.0 91.7 93.2
9 M2t, M4t, M1f , M2f , M4f , PT , PA, PR, LZC 94.0 91.7 93.2

GAs+ LR 14 M1t, M3t, M4t, M1f , M3f , M4f , MF, SE, PT , PA, PR, SampEn, CTM, LZC 97.0 95.8 96.6
15 M1t, M2t, M3t, M4t, M1f , M2f , M3f , M4f , MF, SE, PT , PA, PR, CTM, LZC 97.0 95.8 96.6

GAs+ SVM 7 M2t, M3t, M4t, M2f , M4f , SE, CTM 84.0 91.7 86.5
8 M2t, M3t, M4t, M2f , M3f , M4f , SE, CTM 84.0 91.7 86.5

Exhaustive feature selection by means of evolution-
ary algorithms built more complex classifiers com-
posed of a larger number of features, ranging from 7
to 15 variables. GAs +LR also obtained the highest
diagnostic accuracy in the training set (96.6% using
14 and 15 features). GAs +FLD (7 and 9 features)
and GAs + SVM (7 and 8 features) yielded to lower
performances in the training set (93.2% and 86.5%,
respectively).

4.2. Validation and testing

Each feature selection and classification schema
was prospectively assessed. Optimum classifiers were
evaluated on two independent test sets from differ-
ent sleep units. Table 5 summarizes the performance
assessment of the proposed methodology. The accu-
racy of optimum classifiers from PCA significantly
decreased, with accuracies ranging from 71.3% to
81.2% in the validation set and 40.9% to 54.9% in
the test set. Similarly, the FSFS +FLD classifier
composed of 8 features achieved 78.2% accuracy in
the validation set and 57.8% accuracy in the test
set. On the other hand, optimum classifiers from
FSFS +LR and FSFS +SVM schemes showed lower
performance decrease. The LR model composed of
4 features achieved 83.2% accuracy in the validation
set and 88.7% accuracy in the test set, whereas the
SVM classifier with 5 input features achieved 82.2%
accuracy in the validation set and 80.3% accuracy
in the test set from the PUH sleep unit. Optimum
classification schemes from GAs showed different
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D. Álvarez et al.

Table 5. Diagnostic performance assessment of optimum feature subsets from each feature selection and classification
methodologies in the validation set and in the test set from an independent sleep unit.

Validation set (RHH) Test set (PUH)

Algorithm n Features Se Sp Ac Se Sp Ac

PCA +FLD 3 First 3 principal components 66.2 80.6 71.3 52.4 44.0 46.5
PCA +LR 3 First 3 principal components 92.3 61.1 81.2 100.0 36.0 54.9
PCA +SVM 3 First 3 principal components 67.7 80.6 72.3 28.6 46.0 40.9

FSFS + FLD 8 M1t, M3t, M4t, SE, PR, SampEn, CTM, LZC 76.9 80.6 78.2 9.5 78.0 57.8
FSFS + LR 4 M2t, M4t, PR, LZC 83.1 83.3 83.2 95.2 86.0 88.7
FSFS + SVM 5 M4t, PA, PR, SampEn, LZC 83.1 80.6 82.2 76.2 82.0 80.3

GAs +FLD 7 M1t, M3t, M4t, M1f , SE, SampEn, LZC 80.0 83.3 81.2 95.2 46.0 60.6
9 M2t, M4t, M1f , M2f , M4f , PT , PA, PR, LZC 10.8 91.7 39.6 0.0 94.0 66.2

GAs +LR 14 M1t, M3t, M4t, M1f , M3f , M4f , MF, SE, PT , PA, PR, 89.2 77.8 85.2 100.0 2.0 31.0
SampEn, CTM, LZC

15 M1t, M2t, M3t, M4t, M1f , M2f , M3f , M4f , MF, 100.0 11.1 68.3 100.0 0.0 29.6
SE, PT , PA, PR, CTM, LZC

GAs +SVM 7 M2t, M3t, M4t, M2f , M4f , SE, CTM 84.6 83.3 84.2 95.2 80.0 84.5
8 M2t, M3t, M4t, M2f , M3f , M4f , SE, CTM 84.6 83.3 84.2 95.2 76.0 81.7

performance depending on the classifier. GAs + LR
achieved moderate to high accuracies in the valida-
tion set, ranging from 68.3% (15 features) to 85.2%
(14 features), but extremely low performance in the
test set, with accuracies ranging from 29.6% (15 fea-
tures) to 31.0% (14 features). GAs + FLD achieved
unbalanced accuracies in the validation set, ranging
from 39.6% (9 features) to 81.2% (7 features), and
moderate performance in the test set, with accu-
racies ranging from 66.2% (9 features) to 60.6%
(7 features). On the other hand, GAs +SVM pro-
vided higher performance and more stable classifiers,
leading to 84.2% accuracy (7 and 8 features) in the
validation set, and accuracies ranging from 81.7%
(8 features) to 84.5% (7 features) in the test set.

5. Discussion

This study assessed the usefulness of 9 feature selec-
tion and classification schemes to enhance informa-
tion from SaO2 oximetric recordings in the context
of SAHS diagnosis. An initial feature set composed
of 16 features was developed to characterize SaO2

dynamics. A filter-based selection approach from
variable construction (PCA), an embedded feature
selection approach (FSFS) and a wrapper method-
ology for exhaustive analysis of the feature space
(GAs) were applied. FLD, LR and SVM classifiers

were involved on each feature selection methodology.
Optimum classification schemes from the training set
were subsequently assessed in datasets from different
sleep units.

Our results showed that all algorithms from
different feature selection and classification proce-
dures reached high performance in the training
set, with accuracies ranging from 83.8% to 96.6%.
In contrast, optimum classification schemes showed
different behavior when they were further tested.
Regarding results from PCA, significantly lower or
unbalanced sensitivity and specificity values were
reached in the validation set from the RHH, lead-
ing to accuracies ranging from 71.3% to 81.2%. The
diagnostic performance was even lower in the test
set from the PUH, with a maximum accuracy of
54.9% using a LR classifier. PCA performs feature
selection as a pre-processing stage regardless of the
classification method. This is the reason why PCA
achieved the lowest performances in the training set
and subsequently failed in the validation and test
sets independent of the classifier. Optimum clas-
sification schemes from GAs showed high depen-
dence on the number of selected features. GAs +LR
achieved the highest performances in the training set
using high-dimensional feature subsets automatically
selected. However, extremely unbalanced sensitiv-
ity and specificity values were obtained in further
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assessments, especially in the test set from the PUH,
with accuracies ranging from 29.6% (15 features) to
31.0% (14 features). On the other hand, GAs +SVM
provided higher performance and more stable clas-
sifiers using half of the features: 84.5% (7 features)
and 81.7% (8 features) in the test set. GAs are opti-
mization algorithms aimed at extensively inspecting
the search space in the training set to maximize the
fitness function, usually the performance of a classi-
fier. SVMs provide high generalization performance
on pattern classification problems.31,55 Indeed, the
regularization parameter C controls the trade-off
between the maximum margin of separation between
classes and minimizing the classification error.21,31

Our results suggest that, when low generalization
capability predictors are used, GAs might build clas-
sifiers composed of a high number of features that
overfit the training set and fail on subsequent assess-
ments in different population groups. It is note-
worthy that GAs + FLD selected feature subsets of
similar size than those from GAs + SVM. However,
optimum classifiers from GAs +FLD reached signifi-
cantly lower accuracy in the test set. Performance
decrease could be due to the fact that SVMs do
not hypothesize any a priori statistical distribu-
tion of variables, whereas input features are assumed
to have normal distributions and equal covariance
matrices when using FLD.31 Similarly, FSFS +FLD
achieved unbalanced sensitivity and specificity val-
ues and low accuracy in the test set using eight fea-
tures. On the contrary, FSFS +LR and FSFS +SVM
provided high performance and balanced classifiers
with reduced input feature subsets composed of
four and five features, respectively. This agrees with
the aim of forward stepwise selection: features are
selected taking into account the amount of infor-
mation added to the model, instead of maximizing
classification accuracy on a specific dataset. Using
efficient search strategies instead of “brute force”
techniques did not decrease prediction performance.
Indeed, our results support previous studies report-
ing that greedy search strategies, such as stepwise
feature selection, are computationally advantageous
and robust against overfitting.14

Regarding the number of features, the highest
and more balanced performances in the validation
and test sets were obtained using reduced feature
subsets (25–50% of input features). From FSFS,
FSFS + LR and FSFS +SVM schemes selected the

smallest feature subsets: 4 (M2t, M4t, PR, LZC)
and 5 (M4t, PA, PR, SampEn, LZC) features, respec-
tively. Similarly, GAs +SVM provided 2 models with
7 (M2t, M3t, M4t, M2f , M4f , SE, CTM) and 8
(M2t, M3t, M4t, M2f , M3f , M4f , SE, CTM) fea-
tures that yield to high accuracy both in the val-
idation and test sets. Our results suggest that the
larger the number of features, the larger overfitting
is on the training set, leading to poor performance
in subsequent assessments. Regarding PCA, only the
first three principal components were selected using
the average criterion. However, each principal com-
ponent is a linear transformation of the original fea-
tures, i.e. all 16 features contribute to every new
variable in the transformed space. Thus, information
from a large amount of features is used to achieve
high performance in the training set, whereas accu-
racy significantly decreases in the validation and test
sets.

In order to obtain high-performance classifiers is
essential to build an initial feature set that concen-
trates as much nonredundant information as possi-
ble about the problem under study. Therefore, in
the present research we built an original feature set
from oximetry composed of metrics from comple-
mentary analyses: time versus frequency and linear
versus nonlinear. After the feature selection stage,
time, spectral and nonlinear features are included
in the optimum feature subsets from FSFS + LR,
FSFS +SVM and GAs +SVM, which achieved the
highest accuracies in both test populations. Both
subsets from the FSFS feature selection approach
share 60–75% of features (three features): a lin-
ear statistic in the time domain (M4t), a lin-
ear measure in the frequency domain (PR) and
a nonlinear measure in the time domain (LZC).
These features jointly account for the main char-
acteristics of overnight SaO2 profiles of non-SAHS
subjects and the influence of apnea events in the
recordings of SAHS-positive patients. M4t mea-
sures the peakedness of the data distribution in
the time domain, which is especially high in the
case of SaO2 recordings from non-SAHS subjects
due to its near-constant behavior. On the other
hand, there is a significant power increase in the
frequency band between 0.014 and 0.033Hz due to
the quasi-periodic components of overnight respira-
tory events. PR quantifies the effect of repetitive
apneic episodes on SaO2 recordings in the frequency

1350020-13



2nd Reading

July 31, 2013 17:4 1350020
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domain. Finally, desaturations of different severity
modify the normal SaO2 profile by adding new pat-
terns or subsequences. LZC quantifies to what extent
these desaturations increase the complexity of the
SaO2 signal in the time domain. Similarly, subsets
from the GAs + SVM schema share 87.5% of features
(7 out of 8). Comparing shared optimum features
from both feature selection techniques (FSFS and
GAs), we can observe that M4t is present in subsets
from both approaches, PR is replaced by SE, which
is also influenced by the presence of additional fre-
quency components in the power spectrum due to
recurrent apneic events, and the nonlinear measure
of complexity LZC is replaced by the nonlinear mea-
sure of variability CTM, which also quantifies time
domain changes in the SaO2 profile due to overnight
desaturations. Therefore, our results suggest that a
suitable feature selection stage applied to a suited
and balanced initial feature set could detect comple-
mentary information and thus increase the diagnos-
tic performance of oximetry in the context of SAHS
diagnosis.

Previous researchers applied multivariate anal-
ysis in the context of SAHS. Using conventional
oximetric indexes based on the number, duration
and amplitude of the desaturations, 88.0% sensitiv-
ity and 70.0% specificity were reached from step-
wise linear regression,9 whereas 90% sensitivity and
70% specificity were obtained using multivariate
adaptive regression splines.8 Using spectral features
from the high-frequency range, a sensitivity of 82%
and a specificity of 84% were obtained with a LR
classifier.10 Higher performance (91.1% sensitivity
and 82.6% specificity) was obtained by applying
linear discriminant analysis to conventional spec-
tral features in the apnea frequency band.11 Neu-
ral networks have also been applied using clinical
and anthropomorphic features (94.9% sensitivity and
64.7% specificity)56 and oximetric features (89.4%
sensitivity and 81.4% specificity) as input vari-
ables.12 Different approaches of multivariate analysis
using features from nonportable ECG have also been
developed in the context of SAHS detection, reach-
ing accuracies ranging from 74.4% to 100% using
populations with no more than 80 subjects.57–59

Other researchers suggested the use of wavelet fea-
tures as inputs to a SVM classifier to assist in SAHS
diagnosis from ECG.60,61 A diagnostic accuracy of
92.86% was achieved on a small test set composed of

42 subjects.60 The proposed methodology was also
assessed on a slightly larger database composed of
70 recordings.61 An accuracy of 100% was reached
on a test set with 30 subjects. However, borderline
subjects were excluded from the study.

Recent studies by our group applied dimension-
ality reduction and stepwise feature selection proce-
dures before classification.30,62,63 PCA was applied
to a small set of three spectral and three nonlin-
ear features.62 First-to-fifth principal components
were selected and 93.0% accuracy (97.0% sensitiv-
ity and 79.3% specificity) was reached on a test
set from the same sleep unit. FSFS +LR was pre-
viously applied to a larger feature set from oxime-
try, reaching 89.7% accuracy (92.0% sensitivity and
85.4% specificity) using cross-validation.30 Similarly,
FSFS +LR was also applied to a wide feature set
(42 features) from single channel airflow and respira-
tory rate variability.63 Using cross-validation, 82.4%
accuracy was reached by the LR model composed
of features automatically selected from both signals.
Finally, a preliminary study on the usefulness of GAs
for feature selection in the context of SAHS diagnosis
from oximetry has been recently carried out.64 A LR
model composed of six features achieved the high-
est accuracy (87.5%) in the test set from the same
sleep unit. Nevertheless, these studies tested their
approaches on populations from the same hospital.
In the present research, we analyzed SaO2 datasets
from two different sleep units to assess our method-
ologies. To our knowledge, this is the first study
where several complementary feature selection and
classification algorithms are prospectively tested in
the context of SAHS diagnosis from oximetry.

We should take into account some limitations
regarding the general application of our methodol-
ogy. Recurrent desaturations during sleep are not
exclusive of SAHS. The presence of other disorders,
such as asthma, chronic obstructive pulmonary dis-
ease (COPD) or obesity-hypoventilation syndrome
could influence the performance of methodologies
based on oximetry alone.4 Regarding this issue, the
rules of the American Academy of Sleep Medicine
(AASM) about the use of portable monitoring as
an alternative to PSG were taken into account,
which recommend that portable monitoring should
not be used in patient groups with significant comor-
bid medical conditions, patients suspected of hav-
ing other sleeps disorders and for general screening
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of asymptomatic populations.7 Our results suggest
that LR and SVMs classifiers fed with reduced input
feature subsets provide high performance and sta-
ble classifiers across independent populations form
different sleep units. However, further analyses are
needed to assess its robustness against common
limitations of oximetry. Moreover, further work is
required to test the performance of our methodology
from ambulatory portable monitoring at patient’s
home. An additional limitation should be taken into
account. In the present study, an AHI ≥ 10 e/h was
used as threshold for a positive diagnosis of SAHS
in both sleeps units under study. However, there is
not a standardized AHI threshold for SAHS diag-
nosis65 and different cut-off points (commonly 5,
10 and 15 e/h) have been widely applied. There-
fore, further analysis is needed to assess the influ-
ence of changes in the diagnostic threshold in order
to generalize our methodology. In addition, SAHS-
positive patients are predominant in the training set,
which could influence the model design and the per-
formance of the classifiers. Finally, additional draw-
backs regarding feature selection must be considered.
As optimization algorithms, GAs achieved higher
performance in the training set. However, significant
unbalanced values of sensitivity and specificity were
reached in the validation and the test sets when large
feature subsets are selected. Genetic programming,
which is a significant extension of GAs66 could be
applied to further assess the usefulness of evolution-
ary algorithms for feature selection in the context
of SAHS diagnosis from oximetry. Moreover, addi-
tional feature selection techniques could be applied
to further assess our methodology, such as indepen-
dent component analysis, subspace clustering or sim-
ulated annealing.

6. Conclusions

In summary, three feature selection approaches
(PCA, FSFS and GAs) and three classification algo-
rithms (FLD, LR and SVMs) were assessed in the
context of SAHS diagnosis using populations from
two independent sleep units. Optimum classifica-
tion schemes from PCA achieved highly unbalanced
sensitivity–specificity pairs and poor accuracy both
in the validation and test sets regardless of the classi-
fier. Additionally, performance of optimum classifiers
from GAs significantly decreased when large feature

subsets are selected due to overfitting on the training
set. On the other hand, FSFS +LR, FSFS +SMV
and GAs +SVM classifiers, composed of a reduced
number of features automatically selected, achieved
a balanced sensitivity–specificity pair and high
accuracy on populations from both sleep units.
Thus, greedy search feature selection strategies and
classifiers with high generalization ability against
overfitting could be useful to avoid noisy and redun-
dant information and to obtain complementary fea-
tures in order to enhance SAHS detection from
oximetry.
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Campo, M. López and C. Zamarrón, Radial basis
function classifiers to help in the diagnosis of the
obstructive sleep apnoea syndrome from noctur-
nal oximetry, Med. Biol. Eng. Comput. 46 (2008)
323–332.

13. C. M. Bishop, Pattern Recognition and Machine
Learning (Springer-Verlag, New York, 2006).

14. I. Guyon and A. Elisseeff, An introduction to vari-
able and feature selection, J. Mach. Learn. Res. 3
(2003) 1157–1182.

15. R. Kohavi and G. John, Wrappers for feature selec-
tion, Artif. Intell. 97 (1997) 273–324.
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M. Garćıa, Extraction of spectral based measures

1350020-16



2nd Reading

July 31, 2013 17:4 1350020

Assessment of Feature Selection and Classification Approaches to Enhance Information from Oximetry

from MEG background oscillations in Alzheimer’s
disease, Med. Eng. Phys. 29 (2007) 1073–1083.

38. C. Zamarrón, P. V. Romero, J. R. Rodŕıguez and
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