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Abstract
The frequency spectrum of the magnetoencephalogram (MEG) background
activity was analysed in 15 schizophrenia (SCH) patients with predominant
positive symptoms and 17 age-matched healthy control subjects using the
following variables: median frequency (MF), spectral entropy (SpecEn) and
relative power in delta (RPδ), theta (RPθ ), lower alpha (RPα1), upper alpha
(RPα2), beta (RPβ) and gamma (RPγ ) bands. We found significant differences
between the two subject groups in the average level of MF and RPγ in some
regions of the scalp. Additionally, the MF, SpecEn, RPβ and RPγ values of
SCH patients with positive symptoms had a different dependence on age as
compared with the results of control subjects, suggesting that SCH affects
the way in which the brain activity evolves with age. Moreover, we also
classified the MEG signals by means of a cross-validated feature selection
process followed by a logistic regression. The subjects were classified with
71.3% accuracy and an area under the ROC curve of 0.741. Thus, the spectral

7 Author to whom any correspondence should be addressed.

0967-3334/13/020265+15$33.00 © 2013 Institute of Physics and Engineering in Medicine Printed in the UK & the USA 265

http://dx.doi.org/10.1088/0967-3334/34/2/265
mailto:javier.escudero@ieee.org
http://stacks.iop.org/PM/34/265


266 J Escudero et al

and classification analysis of the MEG in SCH may provide insights into how
this condition affects the brain activity and may help in its early detection.

Keywords: classification, early diagnosis, magnetoencephalogram, positive
symptoms, schizophrenia, spectral analysis

(Some figures may appear in colour only in the online journal)

1. Introduction

The electroencephalogram (EEG) and the magnetoencephalogram (MEG) measure the
electrical and magnetic fields generated by the neurons, respectively (Rossini et al 2007, Sanei
and Chambers 2007). These non-invasive techniques have been used to investigate several
diseases, including Alzheimer’s disease (Rossini et al 2007), attention-deficit/hyperactivity
disorder (Fernández et al 2009), depression (Méndez et al 2012) and schizophrenia (SCH)
(Hinkley et al 2010, Fernández et al n.d.). In contrast to other functional neuroimaging
techniques (e.g., positron emission tomography or functional magnetic resonance imaging),
the EEG and MEG have much higher temporal resolution and they record the neural activity
directly without the need to interpret it in terms of proxy measures such as glucose consumption
(Hinkley et al 2010, Rossini et al 2007, Sanei and Chambers 2007). Additionally, the MEG
offers some advantages over the EEG because the magnetic recordings are reference-free and
less affected by extra-cerebral tissues than the EEG (Rossini et al 2007). On the other hand,
the accessibility to MEG equipment is more limited than to EEG devices (Sanei and Chambers
2007).

SCH is a serious psychiatric disorder characterized by a range of ‘positive’ and ‘negative’
symptoms (Picchioni and Murray 2007). The former include hallucinations, delusions and
paranoia; while the latter comprise cognitive impairment, social withdrawal, self-neglect and
loss of motivation and initiative (Picchioni and Murray 2007). Worldwide, SCH represents
1.1% of the total disability adjusted life years and 2.8% of the years lived with disability
(Picchioni and Murray 2007). The prevalence of SCH is relatively high because it usually starts
in late adolescence or early adulthood and then becomes a chronic condition (Picchioni and
Murray 2007). This disease affects the patient’s functioning at multiple levels: neurochemical,
neurophysiological, neuroanatomical, emotional, cognitive, social and familial (Fernández
et al n.d.). A prodromal stage of increasingly severe symptoms, which may last for months
or years, usually occurs before the first psychotic episode arises. The longer the period of
untreated psychosis, the worse the outcome (Picchioni and Murray 2007). Therefore, patients
with SCH should be identified and treated as early as possible (Picchioni and Murray 2007).

A number of studies have analysed the EEG and MEG in SCH, reporting some
abnormalities in the brain signals of SCH patients in comparison with control subjects (Itil
1977, Galderisi et al 2009, Hinkley et al 2010, Uhlhaas and Singer 2010, Shin et al 2011).
Increases in the δ (and, to a lesser extent, θ ) activity in SCH patients are often found (Itil 1977,
Boutros et al 2008, Galderisi et al 2009, Hinkley et al 2010). Evidence for changes in other
spectral bands is less consistent (Elbert et al 1992, Boutros et al 2008, Li et al 2008).

A few studies described spectral changes in the opposite direction of that reported by most
articles (Galderisi et al 2009). Contradictory results have also been reported when applying
nonlinear techniques to EEG and MEG recordings of SCH patients. Early studies showed
higher complexity in the brain signals of SCH patients (Fernández et al n.d.). However,
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subsequent analyses found both increased (Li et al 2008, Fernández et al 2011) and decreased
(Raghavendra et al 2009, Sabeti et al 2009) levels of complexity in SCH patients’ brain activity.
These contradictory findings probably reflect the heterogeneity of SCH (Boutros et al 2008)
and they may have been caused by not taking into account some cofactors (Raghavendra et al
2009). For instance, the chronicity of the disease might affect the power in δ and θ bands,
leading to larger increases in the slow activity of chronic as compared with first-episode
patients (Galderisi et al 2009). This potential effect of chronicity in the results was also
highlighted in signal complexity studies (Lee et al 2008, Fernández et al n.d.). The presence
of positive or negative symptoms may be important as well. The EEGs of SCH patients with
positive symptoms were reported to have values of fractal dimension similar or even higher
than those of control (CON) subjects on bilateral temporo-occipital regions, but such localized
increases were not found in patients with negative symptoms (Raghavendra et al 2009).
Positive symptoms have also been correlated with increased amplitude and synchronization
of evoked and induced localized high frequency activity, but this was not the case in patients
with negative symptoms (Uhlhaas and Singer 2010).

It is also important to assess the potential of the processing of the electromagnetic brain
activity to help in the detection of SCH. To this end, diverse signal processing and classification
techniques have been tested, achieving accuracies of about 80% to 90% (Boostani et al 2009,
Sabeti et al 2009, 2011). Despite the relevance of this topic, these analyses have been carried
out only on EEG data (Boostani et al 2009, Sabeti et al 2009, 2011). Thus, the potential of
the MEG to aid in the detection of SCH has yet to be evaluated. Furthermore, the impact of
other covariates (such as age or the presence of positive or negative symptoms) on the analyses
of the brain activity has not been fully inspected (Boostani et al 2009, Sabeti et al 2009,
2011). In general, the application of advanced signal processing techniques to electromagnetic
recordings is scarcer in SCH than in other pathologies (Sanei and Chambers 2007).

To sum up, there is evidence about the importance of cofactors (e.g., the presence of
positive or negative symptoms) in the analysis of electromagnetic brain activity in SCH (Sabeti
et al 2009, Fernández et al 2011, 2012, n.d.). In fact, recent results have highlighted the role
that age could play in the brain activity of patients with this and other conditions (Rossini
et al 2007, Fernández et al 2011). Additionally, there has been relatively little research on the
potential of the processing and classification of MEG signals to contribute to the diagnosis of
individual patients with SCH (Boostani et al 2009, Sabeti et al 2009, 2011). In order to shed
light on these issues, we tackle the following research questions:

(1) Are spectral features able to reveal the potential abnormalities in the MEG activity due to
SCH with predominant positive symptoms?

(2) Does the MEG activity of SCH patients with positive symptoms show an abnormal
dependency on age in comparison with subjects?

(3) Do spectral features from the MEG activity contain relevant information to assist in the
separation of SCH patients versus healthy subjects?

2. Materials and methods

2.1. Subjects

The dataset analysed in this study is composed of 15 SCH patients and 17 CON subjects.
All participants provided informed consent for the research study, which was approved by the
ethics committee of the San Carlos University Hospital, Madrid, Spain.

All SCH patients were receiving care at the San Carlos University Hospital Institute of
Psychiatry and Mental Health and met the DSM-IV diagnostic criteria for SCH. Diagnosis
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Table 1. Characteristics of the SCH and CON groups (given as counts for “Gender” and as
mean ± standard deviation, SD, elsewhere).

SCH CON

Gender 11 Male / 4 Female 12 Male / 5 Female
Age (years) 31.93 ± 6.61 32.29 ± 6.12
Length of illness (years) 5.58 ± 3.20 Not applicable
Haloperidol equivalent dose (mg) 33.00 ± 19.02 Not applicable
Lorazepam equivalent dose (mg) 1.74 ± 1.70 Not applicable
Total SAPS score 89.75 ± 14.26 Not applicable

was made with the Spanish version of the SCID-I (First et al 1997). In order to obtain a
homogeneous sample, only patients showing a high degree of positive psychotic symptoms
were included. The scale for the assessment of positive symptoms (SAPS) (Andreasen 1984)
was used to evaluate positive symptoms of SCH. Following previous studies (López-Ibor et al
2008, Fernández et al 2011), a minimum score of 70 (maximum: 165) and a minimal score of
29 (maximum: 65) in the delusional activity subscale were required to enter the study. At the
time of the MEG acquisition, all SCH patients were using atypical antipsychotic medication
and two were on the typical antipsychotic haloperidol.

The control group was composed by age-matched subjects with no history of psychiatric
disorder. Subjects with a history of neurological diseases, head trauma or drug abuse were
excluded from the study.

Table 1 summarizes the main characteristics of both subject groups, which have been
partially described elsewhere (López-Ibor et al 2008, Fernández et al 2011).

2.2. MEG recording

The MEG recordings were acquired with a 148-channel whole-head magnetometer (MAGNES
2500 WH R©,4D Neuroimaging) in a magnetically shielded room at the ‘Centro de
Magnetoencefalografı́a Dr Pérez-Modrego’, Madrid, Spain. The MEG activity was recorded
while the participants lay on a hospital bed in a relaxed state, awake with eyes closed, and
under supervision. They were asked to avoid movements of eyes and head. For each subject,
at least 5 min of MEG background activity were recorded at 678.19 Hz with a 0.1–200 Hz
hardware band-pass filter. The MEG equipment decimated each dataset by a factor of four
using a second-order Butterworth IIR anti-aliasing filter with cut-off frequency at 76.30 Hz
(45% of the final sample rate: 169.55 Hz). This filter was applied to the signals in both forward
and reverse directions to avoid net phase shift. Epochs of 10 s (1695 samples) with minimal
ocular activity were visually selected for analysis by an expert unaware of the subjects’ clinical
condition with the aid of an amplitude thresholding method (Hornero et al 2008). On average,
28.38 ± 2.26 and 30.75 ± 7.94 (mean ± standard deviation, SD) epochs per CON and
SCH subject, respectively, were copied to a computer as ASCII files for further analyses.
They were filtered between 1.5 and 40 Hz using a 560th order FIR filter designed with a
Hamming window. Such spectral band allowed us to analysing the relevant content of the
MEG background activity, from δ to γ bands, while reducing the presence of ocular and
muscular artefacts and power line noise.

2.3. Spectral analysis

Every MEG channel was characterized with a set of spectral features: median frequency (MF),
spectral entropy (SpecEn) and the relative power (RP) in δ (1.5–4 Hz; RPδ), θ (4–8 Hz;
RPθ ), lower α (8–10.5 Hz; RPα1), upper α (10.5–13 Hz; RPα2), β (13–30 Hz; RPβ) and
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γ (30–40 Hz; RPγ ) bands. These features provided a holistic view of the frequency spectrum
of the signal.

2.3.1. Power spectral density (PSD). To assess the spectral content of the MEG recordings,
we computed the power spectral density (PSD) of each signal as the Fourier transform of
its autocorrelation function (Hornero et al 2008). The PSDs obtained from all artefact-free
epochs of each channel and subject were averaged to compute the mean PSD corresponding
to that channel and subject.

Afterwards, the range from 1.5 to 40 Hz (pass-band of the filter applied to the signals) was
selected and the PSD was normalized by the total power in this band. This led to a normalized
PSD (PSDn):

PSDn( f ) = PSD( f )
40 Hz∑

f=1.5 Hz
PSD( f )

, (1)

so that
40 Hz∑

f=1.5 Hz

PSDn( f ) = 1. (2)

The PSDn simplified the computation of the features considered in this study.

2.3.2. Median frequency (MF). The MF summarizes the signal spectrum of the MEG
background activity by providing information about the relative strength of low- and high-
frequency oscillations. The MF was defined as the frequency value that separated the frequency
range of the PSDn in two bands so that each of them contained half the PSDn power (Hornero
et al 2008):

MF∑

f=1.5 Hz

PSDn( f ) = 1/
2. (3)

2.3.3. Spectral entropy (SpecEn). The PSDn can be seen as a probability density function
in order to characterize it with features derived from information theory. One of such features
is Shannon’s entropy, which measures the uncertainty of information in terms of diversity
of a probability distribution. When applied to the PSDn, it is known as spectral entropy
(SpecEn) and it assesses the flatness of the signal spectrum (Sleigh et al 2004, Hornero et al
2008, Sabeti et al 2009). A broad and flat spectrum results in high SpecEn values, whereas a
predictable signal with narrow spectral content has low SpecEn (Sleigh et al 2004). SpecEn was
computed as

SpecEn = −1

log(N)

40 Hz∑

f=1.5 Hz

PSDn( f ) log[PSDn( f )], (4)

where N denotes the number of frequency bins and the factor −1/
log(N) normalizes SpecEn

to the [0,1] range (Sleigh et al 2004, Hornero et al 2008, Sabeti et al 2009).

2.3.4. Relative power in bands. Finally, the relative power (RP) of the MEG background
activity was computed in the δ (1.5–4 Hz), θ (4–8 Hz), α1 (8–10.5 Hz; RPα1), α2 (10.5–13 Hz;
RPα2), β (13–30 Hz) and γ (30–40 Hz) bands (Sanei and Chambers 2007, Sabeti et al 2011).
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Figure 1. Representation of the channels included in each region: anterior (cyan), central (red),
left (yellow), right (green) and posterior (blue).

Let f low and f high be the low and high cut-off frequencies of each band (e.g., f low = 1.5 Hz
and f high = 4 Hz for δ). The RP of a band was computed from the PSDn as follows:

RP =
fhigh∑

f= flow

PSDn( f ). (5)

2.4. Statistical and classification analysis

For each feature and subject, there were 148 values available for further statistical and
classification analysis (one per MEG channel). In order to reduce the dimensionality and
the likelihood of spurious p-values due to multiple statistical comparisons, the 148 channels
were grouped into five regions (Anterior, Central, Left, Right and Posterior) as depicted in
figure 1. Then, the average value of each feature was computed for each region. This approach
had been successfully applied elsewhere (Fernández et al 2009, 2011, 2012, Méndez et al
2012).

The following statistical and classification analyses were applied to the features grouped
in regions.

The test of Kolmogorov–Smirnov with the Lilliefors significance correction was used to
check whether the distributions of the results are Gaussian. The Levene test was applied to
assess the homogeneity of the variances of the spectral features between SCH and CON groups.
Then, the relationships between the same spectral features computed from different regions
were inspected using correlation coefficients. Additionally, we also assessed the correlation
between the spectral features and the clinical covariates included in table 1. Afterwards, an
analysis of variance with the Holm–Bonferroni multiple-comparison correction and age as a
covariate was used to evaluate the differences in the spectral features between the two groups
(CON and SCH). In the cases of the features and regions for which, at least, a tendency towards
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an interaction between age and diagnosis was found (tendency defined as the corresponding
p-value being <0.10), further analyses were carried out by calculating the correlation
coefficient between age and the results of the spectral feature separately for each subject
group.

Moreover, we performed a classification analysis to measure the ability of the spectral
features to aid in the detection of individual SCH patients. To avoid any over-fitting,
these classification results were computed over ten complete runs of a stratified five-fold
cross-validation (Witten et al 2011). This means that, in each one of the ten runs, the dataset
was randomly divided into five folds. Four of these folds were used to develop the classifier,
which was then used to classify the subjects in the left-out fold as CON or SCH. The results
were aggregated over all folds.

Due to the potential redundancy between features (Balli and Palaniappan 2010), we
measured the classification performance in two situations: with and without a feature selection
step. The feature selection was based on evaluating the predictive ability of each feature on
its own and the degree of redundancy among them, looking for sets of attributes that are
highly correlated with the diagnosis but with low inter-correlation (Witten et al 2011). In
order do so, we used the CfsSubsetEval method from Weka (Witten et al 2011). As search
method for combinations of features, we employed a bidirectional greedy hill climb with
backtracking (Witten et al 2011). As classifier, we used logistic regression (LR), a classical
and widespread technique (Witten et al 2011). LR builds a decision rule based on a linear
model of a transformed target variable. This target variable represents the probability that the
case being classified corresponds to a patient (Witten et al 2011).

The classification performance was measured in terms of the mean ± SD of the accuracy,
sensitivity, specificity and area under the ROC curve (AUC) computed across all ten runs of
the cross-validation process. Accuracy denotes the total fraction of subjects well recognized.
Specificity is defined as the percentage of healthy subjects correctly detected and sensitivity
represents the proportion of all SCH patients for whom the test was positive (Sabeti et al
2011, Witten et al 2011). The AUC is a summary of the separation between groups. It can be
interpreted as the probability that a randomly selected SCH patient is ranked higher by the LR
than a randomly chosen CON subject (Hornero et al 2008, Witten et al 2011).

3. Results

As all features considered in this study were derived from the PSDn, figure 2 depicts the
average PSDn for the subject group in each of the five regions considered in this study.

The distributions of the results were Gaussian and homoscedastic. The results of the
spectral features in each region for CON and SCH subjects are summarized in table 2. The
distributions of the clinical variables summarized in table 1 for the SCH patients were also
Gaussian. Thus, the Pearson’s correlation coefficient (ρ) was computed between the values
of the same spectral feature obtained from different scalp regions (e.g., MFPosterior–MFRight,
MFPosterior–MFLeft, and so on). For all features, the pair of regions with the smallest correlation
was ‘Anterior–Posterior’. Except for the correlation between the SpecEn values computed in
the Anterior and Posterior areas (ρ = 0.177, p-value = 0.332), all other pairs of correlations
computed for the same feature were significant (p-value = 0.011 or smaller in all cases). As
for the correlations of the spectral features with the clinical variables contained in table 1 (age,
length of illness, haloperidol equivalent dose, lorazepam equivalent dose and SAPS score),
most of them were not significant. Of all possible pairs, only the following ones barely reached
significance: SpecEnAnterior—total SAPS score (ρ = −0.655), SpecEnPosterior—length of illness
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Table 2. Results (given as mean ± SD) of the spectral features for each subject group and region.

Region Group MF (Hz) SpecEn RPδ RPθ RPα1 RPα2 RPβ RPγ

Anterior SCH 14.35 ± 4.39 0.943 ± 0.047 0.152 ± 0.100 0.166 ± 0.054 0.092 ± 0.043 0.071 ± 0.028 0.450 ± 0.126 0.069 ± 0.019
CON 9.87 ± 2.32 0.923 ± 0.073 0.229 ± 0.129 0.208 ± 0.041 0.096 ± 0.030 0.093 ± 0.026 0.324 ± 0.092 0.051 ± 0.018

Central SCH 15.15 ± 4.02 0.959 ± 0.018 0.107 ± 0.060 0.144 ± 0.039 0.115 ± 0.057 0.085 ± 0.033 0.461 ± 0.108 0.087 ± 0.024
CON 11.39 ± 1.41 0.942 ± 0.019 0.134 ± 0.039 0.185 ± 0.037 0.127 ± 0.046 0.139 ± 0.055 0.358 ± 0.065 0.057 ± 0.012

Left SCH 12.31 ± 3.18 0.931 ± 0.026 0.129 ± 0.051 0.164 ± 0.050 0.173 ± 0.086 0.097 ± 0.040 0.385 ± 0.117 0.052 ± 0.017
CON 9.99 ± 1.40 0.918 ± 0.023 0.177 ± 0.059 0.195 ± 0.055 0.138 ± 0.056 0.155 ± 0.077 0.297 ± 0.062 0.037 ± 0.008

Right SCH 12.40 ± 3.19 0.931 ± 0.040 0.148 ± 0.077 0.153 ± 0.042 0.165 ± 0.083 0.091 ± 0.032 0.391 ± 0.116 0.053 ± 0.018
CON 10.10 ± 1.58 0.917 ± 0.019 0.194 ± 0.065 0.179 ± 0.041 0.131 ± 0.051 0.148 ± 0.071 0.308 ± 0.067 0.039 ± 0.008

Posterior SCH 12.05 ± 2.96 0.926 ± 0.027 0.119 ± 0.071 0.150 ± 0.034 0.192 ± 0.102 0.110 ± 0.046 0.381 ± 0.111 0.048 ± 0.016
CON 10.70 ± 1.28 0.915 ± 0.027 0.122 ± 0.042 0.185 ± 0.066 0.151 ± 0.066 0.187 ± 0.096 0.318 ± 0.070 0.037 ± 0.010
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Figure 2. Mean PSDn for SCH (black dashed line) and CON (grey solid line) subjects in each
region.

(ρ = −0.595,) and RPα2Posterior—length of illness (ρ = −0.653), with 0.01 < p-value < 0.05
in all cases.

An analysis of variance with age as a covariate was applied to evaluate the potential
differences between SCH and CON subjects for each spectral feature and region. Table 3
summarizes these results in terms of the Holm–Bonferroni-corrected p-value for the differences
between both groups (‘Diagnosis’) and the p-value for the interaction of diagnosis and age
(‘Diag × Age’). MF, RPβ and RPγ had the largest group differences. The differences were
significant (p-value < 0.05) for RPγ Central, MFAnterior and MFCentral and there was a tendency
(p-value < 0.10) for RPγ Left, RPβCentral, RPβAnterior and RPα2Central. As for the evolution of
the spectral features with age, the p-values in table 3 for the interaction of age and diagnosis
indicated that there was a tendency towards interaction between the age of the subjects and
their diagnosis for MF, SpecEn, RPβ and RPγ .

In order to further explore the potentially abnormal dependence between MEG activity
and age in the patients for the cases where at least a tendency (p-value < 0.10) appeared
in table 3, table 4 contains the Pearson’s correlation coefficients (ρ), and the corresponding
p-values, computed separately for each subject group, between age and the spectral features. It
can be seen that the spectral features of the SCH patients showed a stronger dependency on age,
and that this dependency tended to be the opposite to that of CON subjects. The relationship
between each spectral feature and age is represented in figure 3 for MF and figure 4 for SpecEn.
These figures contain the scatter plot of the spectral features for each group of subjects and
region and the corresponding linear regression between the spectral results of each group and
age. The scatter plots and behaviours of the regressions for RPβ and RPγ were similar to
those of MF.

Finally, we assessed the ability of the spectral features, in combination with the age and
gender of the participants, to separate SCH from CON subjects using LR as classifier with and
without a feature selection step. The results of this classification task, averaged over ten runs of
the five-fold cross-validation process, appear in table 5. When the feature selection was applied,
on average, 7.52 ± 1.33 features were selected for classification (out of a total number of



274 J Escudero et al

25 30 35 40 45
0

10

20

Central
25 30 35 40 45

0

10

20

Anterior

25 30 35 40 45
0

10

20

Left

25 30 35 40 45
0

10

20

Posterior
25 30 35 40 45

0

10

20

Right

25 30 35 40 45
0

10

20

Age (years)

M
F

 (
H

z)

 

 SCH data
SCH fitting
CON data
CON fitting

Figure 3. Linear regression of the MF results (y axis) versus age (x axis) in the five regions for SCH
(black dashed line and black crosses) and CON (grey full line and grey circumferences) subjects.
Patients with SCH show a tendency towards having smaller MF values as age increases.

Table 3. p-values for the difference between SCH and CON subject groups (labelled as ‘Diagnosis’
and with the multiple-comparisons correction of Holm–Bonferroni) and for the interaction of age
and diagnosis (labelled as ‘Diag × Age’) for each combination of spectral feature and region.

Region

Feature p-value for Anterior Central Left Right Posterior

MF Diagnosis 0.017 0.019 >0.10 >0.10 >0.10
Diag × Age 0.038 0.025 0.078 0.061 >0.10

SpecEn Diagnosis >0.10 >0.10 >0.10 >0.10 >0.10
Diag × Age >0.10 0.026 0.052 0.032 0.021

RPδ Diagnosis >0.10 >0.10 >0.10 >0.10 >0.10
Diag × Age >0.10 >0.10 >0.10 >0.10 >0.10

RPθ Diagnosis >0.10 >0.10 >0.10 >0.10 >0.10
Diag × Age >0.10 >0.10 >0.10 >0.10 >0.10

RPα1 Diagnosis >0.10 >0.10 >0.10 >0.10 >0.10
Diag × Age >0.10 >0.10 >0.10 >0.10 >0.10

RPα2 Diagnosis >0.10 0.095 >0.10 >0.10 >0.10
Diag × Age >0.10 >0.10 >0.10 >0.10 >0.10

RPβ Diagnosis 0.070 0.054 >0.10 >0.10 >0.10
Diag × Age >0.10 0.040 0.091 0.093 0.076

RPγ Diagnosis >0.10 0.002 0.052 >0.10 >0.10
Diag × Age 0.038 0.017 0.023 0.007 0.011

42 possible features: eight spectral parameters measured in five regions plus age and gender).
Because of the cross-validation process, not the same features were selected in all folds. For
illustration purposes, the variables that would have been chosen by the feature selection process
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Figure 4. Linear regression of the SpecEn results (y axis) versus age (x axis) in the five regions for
SCH (black dashed line and black crosses) and CON (grey full line and grey circumferences)
subjects. Patients with SCH show a tendency towards having smaller SpecEn values as age
increases.

if no cross-validation had been applied were: MFAnterior, SpecEnCentral, RPδAnterior, RPδCentral,
RPδRight, RPθCentral, RPα2Anterior, RPα2Posterior, RPγ Central, RPγ Left and RPγ Right.

4. Discussion

We analysed MEG recordings from 15 CON subjects and 17 SCH patients with a high
degree of positive psychotic symptoms (mainly delusional activity) according to the SAPS
score (Andreasen 1984) because patients with different kinds of symptomatology may have
different changes in their brain activity (Lee et al 2008, Raghavendra et al 2009, Fernández
et al 2012, n.d.). We employed a set of spectral features—MF (Hornero et al 2008), SpecEn
(Sleigh et al 2004), and the RP in δ, θ , α1, α2, β and γ bands (Sabeti et al 2011)—to
provide a holistic view of the frequency spectrum of the MEG recordings. The analysis of this
kind of activity was motivated by the fact that the MEG measures the brain activity directly
and it is less distorted by head structures than the EEG (Rossini et al 2007). Furthermore,
if this techniques are transferred to clinical practice, the acquisition of background activity
is easier to perform by clinicians and easier to tolerate by patients than other alternatives
(Boutros et al 2008). We addressed three research questions. First, we inspected whether some
of the aforementioned spectral features were able to show differences between both subject
groups. Second, we studied the role of age in the brain activity of SCH patients with positive
symptoms, as previous studies highlighted the relevance of this cofactor (Fernández et al 2006,
2011, 2009, 2012, Rossini et al 2007, Méndez et al 2012). Third, we assessed the potential of
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Table 4. Pearson’s correlation coefficients (ρ) and the corresponding p-values for the relationship
between spectral features and age in each region computed separately for each subject group. Only
combinations of features and regions that showed at least a tendency (p-value < 0.10) for the
interaction between age and diagnosis in Table 3 are considered here.

SCH group

Region

Feature Anterior Central Left Right Posterior

MF ρ −0.555 −0.504 −0.450 −0.453 –
p-value 0.032 0.055 0.092 0.090 –

SpecEn ρ – −0.570 −0.563 −0.512 −0.517
p-value – 0.027 0.029 0.051 0.048

RPβ ρ – −0.440 −0.463 −0.441 −0.418
p-value – 0.100 0.082 0.100 0.121

RPγ ρ −0.590 −0.473 −0.527 −0.552 −0.524
p-value 0.020 0.075 0.044 0.033 0.045

CON group

Region

Feature Anterior Central Left Right Posterior
MF ρ 0.056 0.246 0.097 0.167 –

p-value 0.831 0.342 0.710 0.521 –
SpecEn ρ – 0.258 0.119 0.178 0.326

p-value – 0.317 0.650 0.495 0.202
RPβ ρ – 0.293 0.053 0.110 0.202

p-value – 0.254 0.840 0.674 0.437
RPγ ρ 0.160 0.403 0.211 0.396 0.367

p-value 0.540 0.109 0.415 0.115 0.149

Table 5. Classification results (in terms of accuracy, sensitivity, specificity and AUC) for the
separation of SCH versus CON subjects with and without feature selection with an LR classifier.
Ten runs of a five-fold cross-validation were computed and the results are given as mean ± SD.

Accuracy Sensitivity Specificity AUC

Without feature selection 67.7 ± 16.1% 65.3 ± 29.3% 69.5 ± 24.3% 0.698 ± 0.200
With feature selection 71.3 ± 16.9% 68.0 ± 32.2% 74.2 ± 22.2% 0.741 ± 0.205

the spectral features and LR as classification techniques to help in the recognition of individual
SCH patients.

Only three pairs of correlations between spectral features and clinical variables barely
reached significance. We infer that the information conveyed by the spectral features is mostly
complementary to that of the clinical variables. On the other hand, for every spectral feature,
the results calculated in different regions tended to be highly correlated. Nonetheless, the
feature selection process tended to include in the LR classifier spectral features computed
in more than one region. This suggests that, in spite of those high correlations, grouping the
results into regions kept relevant information for diagnostic purposes. Similar approaches have
been used in previous studies (Fernández et al 2009, 2011, 2012, Méndez et al 2012).

The analysis of variance with age as a covariate reported some significantly increased MF
and RPγ values in SCH patients with positive symptoms in comparison with CON subjects.
Additionally, a non-significant tendency for the patients to have higher RPβ and RPγ and
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lower RPα2 was found in a few regions. A previous study analysed a similar dataset with
Lempel–Ziv complexity (Fernández et al 2011). Our findings of higher MF, RPγ and, to a
lesser extent, RPβ values in some regions of the SCH patients agree with the increased level of
complexity found in the SCH patients’ MEG recordings (Fernández et al 2011). Furthermore,
some other studies have reported abnormalities in high frequency bands of the electromagnetic
brain activity in SCH (Lee et al 2008, Uhlhaas and Singer 2010). It has been suggested that
positive symptoms in SCH may be linked with specific increases in oscillatory activity showing
the read-out of previous experiences, a hypothesis coherent with the role that fast activity plays
in the generation of internal representations (Lee et al 2008, Uhlhaas and Singer 2010). In
this sense, abnormalities in γ frequencies and impaired neural communication would lead
to wrong processing of information in several cognitive functions causing the symptoms of
SCH (Shin et al 2011). Regarding low frequency bands, some studies have reported increases
in the δ and θ power in SCH patients (Itil 1977, Boutros et al 2008, Galderisi et al 2009,
Hinkley et al 2010). However, our results were not significant for these bands. This might be
due to the small sample size or to focusing on SCH patients with positive symptoms because
patients with more negative symptoms have been characterized with increased low frequencies
(Boutros et al 2008).

We considered age as a covariate due to previous results indicating that the MEG
background activity change with age across the life-span (Rossini et al 2007, Fernández
et al 2012) and that such evolution with age may be different in control subjects as compared
with patients with several conditions (Fernández et al 2009, Méndez et al 2012), including
SCH (Fernández et al 2011). We found interactions between age and diagnosis for MF, SpecEn,
RPβ and RPγ . This agrees with the hypothesis that some neuropsychiatric diseases—including
Alzheimer’s disease, depression and attention deficit-hyperactivity disorder (Fernández et al
2006, 2009, Méndez et al 2012)—introduce a dependency of the brain activity with age that
is different from that seen in healthy controls. The results of this paper corroborate that SCH
may also be an example of this ‘rupture’ phenomenon (Fernández et al 2011). Of note is
that age was not correlated with any of the clinical scores or with the drug equivalent doses
(|ρ| �0.272 with p-value � 0.392 in all cases).

Moreover, we evaluated the ability of the spectral features to distinguish SCH from
CON subjects. Both feature selection and classifier training were embedded into a cross-
validation process to avoid any over-fitting (Witten et al 2011). Despite the relative simplicity
of the techniques used in this study—CfsSubsetEval and Logistic methods from Weka (Witten
et al 2011)—the average accuracy and AUC of the classification were 71.3% and 0.741%,
respectively, when feature selection was used. These results highlight the potential importance
of the feature selection process, as it allowed us to reduce the redundancy in the pool the
features and increase the performance of the classification slightly. Still, the classification
performance is lower than that reported by Sabeti et al (Boostani et al 2009, Sabeti et al 2009,
2011) in the classification of EEG signals in SCH but the results cannot be directly compared
due to the different datasets. Yet, our classification results are encouraging for two reasons.
First, they confirm the potential of MEG signal processing to help in the classification of SCH
patients. Second, it is expected that more advanced classification settings could improve the
performance obtained with LR.

Some limitations of our study merit consideration. Firstly, the sample size is relatively
small. Ideally, the effect of age in the spectral features would be better investigated in a
longitudinal study. Secondly, the patients were on medication. There was no significant
correlation between the spectral features and the equivalent doses. This suggests that the
effect of medication in the results may be marginal, but it cannot be completely ruled out.
Finally, while figure 2 suggests that there is a shift in the α band peak in the SCH patients, RPα1
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and RPα2 did not show significant results. This might be due to these bands being too narrow
or to the reduced sample size and it is possible that other spectral features would be better
able to characterize this phenomenon. Future work will study this issue and will assess the
ability of other signal characterization techniques, such as connectivity and nonlinear metrics
(Rossini et al 2007, Hornero et al 2008, Balli and Palaniappan 2010), and more advanced
classification schemes (Witten et al 2011) to detect the disease more accurately.

5. Conclusion

In summary, this study presented the results of a spectral and classification analysis of MEG
background activity recorded from SCH patients with positive symptoms. Our objectives were
to assess how age and SCH affect the frequency spectrum of the MEG and to evaluate the
potential of the spectral analysis of the MEGs to separate the SCH patients from CON subjects.
There were significant differences in the average level of MF and RPγ and MF, SpecEn, RPβ

and RPγ showed a different evolution with age in the patients from controls. This suggests that
the pathology causes a ‘rupture’ in the normal evolution of the electromagnetic brain activity
with age. In addition, a methodology composed of LR as classifier and a feature selection step
achieved a cross-validated accuracy of 71.3% with and AUC of 0.741. We infer that spectral
analysis may provide useful insights into how SCH affects the MEG background activity and
may assist in its diagnosis. The long-term objective is to enable the periodical evaluation of
the SCH patients’ electromagnetic brain activity to monitor the disease in a non-invasive way.
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2008 The perception of emotion-free faces in schizophrenia: a magneto-encephalography study Schizophr.
Res. 98 278–86
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