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Alberto Fernández3 and Roberto Hornero1,2

1 Biomedical Engineering Group, Departmento T.S.C.I.T., E.T.S. Ingenieros de Telecomunicación,
University of Valladolid, Valladolid, Spain
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Abstract
Alzheimer’s disease (AD) is the most common cause of dementia. Over the last few years, a
considerable effort has been devoted to exploring new biomarkers. Nevertheless, a better
understanding of brain dynamics is still required to optimize therapeutic strategies. In this
regard, the characterization of mild cognitive impairment (MCI) is crucial, due to the high
conversion rate from MCI to AD. However, only a few studies have focused on the analysis of
magnetoencephalographic (MEG) rhythms to characterize AD and MCI. In this study, we
assess the ability of several parameters derived from information theory to describe
spontaneous MEG activity from 36 AD patients, 18 MCI subjects and 26 controls. Three
entropies (Shannon, Tsallis and Rényi entropies), one disequilibrium measure (based on
Euclidean distance ED) and three statistical complexities (based on Lopez Ruiz–Mancini–
Calbet complexity LMC) were used to estimate the irregularity and statistical complexity of
MEG activity. Statistically significant differences between AD patients and controls were
obtained with all parameters (p < 0.01). In addition, statistically significant differences
between MCI subjects and controls were achieved by ED and LMC (p < 0.05). In order to
assess the diagnostic ability of the parameters, a linear discriminant analysis with a
leave-one-out cross-validation procedure was applied. The accuracies reached 83.9% and
65.9% to discriminate AD and MCI subjects from controls, respectively. Our findings suggest
that MCI subjects exhibit an intermediate pattern of abnormalities between normal aging and
AD. Furthermore, the proposed parameters provide a new description of brain dynamics in AD
and MCI.
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1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder of
unknown etiology that represents the most common cause
of dementia (Blennow et al 2006). Several risk factors
have been identified, though age is the most important one.
This is a crucial factor in developed countries, due to the
increase in life expectancy (Blennow et al 2006). Early
symptoms of AD include memory loss and concentration
problems. AD progression is often accompanied by speech
disorders, such as aphasia, apraxia and agnosia, together with
general cognitive symptoms (Jalbert et al 2008). AD clinical
diagnosis is achieved by means of a complete medical history
and by performing physical, psychiatric and neurological
examinations. Diagnosis is also supported by laboratory and
imaging studies in order to exclude age-related diseases with
similar symptomatology (Minati et al 2009). An optimal
treatment requires intervention in early stages, even before
the appearance of the first clinical symptoms (Jalbert et al
2008). Consequently, the characterization of mild cognitive
impairment (MCI) arises as a crucial issue.

Structural changes in AD are related to the accumulation
of amyloid plaques among nerve cells in the brain, as well
as the appearance of neurofibrillary tangles inside nerve cells
(Cummings 2004). These are considered as AD hallmarks.
However, it is not yet known whether plaques or tangles
cause AD or are a by-product of some other process. They
are both formed by clusters of proteins accumulated in
greater quantities, mainly in two specific brain regions: the
hippocampus and the cerebral cortex. The appearance of
these two abnormal microscopic structures produces neural
damage or death, which is followed by a chemical imbalance.
The most significant chemical change is a loss of the
neurotransmitter acetylcholine. Thus, as damage to neurons
in the brain increases, the ability to produce acetylcholine
decreases. Both structural and chemical changes produce a
progressive cell death and an overall shrinkage of the brain
tissue, which culminates in the progressive clinical symptoms
of AD (Cummings 2004).

MCI is usually considered as an intermediate stage
between the cognitive decline associated with normal aging
and a state of dementia (Petersen 2009). MCI can affect
several brain areas, as those related to thought and action. The
most common symptom is memory loss, whereas the ability
of judgment and reasoning remain unaffected (Petersen et al
2009). This MCI subtype is often considered an initial stage
in AD progression (Petersen et al 2009). Currently, there is
still no clinically proven method to detect MCI. Therefore,
more research is required to explore new MCI biomarkers for
clinical use.

MCI and AD are cortical disorders. As a consequence, it
could be hypothesized that the electromagnetic activity gener-
ated by the cortex could be altered to some extent. Electroen-
cephalographic (EEG) and magnetoencephalographic (MEG)
signals record the electromagnetic brain activity. They are gen-
erated by synchronous oscillations of pyramidal neurons, but
reflect slightly different features (Rampp and Stefan 2007).
MEG recordings are reference free. In addition, they are less

affected by the volume conduction when compared to EEG
(Stam 2010) and even some studies suggest that the effect of
the volume conduction is to filter out high temporal frequencies
(Nunez et al 2001). Therefore, MEG might be more sensitive
to measure the cortical activity than scalp EEG (Georgopoulos
et al 2007, Stam 2010).

Several MEG studies have been carried out in order to
explore the differences in the spontaneous electromagnetic
rhythms between healthy elders and AD patients (Stam
2010). Results in some of these studies indicated that AD is
accompanied by an increase in low frequency power (Berendse
et al 2000, Fernández et al 2006, Wan et al 2006, Poza et al
2007), a global decrease in irregularity (Poza et al 2007, 2008,
Hornero et al 2009), a loss of complexity (van Cappellen van
Walsum et al 2003, Gómez et al 2009a, Hornero et al 2009)
and a global decrease of functional interactions (Berendse et al
2000, Stam 2005, Alonso et al 2011). Nevertheless, only a few
investigations have analyzed the differences between MCI
subjects and both AD patients and healthy elders, despite it
being crucial for early detection of AD. A slight increase in
low frequency power of AD patients in comparison to MCI
subjects has been found in previous studies (Fernández et al
2006, Osipova et al 2006), whereas an increase of complexity
has been observed in MCI subjects using nonlinear measures
(Fernández et al 2010). In addition, different patterns of
connectivity between both groups have been found in studies
based on functional connectivity (Escudero et al 2011). Their
results suggested that AD increases the level of coherence
in the delta band, while MCI subjects tend to have lower
connectivity in theta band. The results in the upper bands
were not conclusive, but a slight reduction in alpha inter-
regional connectivity was found. On the other hand, only
subtle differences have been reported between MCI and control
subjects (Fernández et al 2006, 2010, Gómez et al 2009b,
Escudero et al 2011). The results in these studies indicated that
MCI subjects show intermediate abnormalities between AD
patients and elderly controls. Further research is required for an
appropriate description of specific brain dynamics associated
with MCI.

In this study, we apply new parameters derived from
information theory to characterize MEG rhythms in AD
and MCI. Parameters derived from information theory
provide an alternative description to conventional spectral and
nonlinear measures. Thus, they have been successfully used
to characterize EEG during an epileptic seizure (Rosso et al
2006). Despite their potential for studying brain dynamics,
they have barely been used to analyze MEG (Poza et al 2008,
Bruña et al 2010). Therefore, the aims of this study were:
(i) to analyze several irregularity and complexity parameters
based on a time-frequency representation, (ii) to describe the
abnormalities of AD and MCI in comparison to cognitive
decline in normal aging, and (iii) to introduce an alternative
framework to understand brain dynamics.
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Figure 1. Sensor grouping in the 4D-Neuroimaging source analysis software, where five regions are considered for spatial analyses
(anterior, central, left lateral, posterior and right lateral). Exterior channels were excluded due to the low signal to noise ratio.

2. Materials

2.1. Selection of subjects

MEG signals from eighty subjects were recorded at the ‘Centro
de Magnetoencefalografı́a Dr Pérez-Modrego’ (Complutense
University of Madrid, Spain). Thirty-six subjects (12 men
and 24 women, age = 74.1 ± 6.9 years, mean ± standard
deviation M ± SD) were AD patients derived from the
‘Asociación de Familiares de Enfermos de Alzheimer’ (AFAL)
and the Geriatric Unit of the ‘Hospital Clı́nico Universitario
San Carlos’ (Madrid, Spain). Diagnoses were made on the
basis of exhaustive medical, physical, neurological, psychiatric
and neuropsychological examinations, complemented with
brain scans in order to exclude other causes of dementia. All
patients fulfilled the criteria for probable AD, according to the
clinical guidelines of the National Institute of Neurological and
Communicative Disorders and Stroke and the AD and Related
Disorders Association (NINCDS-ADRDA) (McKhann et al
1984). The Mini-Mental State Examination (MMSE) and the
Functional Assessment Staging (FAST) were used to evaluate
the cognitive and functional deficits. AD patients obtained
mean scores of 18.1 ± 3.4 and 4.2 ± 0.4 on the MMSE
and FAST, respectively. None of these AD patients suffered
from any other significant medical, neurological or psychiatric
disorder.

Eighteen subjects (8 men and 10 women, age = 74.9 ±
5.6 years, M ± SD) were MCI subjects derived from AFAL.
All patients were diagnosed with MCI following Petersen’s
criteria (Petersen et al 2001). Mean MMSE and FAST scores
in this group were 25.7 ± 1.8 and 3.0 ± 0.0, respectively.

Finally, 26 healthy subjects (10 men and 16 women,
age = 72.0 ± 5.9 years, M ± SD) were enrolled in the study as
a control group. They were cognitively normal elderly controls
with no history of neurological or psychiatric disorders. Mean
MMSE and FAST scores were 29.0 ± 1.2 and 1.7 ± 0.5,
respectively.

None of the subjects was taking drugs that could affect
MEG activity at the recording time. We did not obtain
significant differences in the mean age of AD patients, MCI
subjects and controls (p > 0.05, Kruskal–Wallis test). In
addition, all healthy volunteers and caregivers of patients
accepted to participate in the study and gave their written
informed consent. The research was approved by the Research
Ethics Committee of the center.

2.2. MEG recording

MEG signals were obtained using a 148-channel whole-
head magnetometer (MAGNES 2500 WH, 4D Neuroimaging,
San Diego, CA). Exterior channels were discarded due
to a low signal-to-noise ratio, so that 130 channels were
finally selected for analysis (see figure 1). MEG recordings
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were performed in a magnetically shielded room in order
to minimize electromagnetic interferences. During data
acquisition, subjects were asked to remain awake, relaxed
and with their eyes closed, in order to minimize the presence
of artifacts. Additionally, MEG signals were continuously
monitored to prevent drowsiness. Thus, 5 min of spontaneous
MEG activity were acquired with a sample frequency of
678.17 Hz. Initially, a 0.1–200 Hz hardware band-pass filter
and a 50 Hz notch filter were applied. Then, each MEG
recording was downsampled by a factor of 4 to reduce
the data length. Artifact-free epochs of 10 s (26.6 ± 5.7
artifact-free epochs per channel and subject, M ± SD) were
selected for further analysis. Prior to calculation of parameters,
MEG signals were processed using a finite impulse response
(FIR) filter designed with a Hamming window and cut-off
frequencies at 1 and 70 Hz. This frequency range was selected
in order to keep the relevant spectral content and to minimize
the presence of oculographic and myographic artifacts (Poza
et al 2008).

3. Methods

3.1. Time-frequency representation

Electromagnetic brain recordings are non-stationary signals.
Therefore, non-stationary signal analysis techniques, such
as the short-time Fourier transform (STFT), are required to
characterize their spectral time-varying properties. The STFT
is based on the sliding temporal window technique and has
been successfully applied to characterize MEG activity in AD
(Poza et al 2008). In the present work, each MEG recording
of 10 s (M = 1696 samples) has been divided into non-
overlapping time windows of 0.5 s. The window length is
denoted by L (L = 84 samples) and each time interval is
identified by superindex i (i = 1, . . . , NT, with NT = M/L).
Then, the temporal evolution of the power spectral density
(PSD) was calculated as the Fourier transform (FT) of the
autocorrelation function in each time window (Poza et al
2008). Finally, the spectral content between 1 and 70 Hz was
selected and the PSD was normalized to scale from 0 to 1,
leading to the normalized PSD (PSDn),

PSD(i)
n ( f ) = PSD(i) ( f )∑70 Hz

f ′=1 Hz PSD(i) ( f ′)
, i = 1, . . . , NT . (1)

After the normalization, it follows that
∑70 Hz

f ′=1 Hz PSD(i)
n ( f ′) =

1, for each time interval i. Thus, the PSD(i)
n ( f ) can be

considered as a time-varying (NT time intervals) probability
density function, which will be used to define the following
parameters.

3.2. Spectral entropies

The irregularity measures analyzed in this work are Shannon
(SSE), Tsallis (TSE) and Rényi (RSE) spectral entropies.
Shannon entropy is a disorder quantifier, whose original
meaning was related to the uncertainty in a flux of information,
in terms of disorder, discrepancy or diversity (Bezerianos et al
2003). The irregularity is estimated in terms of the flatness of

the PSDn. Thus, a highly irregular signal with a flat spectrum
(e.g. white noise) takes a high SSE value, whereas a very
predictable signal (e.g. a sum of sinusoids) takes a low SSE
value (Inouye et al 1991). In the present study, the SSE
definition is based on Shannon entropy computed over the
time evolution of the PSDn,

SSE(i) = −
70 Hz∑

f=1 Hz

PSD(i)
n ( f ) · ln

[
PSD(i)

n ( f )
]
,

i = 1, . . . , NT . (2)

Tsallis entropy is a generalized information measure,
which extends the notion of Shannon entropy by means of
a new non-logarithmic entropic formalism (Tsallis 1988).
Tsallis entropy is a non-extensive measure, whose degree of
non-extensivity is controlled by the entropic index q ∈ �
(Tsallis 1988). Boltzmann–Gibbs entropy definition can be
recovered in the limit q → 1 (Tsallis 1988). The TSE definition
based on the time evolution of the PSDn can be seen in the
following equation:

TSE(i)(q) = 1

q − 1

70 Hz∑
f=1 Hz

{
PSD(i)

n ( f ) − [
PSD(i)

n ( f )
]q}

,

q > 0, i = 1, . . . , NT . (3)

Rényi entropy is also a generalized information measure.
Similar to Shannon entropy, it is an additive entropy,
though Rényi entropy introduces a new logarithmic entropic
formalism (Rényi 1970). Analogously to TSE, RSE is
parameterized by an entropic index q ∈ � and can be reduced
to Boltzmann–Gibbs entropy in the limit q → 1 (Rényi 1970).
The RSE definition computed over the time evolution of the
PSDn is given by

RSE(i)(q) = 1

1 − q
ln

⎧⎨
⎩

70 Hz∑
f=1 Hz

[
PSD(i)

n ( f )
]q

⎫⎬
⎭ ,

q > 0, i = 1, . . . , NT . (4)

It is noteworthy that in this study SSE, TSE and RSE
were normalized to [0–1] by dividing the previous definitions
by the maximum entropy values of ln(R), [1–R(1−q)] and ln(R),
respectively (where R represents the number of frequency bins)
(Bezerianos et al 2003, Rosso et al 2006).

The role of the entropic index q in the parameterized
entropies (TSE and RSE) was discussed and found to be
relevant in a previous study (Poza et al 2008). According to
the reported findings, we use q = 2 and q = 3.5 for TSE and
RSE, respectively.

3.3. Disequilibrium

In order to provide an alternative framework for quantifying
the irregularity of MEG recordings, a disequilibrium measure
was used in the present study. The disequilibrium is defined
as the distance, in the probability space, between the uniform
distribution and the distribution of the data under study (López-
Ruiz et al 1995). It is noteworthy that the uniform distribution
is considered as the ‘equilibrium’ distribution in Gibbs’
statistical mechanics (Martin et al 2003). As a consequence,
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a highly irregular signal like the white noise yields a low
disequilibrium value. In contrast, the disequilibrium is high for
a highly regular signal. Although the distance in a probability
space can be quantified using several definitions, a previous
study showed that the Euclidean distance (ED) could be
appropriate to characterize MEG activity from MCI subjects
(Bruña et al 2010). The definition of disequilibrium used in
the present study is

ED(i) = −
70 Hz∑

f=1 Hz

[
PSD(i)

n ( f ) − 1/L
]2

, i = 1, . . . , NT .

(5)

As in the case of spectral entropies, the ED was normalized
to take values in the 0–1 interval. Hence, equation (5) was
divided by its maximum, (R – 1)/R (Martin et al 2003).

3.4. Complexity measures

Finally, a set of statistical complexity measures was proposed
in the present study to capture the interplay between
the previous parameters, i.e. entropies and disequilibrium.
Lopez Ruiz–Mancini–Calbet (LMC) statistical complexity is
a quantifier of the degree of physical structure in a time
series (López-Ruiz et al 1995). This measure considers that
a statistical distribution has two extreme states: a complete
foreknowledge of the system (highly ordered) and a total
uncertainty (highly disordered). LMC complexity assumes that
both extreme states (perfect order and maximal randomness)
can be regarded as trivial ones. Therefore, LMC complexity
must be zero for those two extremes, but it must reach a
maximum at some intermediate point (Rosso et al 2006).
It is noteworthy that LMC complexity has been previously
applied to EEG signals in order to analyze different brain
states during an epileptic seizure (Rosso et al 2006). Their
results showed that the statistical complexity yielded a
complementary description of the system dynamics to that
provided by irregularity measures (Rosso et al 2006). In
this study, the definition of LMC complexity is based on a
combination of two different quantities: an entropy quantifier
and a disequilibrium measure, both computed over the time
evolution of the PSDn,

LMC(i)
ED,E = ED(i) · SE(i)

(E )
, i = 1, . . . , NT , (6)

where ED(i) is the time evolution of the disequilibrium measure
based on ED, and SE(i)

(E )
represents the time evolution of the

spectral entropies previously defined, with E = {SSE, TSE(q),
RSE(q)}.

3.5. Statistical analysis

Initially, an exploratory analysis was carried out to study
the data distribution. After the descriptive analysis, log-
transformed variables met parametric test assumptions. Five
brain areas were defined to group the data (anterior, central,
left lateral, posterior and right lateral; see figure 1), according
to the default sensor grouping in the 4D-Neuroimaging
source analysis software (Poza et al 2008, Alonso et al
2011). Averaged entropy, disequilibrium and complexity

values in these regions were compared between AD patients,
MCI subjects and controls by means of two-way repeated
measures ANOVAs (with ‘group’ as between-subject factor
and ‘region’ as within-subject factor). Univariate ANOVAs
with contrasts were performed when previous analyses
showed significant interactions, using Tukey’s HSD (Honestly
Significant Difference) correction for discrimination between
more than two groups. To correct any possible violation of the
sphericity assumption and to reduce type I errors, Greenhouse-
Geisser epsilon was used in all repeated measures analyses.
Differences were considered statistically significant for
p < 0.05.

The classification performance of each parameter was
evaluated using a linear discriminant analysis (LDA)
with a leave-one-out cross-validation (LOO-CV) procedure.
Classification statistics are shown in terms of True Class
(TC, i.e. fraction of subjects of each group with a correct
classification) and accuracy (i.e. total fraction of subjects
with a correct classification). These classification statistics
can be presented graphically by pairs, using ROC (Receiving
Operating Characteristics) curves (Nakas and Yiannoutsos
2004). In this study, the area under ROC curve (AUC) was used
to quantify the ability of the methods to discriminate between
pair of groups. Statistically, the value of AUC represents the
probability that the measurements of two randomly selected
subjects, one from each group, will be properly ordered (Nakas
and Yiannoutsos 2004).

Signal processing and statistical analyses were performed
using the software packages Matlab (version 7.0; Mathworks,
Natick, MA) and SPSS (version 14.0; SPSS Inc, Chicago, IL),
respectively.

4. Results

4.1. Spectral entropies

Initially, three spectral entropies were calculated: SSE,
TSE(q = 2.0) and RSE(q = 3.5). Each 10 s artifact-free MEG
segment was analyzed by means of the STFT algorithm, taking
non-overlapping windows of 0.5 s. Data were grouped into the
five brain areas defined in figure 1. Thus, temporal evolution
of parameters was averaged in order to obtain a single entropy
value per area and subject. Table 1 summarizes mean entropy
values in each region, together with the statistical significance
level for pairwise comparisons using Tukey’s HSD correction.
Figure 2 shows the boxplots corresponding to SSE, TSE(q =
2) and RSE(q = 3.5) values for each group and region.

The analysis of SSE showed a significant main effect
of ‘group’ variable (F(1,80) = 10.499, p = 0.0001), but no
significant interaction was observed between the variables
‘group’ and ‘region’ (p = 0.1054). The most significant
differences between AD patients and controls were achieved
in the right lateral region (p < 0.0001), with similar results
in the left lateral region (p < 0.0001). The most significant
differences between AD and MCI subjects were found in the
left lateral region (p = 0.0391), with similar results in the
posterior (p = 0.0417) and anterior (p = 0.0447) regions. On
the other hand, no significant differences were found between
controls and MCI subjects using SSE.
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Figure 2. Boxplots representing the distribution of mean values for SSE, TSE(q = 2) and RSE(q = 3.5) in each region (anterior, central, left
lateral, posterior and right lateral). Significant differences between groups are marked with a symbol (∗ p < 0.05 and ∗∗ p < 0.01, AD
patients versus controls; ♦ p < 0.05 and ♦♦ p < 0.01, AD patients versus MCI subjects; � p < 0.05 and �� p < 0.01, MCI subjects versus
controls).

Table 1. Mean SSE, TSE(q = 2) and RSE(q = 3.5) values averaged in each region and for each group, together with the corresponding
p-values from ANOVA with contrasts.

M ± SD p-value

Region Parameter CON MCI AD C versus AD C versus MCI MCI versus AD

Anterior 〈SSE〉 0.836 ± 0.037 0.819 ± 0.038 0.785 ± 0.058 0.0001 0.3252 0.0447
〈TSE(q = 2)〉 0.979 ± 0.007 0.974 ± 0.010 0.963 ± 0.019 <0.0001 0.2242 0.0077
〈RSE(q = 3.5)〉 0.736 ± 0.054 0.707 ± 0.059 0.642 ± 0.074 <0.0001 0.2574 0.0023

Central 〈SSE〉 0.847 ± 0.031 0.834 ± 0.040 0.815 ± 0.045 0.0077 0.5524 0.2312
〈TSE(q = 2)〉 0.981 ± 0.005 0.978 ± 0.009 0.972 ± 0.011 0.0001 0.4363 0.0244
〈RSE(q = 3.5)〉 0.756 ± 0.039 0.732 ± 0.060 0.687 ± 0.062 <0.0001 0.3384 0.0148

Left lateral 〈SSE〉 0.815 ± 0.035 0.795 ± 0.039 0.765 ± 0.049 <0.0001 0.2190 0.0391
〈TSE(q = 2)〉 0.976 ± 0.007 0.971 ± 0.011 0.961 ± 0.013 <0.0001 0.1485 0.0047
〈RSE(q = 3.5)〉 0.717 ± 0.044 0.690 ± 0.055 0.635 ± 0.054 <0.0001 0.1690 0.0011

Posterior 〈SSE〉 0.818 ± 0.039 0.806 ± 0.041 0.774 ± 0.050 0.0005 0.5732 0.0417
〈TSE(q = 2)〉 0.975 ± 0.008 0.972 ± 0.011 0.963 ± 0.012 0.0001 0.6262 0.0084
〈RSE(q = 3.5)〉 0.712 ± 0.053 0.695 ± 0.063 0.642 ± 0.054 <0.0001 0.5854 0.0040

Right lateral 〈SSE〉 0.822 ± 0.036 0.795 ± 0.038 0.767 ± 0.052 <0.0001 0.0798 0.1073
〈TSE(q = 2)〉 0.977 ± 0.007 0.971 ± 0.010 0.961 ± 0.014 <0.0001 0.0506 0.0149
〈RSE(q = 3.5)〉 0.726 ± 0.046 0.688 ± 0.056 0.635 ± 0.061 <0.0001 0.0527 0.0046

M: mean. SD: standard deviation. p-value: statistical significance. C: control group. MCI: mild cognitive impairment group.
AD: Alzheimer disease group.

A significant effect of ‘group’ variable (F(1,80) = 17.392,
p < 0.0001), but no significant interaction between ‘group’
and ‘region’ variables (p = 0.1402), were obtained using

TSE(q = 2). As in the case of SSE, the most significant
differences between AD patients and controls were observed in
the right and left lateral regions (p < 0.0001), whereas the most
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significant differences between both groups of patients were
obtained in the left lateral region (p = 0.0047). No statistically
significant differences were observed between MCI subjects
and controls, though MCI subjects showed a slightly lower
TSE(q = 2) value than controls in the right lateral region
(p = 0.0506).

A significant main effect of ‘group’ variable (F(1,80) =
19.878, p < 0.0001), but no significant interaction between
‘group’ and ‘region’ variables (p = 0.2679), were obtained by
RSE(q = 3.5). The most significant differences between AD
patients and controls were observed in the right and left lateral
regions (p < 0.0001), whereas the most significant differences
between AD and MCI subjects were found in the left lateral
(p = 0.0011) and anterior (p = 0.0023) regions. On the
other hand, no significant differences were observed between
MCI subjects and controls, but MCI subjects exhibited a
slight decrease of RSE(q = 3.5) in the right lateral region
(p = 0.0527).

In summary, AD patients showed statistically significant
lower entropy values than MCI subjects and controls in almost
all comparisons, whereas MCI subjects displayed a slight
entropy decrease when compared to controls. These results
suggest that dementia progression can be associated with a loss
of irregularity in spontaneous MEG activity. The correlation
analyses with cognitive and functional tests support this notion.
Spectral entropies were positively correlated with MMSE and
FAST scores (p < 0.01 in all regions, except for SSE in the
central region where p < 0.05).

4.2. Disequilibrium

A significant main effect of ‘group’ variable was obtained by
ED (F(1,80) = 17.473, p < 0.0001); however, no interaction
between ‘group’ and ‘region’ variables was observed using
ED (p = 0.1429). Table 2 summarizes mean ED values
in each region, as well as the p-values corresponding to
comparisons between groups. Figure 3 shows the distribution
of ED values for each region and group. The most significant
differences between AD patients and controls were found in
the right and left lateral regions (p < 0.0001), whereas the
most significant differences between both groups of patients
were obtained in the left lateral region (p = 0.0047). It is
noteworthy that significant differences were found between
MCI subjects and controls in the right lateral region using
ED (p = 0.0487), which suggests that MCI subjects exhibit a
significant abnormal pattern of disequilibrium in comparison
to healthy controls.

In this case, results suggest that dementia progression
is accompanied by an increase of disequilibrium in MEG
rhythms. This idea is also supported by significant Pearson
correlation coefficients between ED and both MMSE and
FAST scores (p < 0.01 in all regions).

4.3. Complexity measures

Finally, three statistical complexity measures (LMCED,SSE,
LMCED,TSE(q = 2) and LMCED,RSE(q = 3.5)) were computed to
complement the results provided by the previous parameters.
Table 3 summarizes mean statistical complexity values in each

region, together with the corresponding p-values. Figure 4
shows the distribution of complexity values obtained in each
region and for each group. A significant main effect of ‘group’
variable (F(1,80) = 18.493, p < 0.0001), but no interaction
between ‘group’ and ‘region’ variables (p = 0.1611), were
reached by LMCED,SSE. The most significant differences
between AD patients and controls were found in the right and
left lateral regions (p < 0.0001), whereas the most significant
differences between both groups of patients were found in the
left lateral region (p = 0.0028). Finally, significant differences
between MCI subjects and controls were found in the right
lateral region (p = 0.0434).

A significant main effect of ‘group’ variable was obtained
by LMCED,TSE(q = 2) (F(1,80) = 17.369, p < 0.0001); however,
no significant interaction between the variables ‘group’ and
‘region’ was observed (p = 0.1470). The most significant
differences between AD patients and controls were reached in
the right and left lateral regions (p < 0.0001), whereas the most
significant differences between AD and MCI subjects were
found in the left lateral region (p = 0.0044). No significant
differences were observed between MCI subjects and controls,
but a slight increase of LMCED,TSE(q = 2) for MCI subjects was
found in the right lateral region (p = 0.0502).

A significant main effect of ‘group’ variable (F(1,80) =
15.643, p < 0.0001), but no significant interaction between
the variables ‘group’ and ‘region’ (p = 0.1568), were
observed using LMCED,RSE(q = 3.5). The most significant
differences between AD patients and controls were obtained
in the right and left lateral regions (p < 0.0001), whereas
the most significant differences between both groups of
patients were reached in the left lateral region (p =
0.0067). No significant differences were found between MCI
subjects and controls, though MCI subjects exhibited higher
LMCED,RSE(q = 3.5) values than controls in the right lateral
region (p = 0.0526).

In summary, AD patients showed significantly higher
statistical complexity values than MCI subjects and controls
with almost all parameters, whereas MCI subjects displayed
significantly higher LMCED,SSE values than controls. Our
findings suggest that dementia progression is associated with
an increase in the statistical complexity of spontaneous MEG
activity. Moreover, statistically significant correlations were
found between the complexity values and both MMSE and
FAST scores (p < 0.01 in all configurations).

4.4. Classification analysis

The statistical analysis was complemented with a classification
test in order to evaluate the diagnostic ability of the parameters.
Table 4 shows the accuracies and the corresponding AUC
values for each pair of groups.

The highest classification rates were achieved when
discriminating between AD patients (identified by the true
class TCAD) and controls (identified by the true class TCCON).
Thus, the highest AUC values were reached by RSE(q = 3.5)
in the left (AUC = 0.890, TCCON = 80.8%, TCAD = 86.1%,
accuracy of 83.9%) and right lateral regions (AUC = 0.880,
TCCON = 76.9%, TCAD = 80.6%, accuracy of 79.0%).
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Figure 3. Boxplots representing the distribution of mean values for ED in each region. Significant differences between groups are marked
with a symbol (∗ p < 0.05 and ∗∗ p < 0.01, AD patients versus controls; ♦ p < 0.05 and ♦♦ p < 0.01, AD patients versus MCI subjects;
� p < 0.05 and �� p < 0.01, MCI subjects versus controls).

Table 2. Mean ED values averaged in each region and for each group, together with the corresponding p-values from ANOVA with contrasts.

M ± SD p-value

Region CON MCI AD C versus AD C versus MCI MCI versus AD

Anterior 0.021 ± 0.007 0.026 ± 0.010 0.037 ± 0.019 <0.0001 0.2159 0.0075
Central 0.019 ± 0.005 0.022 ± 0.009 0.028 ± 0.011 0.0001 0.4367 0.0240
Left lateral 0.024 ± 0.007 0.029 ± 0.011 0.039 ± 0.013 <0.0001 0.1450 0.0047
Posterior 0.025 ± 0.008 0.028 ± 0.011 0.037 ± 0.012 0.0001 0.6246 0.0083
Right lateral 0.023 ± 0.007 0.029 ± 0.010 0.039 ± 0.014 <0.0001 0.0487 0.0152

M: mean. SD: standard deviation. p-value: statistical significance. C: control group. MCI: mild cognitive impairment
group. AD: Alzheimer disease group.

The classification analysis for MCI (identified by the true
class TCMCI) and AD groups showed that the highest AUC
value was reached using RSE(q = 3.5) in the left lateral
region (AUC = 0.810, TCAD = 61.1%, TCMCI = 88.9%,
accuracy of 70.4%). The highest accuracy is also achieved by
RSE(q = 3.5) in the anterior and posterior regions (TCMCI =
72.2%, TCAD = 72.2%, accuracy of 72.2%).

Finally, the highest AUC values when discriminating
between MCI subjects and controls were obtained by
TSE(q = 2), ED and LMCED,SSE in the right lateral region
(AUC = 0.705, TCCON = 61.5%, TCMCI = 55.6%, accuracy
of 59.1%). These results agree with the statistical analyses,
in which only ED and LMCED,SSE displayed significant

differences between these two groups. The highest accuracy
was obtained using SSE in the anterior (AUC = 0.641,
TCCON = 65.4%, TCMCI = 66.7%, accuracy of 65.9%) and
right lateral regions (AUC = 0.677, TCCON = 61.5%, TCMCI =
72.2%, accuracy of 65.9%).

5. Discussion

We studied the ability of several measures from information
theory to characterize spontaneous MEG rhythms from
36 AD patients, 18 MCI subjects and 26 healthy controls.
Three spectral entropies (Shannon, Tsallis and Rényi
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Figure 4. Boxplots representing the distribution of mean values for LMCSSE, LMCTSE(q = 2) and LMCRSE(q = 3.5). Significant differences
between groups are marked with a symbol (∗ p < 0.05 and ∗∗ p < 0.01, AD patients versus controls; ♦ p < 0.05 and ♦♦ p < 0.01, AD
patients versus MCI subjects; � p < 0.05 and �� p < 0.01, MCI subjects versus controls).

Table 3. Mean LMCED,SSE, LMCED,TSE(q = 2) and LMCED,RSE(q = 3.5) values averaged in each region and for each group, together with the
corresponding p-values from ANOVA with contrasts.

M ± SD
p-value

C versus C versus MCI versus
Region Parameter CON MCI AD AD MCI AD

Anterior 〈LMCED,SSE〉 0.017 ± 0.005 0.020 ± 0.007 0.028 ± 0.011 <0.0001 0.2037 0.0054
〈LMCED,TSE(q = 2)〉 0.021 ± 0.007 0.025 ± 0.009 0.035 ± 0.017 <0.0001 0.2212 0.0073
〈LMCED,RSE(q = 3.5)〉 0.015 ± 0.004 0.017 ± 0.005 0.022 ± 0.007 <0.0001 0.2197 0.0099

Central 〈LMCED,SSE〉 0.016 ± 0.003 0.018 ± 0.006 0.022 ± 0.007 0.0001 0.4010 0.0253
〈LMCED,TSE(q = 2)〉 0.018 ± 0.005 0.021 ± 0.009 0.027 ± 0.010 0.0001 0.4284 0.0274
〈LMCED,RSE(q = 3.5)〉 0.014 ± 0.003 0.015 ± 0.005 0.018 ± 0.005 0.0003 0.4347 0.0595

Left lateral 〈LMCED,SSE〉 0.019 ± 0.005 0.023 ± 0.007 0.029 ± 0.007 <0.0001 0.1422 0.0028
〈LMCED,TSE(q = 2)〉 0.024 ± 0.006 0.028 ± 0.010 0.037 ± 0.012 <0.0001 0.1505 0.0044
〈LMCED,RSE(q = 3.5)〉 0.017 ± 0.004 0.019 ± 0.005 0.024 ± 0.006 <0.0001 0.1583 0.0067

Posterior 〈LMCED,SSE〉 0.020 ± 0.006 0.022 ± 0.007 0.028 ± 0.007 <0.0001 0.5916 0.0071
〈LMCED,TSE(q = 2)〉 0.024 ± 0.008 0.027 ± 0.010 0.035 ± 0.011 0.0001 0.6142 0.0084
〈LMCED,RSE(q = 3.5)〉 0.017 ± 0.004 0.019 ± 0.005 0.023 ± 0.006 0.0001 0.5512 0.0125

Right lateral 〈LMCED,SSE〉 0.019 ± 0.005 0.023 ± 0.007 0.029 ± 0.008 <0.0001 0.0434 0.0114
〈LMCED,TSE(q = 2)〉 0.022 ± 0.006 0.028 ± 0.010 0.037 ± 0.012 <0.0001 0.0502 0.0149
〈LMCED,RSE(q = 3.5)〉 0.016 ± 0.004 0.019 ± 0.005 0.023 ± 0.006 <0.0001 0.0526 0.0256

M: mean. SD: standard deviation. p-value: statistical significance. C: control group. MCI: mild cognitive impairment group.
AD: Alzheimer disease group.

entropies), one disequilibrium (Euclidean distance) and three
statistical complexities (based on the LMC definition) were
calculated using a time-frequency representation to quantify
the irregularity and statistical complexity in AD and MCI.

Our findings suggest that dementia progression involves a
decrease in irregularity and an increase in both disequilibrium
and statistical complexity. Furthermore, our results provide a
new interpretation of brain dynamics in AD and MCI.
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Table 4. Accuracies and AUC values achieved for each parameter, region and pair of groups.

C versus AD C versus MCI MCI versus AD

Region Parameter Accuracy (%) AUC Accuracy (%) AUC Accuracy (%) AUC

Anterior 〈SSE〉 69.4 0.790 65.9 0.641 61.1 0.702
〈TSE(q = 2)〉 75.8 0.856 59.1 0.647 66.7 0.756
〈RSE(q = 3.5)〉 79.0 0.866 63.6 0.652 72.2 0.785
〈ED〉 75.8 0.856 59.1 0.647 66.7 0.756
〈LMCED,SSE〉 79.0 0.860 61.4 0.650 66.7 0.769
〈LMCED,TSE(q = 2)〉 75.8 0.856 59.1 0.647 66.7 0.761
〈LMCED,RSE(q = 3.5)〉 77.4 0.845 61.4 0.643 63.0 0.750

Central 〈SSE〉 59.7 0.704 59.1 0.622 53.7 0.590
〈TSE(q = 2)〉 69.4 0.801 61.4 0.607 61.1 0.674
〈RSE(q = 3.5)〉 69.4 0.809 59.1 0.603 63.0 0.691
〈ED〉 69.4 0.801 61.4 0.607 61.1 0.674
〈LMCED,SSE〉 64.5 0.802 61.4 0.605 61.1 0.665
〈LMCED,TSE(q = 2)〉 64.5 0.800 61.4 0.607 59.3 0.671
〈LMCED,RSE(q = 3.5)〉 62.9 0.774 61.4 0.615 61.1 0.650

Left lateral 〈SSE〉 66.1 0.798 56.8 0.632 61.1 0.711
〈TSE(q = 2)〉 75.8 0.865 52.3 0.652 64.8 0.779
〈RSE(q = 3.5)〉 83.9 0.890 52.3 0.630 70.4 0.810
〈ED〉 77.4 0.865 52.3 0.652 64.8 0.779
〈LMCED,SSE〉 82.3 0.875 52.3 0.650 66.7 0.792
〈LMCED,TSE(q = 2)〉 75.8 0.865 52.3 0.652 64.8 0.781
〈LMCED,RSE(q = 3.5)〉 72.6 0.845 54.6 0.652 64.8 0.769

Posterior 〈SSE〉 62.9 0.764 61.4 0.594 64.8 0.691
〈TSE(q = 2)〉 66.1 0.809 61.4 0.568 66.7 0.755
〈RSE(q = 3.5)〉 74.2 0.824 50.0 0.577 72.2 0.761
〈ED〉 67.7 0.809 61.4 0.568 64.8 0.755
〈LMCED,SSE〉 69.4 0.810 54.6 0.556 68.5 0.756
〈LMCED,TSE(q = 2)〉 67.7 0.809 61.4 0.571 64.8 0.755
〈LMCED,RSE(q = 3.5)〉 67.7 0.806 61.4 0.577 66.7 0.736

Right lateral 〈SSE〉 67.7 0.799 65.9 0.677 59.3 0.665
〈TSE(q = 2)〉 72.6 0.855 59.1 0.705 64.8 0.730
〈RSE(q = 3.5)〉 79.0 0.880 56.8 0.684 70.4 0.759
〈ED〉 71.0 0.855 59.1 0.705 64.8 0.730
〈LMCED,SSE〉 72.6 0.864 59.1 0.705 66.7 0.738
〈LMCED,TSE(q = 2)〉 71.0 0.853 59.1 0.701 64.8 0.736
〈LMCED,RSE(q = 3.5)〉 72.6 0.845 59.1 0.697 64.8 0.718

AUC: area under ROC curve. C: control group. MCI: mild cognitive impairment group. AD: Alzheimer disease
group.

Entropy analysis showed that AD patients obtained
statistically significant lower SSE values than controls
(p < 0.01 in all regions) and MCI subjects (p < 0.05 in the
anterior, left lateral and posterior regions). Similarly, TSE(q =
2) and RSE(q = 3.5) reached statistically significant lower
values for AD patients than for controls (p < 0.0001 in
all regions) and MCI subjects (p < 0.05 in all regions).
In addition, MCI subjects displayed slight lower TSE(q =
2) and RSE(q = 3.5) values than controls in the right lateral
region (p = 0.0506 and p = 0.0527, respectively). The entropy
decrease suggests that AD and MCI are accompanied by a
loss of frequency components in comparison to normal aging.
This result agrees with our previous studies, where a loss
of irregularity in AD (Poza et al 2008) and MCI (Bruña
et al 2010) was reported. The loss of irregularity can be
associated with a decrease in information content (Bezerianos
et al 2003). Previous EEG studies identified changes in
entropy with a real variation in intra-cortical information
flow (Kannathal et al 2005), which leads to suppose that this
reduction might involve both a loss of information content

(Baraniuk et al 2001) and an information processing decrease
within the brain cortex (Poza et al 2008). As was reported
in previous studies (Poza et al 2008), generalized entropies
reached greater discrimination statistics than Shannon entropy.
Tsallis and Rényi entropies have been used to characterize long
and short-range interactions in complex systems, respectively
(Bezerianos et al 2003, Stam et al 2006). Therefore, it can
be hypothesized that MEG activity in AD and MCI may be
generated by a system in which long and short-range abnormal
interactions simultaneously exist.

Statistically significant higher disequilibrium and
complexity values were obtained by AD patients when
compared to controls (p < 0.0005 in all regions) and
MCI subjects (p < 0.05 in all regions, except for
LMCED,RSE(q = 3.5) in the central region). It is noteworthy
that differences between MCI subjects and controls were
statistically significant for ED and LMCED,SSE (p < 0.05 in
the right lateral region). These results suggest an increase
of both disequilibrium and statistical complexity in the early
stage of dementia. Similar findings were reported in previous
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studies using disequilibrium (Bruña et al 2010) and neural
complexity (van Cappellen van Walsum et al 2003), which
lead us to hypothesize that information transmission in the
brain becomes more complex from a statistical point of
view when dementia progresses. A related idea has been
proposed by Drachman (2006), who suggests that cognitive
decline in the elderly may be due to complex networks of
interacting age-related changes, which may be the fundamental
cause in further progression to sporadic AD. Furthermore,
the most significant differences between MCI subjects and
controls were achieved by statistical complexity measures,
which improve the results obtained by spectral entropies and
disequilibrium. Therefore, these measures might reflect some
underlying characteristics of MEG activity from MCI subjects
that cannot be detected independently by the irregularity and
disequilibrium parameters.

Some discussion about the complexity increase is
required. Previous MEG studies used linear and nonlinear
measures to quantify the irregularity and complexity patterns
in AD. Their results suggested that dementia is characterized
by a loss in irregularity (Poza et al 2007, 2008, Hornero et al
2009) and complexity (Gómez et al 2009a, Hornero et al 2009).
Previous studies based on Lempel–Ziv complexity showed
that MCI is related to a loss of irregularity in MEG rhythms
(Fernández et al 2010). Our findings support the notion that
both AD and MCI elicit a decrease in irregularity, though an
increase of statistical complexity is also observed. Certainly,
irregularity and complexity parameters are linked to some
extent. They quantify the degree of disorder in brain dynamics,
focusing on different characteristics. Therefore, they are useful
to provide a statistical description of the variability within the
MEG or a measure of average uncertainty of signal information
(Bezerianos et al 2003, Kannathal et al 2005). On the other
hand, statistical complexity measures are clearly dissociated
from this interpretation of complexity. They identify highly
regular or irregular signals as trivial states, since they are
both considered as not very informative (total order or perfect
randomness). As a consequence, their complexity is zero
(López-Ruiz et al 1995). Signals of high statistical complexity
(and therefore highly informative) should be generated by
a system where an optimal balance between a completely
independent and a totally dependent functioning of their
elementary components can be found (Sporns et al 2000).
LMC is a new approach in that direction, such that it is
expected to provide a novel quantitative strategy for assessing
complexity patterns in brain dynamics. Increasing LMC values
suggest that MEG rhythms are generated by a system where
a balanced interplay between dependent and independent
functioning can be found. There is no evidence that a high LMC
value necessarily reflects an optimal information processing,
but it suggests some kind of highly informative processing (in
terms of statistical complexity). On the basis of the previous
ideas, the statistical complexity exhibits a convex shape when
it is plotted against the irregularity, as depicted in figure 5.

AD has been described as a disconnection syndrome,
where functional interactions in the brain are strongly affected
by anatomical abnormalities among different cortical areas
(Jelles et al 1999) and altered cholinergic coupling interactions
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Figure 5. Relationship between LMCSSE and SSE in the right lateral
region for each group ( : Controls; : MCI subjects; : AD
patients). The maximum and minimum LMCSSE values as a function
of SSE are depicted by chain lines.

among cortical neurons (Jeong 2004). Recent studies pose
the hypothesis that AD is characterized by more evident
statistical deterministic relationships in MEG connectivity
(Alonso et al 2011). Our findings also support this idea.
Some researchers suggest that the loss of complexity, usually
associated to AD, may be influenced by both increases and
decreases of functional couplings in different frequency bands
(van Cappellen van Walsum et al 2003, Stam et al 2006,
2007, 2009, Alonso et al 2011). Previous studies reported
that functional connectivity in AD increases in low-frequency
bands (Locatelli et al 1998, Montez et al 2009, Alonso et al
2011) and decreases in high-frequency bands (Stam et al 2007,
2009). These connectivity patterns have been associated with
the impairment that AD causes in brain networks (Locatelli
et al 1998, Stam et al 2009) or with the activation of some
kind of compensatory mechanism to overcome the structural
and functional brain deficits elicited by dementia (Stam 2010).
A possible explanation to the increase of statistical complexity
in AD and MCI might be such compensatory functional
response. There exists evidence of compensatory mechanisms
by which preclinical AD brain attempts to compensate for
neurodegeneration, before the manifestation of cognitive and
functional impairments (Becker et al 1996).

Another hypothesis to explain the increase of complexity
could be that entropy quantifiers overestimate the irregularity
of the system. Spectral entropies are intrinsically related to the
concept of a signal component, so that signals constructed from
a reduced number of elementary components are supposed to
yield low entropy values (Baraniuk et al 2001). Nevertheless,
different SSE values are observed in AD patients and controls
depending on the nature of the recording. EEG studies
obtained lower SSE values than those reported by MEG studies
(Abásolo et al 2006, Poza et al 2008). EEG and MEG reflect
slightly different characteristics of neuronal activity (Rampp
and Stefan 2007). Therefore, brain dynamics are expected to
elicit different irregularity patterns. In this context, entropy-
based measures, such as spectral entropies, could provide
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different estimates of the degree of disorder in the brain, which
might influence the interpretation in terms of irregularity.
As a consequence, it could be interesting to apply different
entropy definitions, such as nonlinear ones, in order to explore
new LMC formulations. Future analyses should address these
concerns to further assess the role of entropy-based measures
in the quantification of EEG and MEG irregularity.

Further evidence on the discrepancies between EEG and
MEG has been reported by Stam and co-workers in several
studies (Stam et al 2007, 2009). They analyzed the relationship
between complexity and functional connectivity in AD by
means of synchronization measures. Concepts from graph
theory were used to quantify the characteristics of functional
connectivity networks. Although similar results were obtained
in EEG and MEG studies, some differences were observed in
the calculation of the clustering coefficient (a parameter that
quantifies the local connectedness of a network). Researchers
suggested that differences could be due to volume conduction
effects, which produced high estimates of the clustering
coefficient in EEG analyses (Stam et al 2009). As reported
in previous studies, they also pointed out that AD can be
associated with a loss of resting-state functional connectivity in
alpha (Stam et al 2009) and beta bands (Stam et al 2007, 2009).
Furthermore, they observed that AD is characterized by a more
random, but less complex, large-scale topology of functional
connectivity networks than normal aging (Stam et al 2009). In
this context, the notion of complexity differs from the nonlinear
and the statistical definitions, since Stam et al (2007, 2009)
refer to the complexity of patterns of interrelations. This fact
stresses the importance of complexity as a context-dependent
parameter that can summarize different (but complementary)
features of the underlying brain dynamics.

MCI is usually considered as a pre-clinical stage of AD
(Petersen 2009). Thus, an early AD diagnosis should be
established on the basis of a previous MCI detection. Our
findings suggest that MCI exhibit intermediate alterations
between AD and normal aging, which agrees with the results
of previous research (Fernández et al 2006, 2010, Escudero
et al 2011). Previous MEG studies reported classification rates
of AD patients versus elderly controls about 80% (Fernández
et al 2006, Poza et al 2007, 2008, Gómez et al 2009a, Hornero
et al 2009, Stam 2010, Alonso et al 2011, Escudero et al
2011). Our classification results are similar to this value,
since the highest accuracy was 83.9%. On the other hand,
previous MEG studies usually reached an accuracy about 65%
to discriminate between MCI and control subjects (Fernández
et al 2006, 2010, Gómez et al 2009a, Escudero et al 2011).
Our highest accuracy was 65.9%. It is worth noting that our
classification statistics are comparable to those reported in
previous MEG studies, though they did not use any LOO-CV
procedure (Fernández et al 2006, 2010, Gómez et al 2009b).
The LOO-CV procedure reduces the accuracy, but it provides
an almost unbiased estimate of the true generalization ability
of the classification model and avoids over-estimation of the
true classification rates (Escudero et al 2011).

Finally, a number of methodological and clinical issues
merit further consideration. The spectral analysis was
accomplished using the STFT. However, other time-frequency

representations, such as wavelets (Wan et al 2006), could
be also considered to compute entropies, disequilibrium and
statistical complexities. It is worth noting that the choice of the
STFT was based on several premises: (i) the STFT provides
a well-established framework that eases the interpretation of
spectral parameters; (ii) the STFT has been widely applied
to characterize EEG/MEG activity (Jeong 2004, Stam 2010)
and previous MEG studies have shown its usefulness in
describing spontaneous brain activity in dementia (Poza et al
2008); and (iii) previous MEG investigations have shown that
the proposed parameters are not strongly influenced by the
spectral estimation (Poza and Hornero 2011). Other possible
comment is related to the choice of the entropic index q in the
parameterized entropies (TSE and RSE). Different entropic
indexes correspond to particular statistical mechanics. Other q
values could lead to different complexity patterns that might be
useful to characterize MCI. Nevertheless, several assumptions,
based on physiological and methodological evidences, were
made to carefully select the entropic indexes. On the basis
of previous studies (Tong et al 2002, Rosso et al 2006),
the brain activity was modeled as a sub-extensive system
(q > 1). Lower q values are rather difficult to justify and
have not been recommended for clinical purposes (Rosso et al
2006). Likewise, the role of the entropic index (q > 1) has
been found to be relevant to characterize MEG activity in AD
(Poza et al 2008). The results in this study suggested that
TSE was sensitive to the parameter q (due to its exponential
definition), whereas RSE showed little dependence on the
entropic index (due to its logarithmic definition) (Poza et al
2008). In the present study, the values that exhibited the highest
performance to characterize AD were selected (i.e. q = 2
and q = 3.5 for TSE and RSE, respectively). Thus, a direct
comparison with previous research can be easily made. It
should be pointed out that other neurodegenerative diseases
also elicit abnormal irregularity and complexity patterns in
EEG and MEG activity. Further research should be carried out
to compare the patterns associated to each disorder. Besides,
despite the high progression rate from MCI to dementia, MCI is
actually a heterogeneous disorder, which does not necessarily
result in AD. Therefore, a longitudinal analysis could be useful
to analyze MCI progression.

6. Conclusions

In summary, our findings suggest that MCI exhibit
intermediate alterations, in the irregularity and statistical
complexity patterns, between AD and normal aging.
Our results support the notion that spectral entropies,
disequilibrium and statistical complexity measures may lead to
a better understanding of the underlying brain dynamics in AD
and MCI. Furthermore, these new measures extend the concept
of complexity and provide useful descriptors of spontaneous
MEG rhythms in these neuropathologies.

Future efforts will be addressed to explore other irregular-
ity and disequilibrium measures, useful to characterize MEG
rhythms in AD and MCI. Additionally, further work should be
attempted in order to extend the results to other dementias.
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