
  

  

Abstract— The aim of this study was to examine the 
magnetoencephalography (MEG) background activity in 
Alzheimer’s disease (AD) using three embedding entropies: 
approximate entropy (ApEn), sample entropy (SampEn), and 
fuzzy entropy (FuzzyEn). These three methods measure the 
time series regularity. Five minutes of recording were acquired 
with a 148-channel whole-head magnetometer from 36 AD 
patients and 24 elderly control subjects. Our results showed 
that MEG activity was more regular in AD patients than in 
controls. Additionally, FuzzyEn revealed statistically significant 
differences between the two groups (p < 0.01, Bonferroni-
corrected Mann-Whitney U-test), while ApEn and SampEn did 
not. The better discriminating results of FuzzyEn in 
comparison with the other entropy algorithms suggest that it is 
more efficient for the characterization of MEG activity in AD.  

I. INTRODUCTION 

Alzheimer’s disease (AD) is a neurological disorder of 
unknown etiology that gradually destroys brain cells. AD 
prevalence is rising in line with aging population, reaching 
30% of the people over 85 years [1]. A definite diagnosis is 
only possible by autopsy after death. Clinical criteria for AD 
diagnosis include cognitive tests, medical history studies, 
physical and neurological evaluation, and neuroimaging 
techniques. Nowadays, magnetoencephalography (MEG) is 
not used in AD diagnosis, in spite of its potential to 
characterize neural dynamics. MEG is a neuroimaging 
technique used to measure the very small changes in the 
electromagnetic brain activity. As the magnetic fields due to 
neural activity are extremely weak, an array of very sensitive 
sensors (SQUIDs, superconducting quantum interference 
devices), positioned over the scalp, is needed. Additionally, 
interference suppression systems and magnetic shielding are 
mandatory [2]. On the other hand, MEG offers some 
advantages over electroencephalography (EEG). MEG is 
reference-free and is less affected by the volume conduction 
than EEG [3].  

During the last years, several studies analyzed the MEG 
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activity in AD using signal processing techniques. Spectral 
analyses suggested that AD is associated with an increased 
MEG activity in lower frequency bands and a decreased one 
in higher ones in comparison with control subjects [4]. 
Studies analyzing functional connectivity revealed a general 
loss of coherence in all frequency bands [5]. On the other 
hand, nonlinear measures identified that the spontaneous 
MEG activity is less complex, less predictable, and more 
regular in patients than in control subjects [6–8].  

In this study, we have examined the MEG background 
activity in AD using three different measures of entropy: 
approximate entropy (ApEn), sample entropy (SampEn), and 
fuzzy entropy (FuzzyEn). Entropy is a concept addressing 
randomness and predictability, with greater entropy often 
associated with more randomness and less system order [9]. 
Applied to time series, these three measures quantify the 
signal regularity. Our purpose is: (i) to check the hypothesis 
that entropy values from MEG activity would be different in 
AD patients and elderly controls, and (ii) to test which 
measure is more appropriate to discriminate between these 
two groups. 

II. MATERIALS AND METHODS 

A. Subjects 
MEG data were acquired from 60 subjects: 36 patients 

with probable AD and 24 elderly controls. The cognitive and 
functional deficits were screened in both groups with the 
mini-mental state examination (MMSE) and the functional 
assessment staging (FAST).  

MEGs were recorded from thirty-six AD patients (12 men 
and 24 women, age = 74.1 ± 6.9 years, mean ± standard 
deviation), who were recruited from the ‘Asociación de 
Familiares de Enfermos de Alzheimer’ and the Geriatric Unit 
of the ‘Hospital Clínico Universitario San Carlos’ (Madrid, 
Spain). All patients fulfilled the criteria for probable AD, 
according to the clinical guidelines of the National Institute 
of Neurological and Communicative Disorders and Stroke 
and the AD and Related Disorders Association [10]. Patients 
were free of significant medical, neurological and psychiatric 
diseases other than AD. They obtained mean scores of 18.1 ± 
3.4 and 4.2 ± 0.4 (mean ± standard deviation) on MMSE and 
FAST, respectively. 

The control group consisted of twenty-four subjects 
without past or present neurological disorders (9 men and 15 
women; age = 71.7 ± 6.5 years; MMSE score = 28.9 ± 1.2 
points; FAST score = 1.7 ± 0.5 points; mean ± standard 
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deviation). Differences in the mean age or gender of both 
populations were not statistically significant. The local 
ethics committee approved this study. All control subjects 
and all caregivers of the patients gave their informed consent 
for the participation in the current study. 

B. MEG recording 
MEG signals were acquired with a 148-channel whole-

head magnetometer (MAGNES 2500 WH, 4D 
Neuroimaging) placed in a magnetically shielded room at 
the MEG Center Dr. Pérez-Modrego (Spain). The subjects 
lay comfortably on a patient bed, in a relaxed state and with 
their eyes closed, in order to reduce the presence of artifacts 
in the recordings. Five minutes of MEG data were acquired 
from each subject at a sampling frequency of 678.17 Hz. A 
process of down-sampling by a factor of four was carried 
out, resulting a sampling rate of 169.55 Hz. Data were 
digitally filtered using a 1-65 Hz band-pass filter and a 50 
Hz notch filter. Both visual inspection and independent 
component analysis (ICA) were performed to minimize the 
presence of oculographic, cardiographic and myographic 
artifacts. All artifact-free epochs of 5 s (848 data points) 
were selected for further analyses. 

C. Entropy measures 
Approximate entropy (ApEn), sample entropy (SampEn) 

and fuzzy entropy (FuzzyEn) are embedding entropies that 
quantify the regularity of a time series, notwithstanding its 
stochastic or deterministic origin [11–13]. Embedding 
entropies provide information about how a signal fluctuates 
with time by comparing the time series with a delayed 
version of itself [14]. ApEn, SampEn and FuzzyEn assign a 
non-negative number to a sequence, with larger values 
corresponding to greater apparent process randomness or 
serial irregularity, and smaller values corresponding to more 
instances of recognizable features or patterns in the data. 
ApEn algorithm was proposed by Pincus for the analysis of 
short and noisy data sets [11]. For this reason, it has been 
widely used to study the irregularity of several kinds of 
biomedical signals. Nevertheless, ApEn overestimates the 
similarity and is thus biased. To solve this drawback, 
Richman and Moorman introduced SampEn [12]. It is 
largely independent of the signal length and displays relative 
consistency under circumstances where ApEn does not [12]. 
However, the similarity definition of vectors in both ApEn 
and SampEn is based on Heaviside function. Due to inherent 
imperfections of this function, some problems exist in the 
validity of these entropies definitions [15]. To overcome 
these drawbacks, FuzzyEn was proposed by Chen et al. [13]. 
Previous results showed that it is a more accurate irregularity 
measure [15]. To compute ApEn and SampEn, two 
parameters must be specified: a tolerance window r and a 
run length m [11, 12] For FuzzyEn algorithm, three input 
parameters are needed: the width (r) and the gradient (n) of 
the boundary of the exponential function, and a run length m 
[13, 15]. 

 
1) ApEn algorithm 

The algorithm used to compute the ApEn of a signal 
{x(n)} = x(1), x(2),…, x(N) is as follows [11]: 

1) Form N − m + 1 vectors Xm(i) defined by Xm(i) = [x(i), 
x(i + 1),…, x(i + m – 1)], i = 1,…, N – m + 1.  

2) Define the distance, dij
m, between two of these vectors 

Xm(i) and Xm(j) as the maximum difference of their 
corresponding scalar components. 

3) For a given Xm(i), let Nm(i) denote the number of j (j = 
1,…, N – m + 1) so that dij

m ≤ r. Thus, for i = 1,…, N 
– m + 1: 

€ 

Cr
m (i) =

N m (i)
N −m +1

.        (1) 

Cr
m(i) measures, within a tolerance r, the regularity or 

frequency of patterns similar to a given one of 
window length m. 

4) Compute the natural logarithm of each Cr
m(i) and 

average it over i: 

€ 

ϕ m (r) =
1

N −m +1
lnCr

m (i)
i=1

N −m+1

∑ .    (2) 

5) Increase the dimension to m + 1 and repeat previous 
steps in order to obtain Cr

m+1(i) and φm+1(r). 
6) For finite datasets, ApEn is estimated by the statistic: 

€ 

ApEn(m,r,N ) =ϕ m (r) −ϕ m+1 (r).    (3) 
 

2) SampEn algorithm 
The algorithm used to compute the SampEn of a signal 

{x(n)} = x(1), x(2),…, x(N) is as follows [12]: 
1) Form N − m + 1 vectors Xm(i) defined by Xm(i) = [x(i), 

x(i + 1),…, x(i + m – 1)], i = 1,…, N – m + 1.  
2) Define the distance, dij

m, between two of these vectors 
Xm(i) and Xm(j) as the maximum difference of their 
corresponding scalar components. 

3) Define Bi
m(r) as 1/(N − m − 1) times the number of j 

(1 ≤ j ≤ N − m; j ≠ i), so that dij
m ≤ r. Then, set Bm(r) 

as: 

€ 

Bm (r) =
1

N −m
Bi
m (r)

i=1

N −m

∑  .    (4) 

4) Increase the dimension to m + 1 and calculate Ai
m(r) 

as 1/(N − m − 1) times the number of j (1 ≤ j ≤ N − m; 
j ≠ i), so that dij

m+1 ≤ r. Set Am(r) as: 

€ 

Am (r) =
1

N −m
Ai
m (r)

i=1

N −m

∑ .      (5) 

5) For finite datasets, SampEn is estimated by the 
statistic: 

€ 

SampEn(m,r,N ) = − ln Am (r)
Bm (r)

.     (6) 

 
3) FuzzyEn algorithm 

The algorithm used to compute the FuzzyEn of a signal 
{x(n)} = x(1), x(2),…, x(N) is as follows [13]: 

1) Form N − m + 1 vectors Xm(i) defined by Xm(i) = [x(i), 
x(i + 1),…, x(i + m – 1)] – x0(i), where x0(i) is given 
by: 

€ 

x0 i( ) =
1
m

x i + j( )
j=0

m−1

∑ .       (7) 

2) Define the distance, dij
m, between two of these vectors 

Xm(i) and Xm(j) as the maximum difference of their 
corresponding scalar components. 
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Figure 1. Sensor layout showing the distribution of the mean entropy values for control subjects and AD patients, and the corresponding p-values: 

(a) Approximate entropy; (b) Sample entropy; (c) Fuzzy entropy. 
 
 
 

 

 
 

3) Calculate the similarity degree, Dij
m, of Xm(i) and 

Xm(j) through a fuzzy function µ(dij
m,n,r). In this 

study, the exponential function was used: 

€ 

Dij
m n,r( ) = µ dij

m ,n,r( ) = exp − dij
m( )

n
/ r⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ .   (8) 

4) Define the function 

€ 

φm as follows: 

€ 

φm n,r( ) =
1

N −m
1

N −m −1
Dij

m

j=1,j≠i

N −m

∑
⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

i=1

N −m

∑ .   (9) 

5) Increase the dimension to m + 1 and repeat previous 
steps in order to obtain 

€ 

φm+1 . 
6) For finite datasets, FuzzyEn is estimated by the 

statistic: 

€ 

FuzzyEn m,n,r,N( ) = lnφm n,r( ) − lnφm+1 n,r( ) .  (10) 

III. RESULTS 

ApEn, SampEn and FuzzyEn algorithms were applied to 
MEG signals acquired at 148 locations. For ApEn and 
SampEn, the same combination of parameters was used: m = 
2 and r = 0.2 times the standard deviation of the original time 
series. On the other hand, FuzzyEn was applied with 
parameter values of m = 2, n = 2, and r = 0.2. Figure 1 
summarizes the averaged entropy values at each MEG 
channel for both AD and control groups. This figure shows 
that entropy values were lower in AD patients than in 
controls, which suggests that this neurological disorder is 
accompanied by a regularity increase of MEG activity.  

In a first step, Mann-Whitney U-test was used to asses the 
statistical differences between patients and control subjects. 
For this analysis, the results at the 148 MEG channels were 
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averaged. We obtained p-values of 0.4236, 0.1689 and 
0.0036 for ApEn, SampEn and FuzzyEn, respectively 
(Bonferroni-corrected Mann-Whitney U-test). 

 Additionally, statistical analyses at sensor-level were 
performed using a multiple comparison nonparametric 
permutation test [16]. This test lets to control type I error 
when the multiplicity of testing must be taken into account 
(e.g. 148 sensors). Right column of figure 1 illustrates that 
just a few channels (placed in frontal, right lateral and 
posterior regions) revealed significant differences using ApEn 
and SampEn algorithms. On the other hand, FuzzyEn was 
able to differentiate AD patients from controls at several 
sensor locations, mainly placed at frontal and temporal brain 
regions.  

IV. DISCUSSION AND CONCLUSIONS 

In this study, we analyzed the MEG background activity 
from 36 AD patients and 24 control subjects by means of 
ApEn, SampEn and FuzzyEn. Our purpose was to check the 
hypothesis that MEG background activity was different in 
these groups. Our results revealed that AD patients have 
lower entropy values than controls, indicating a regularity 
increase of MEG activity associated with the disease. The 
main differences between groups were found in frontal and 
temporal brain areas. This finding may reflect the major loss 
of synapses occurred in AD at these regions [17]. Our results 
agree with previous EEG and MEG studies that used 
different embedding entropies to characterize the brain 
activity in AD [7–9].  

Additionally, statistically significant differences were 
found with FuzzyEn (p-value = 0.0036, Bonferroni-corrected 
Mann-Whitney U-test). This fact suggests that FuzzyEn is a 
more suitable measure for MEG characterization in AD than 
ApEn and SampEn. Chen et al. [13] applied these three 
related measures to electromyography signals in order to 
compare their performance on measuring signal regularity. 
For this purpose, recordings from four different motions 
(hand grasping, hand opening, forearm supination, and 
forearm pronation) were analyzed. SampEn showed a better 
discrimination than ApEn, with the boundaries among 
motions much more apparent. In addition to this, FuzzyEn 
resulted in the best characterization results [13]. Our results 
go in the same direction, as the lowest p-value was achieved 
for FuzzyEn and the highest one for ApEn. This may be due 
to the fact that FuzzyEn uses an exponential function to 
bound vectors similarity. This fuzzy function is 
characterized by no rigid boundary, instead of the Heaviside 
function used in ApEn and SampEn algorithms. However, it 
is noteworthy that FuzzyEn approach is computationally 
more demanding. 

In this study, some limitations must be considered. Firstly, 
the detected regularity increase is not specific to AD, 
appearing in other brain disorders. Additionally, other 
entropy measures, such as spectral entropy, permutation 
entropy or conditional entropy, may provide complementary 
results. Finally, our results do not show if these measures 
can detect a gradation of the disease process. Future efforts 
will be focussed to increase the MEG database, as well as to 
extend the methodology to other diseases. Mild cognitive 
impairment group is particularly interesting, as this disorder 

is considered a prodromal phase of AD. 

In sum, our study leads us to conclude that MEG 
background activity in AD patients is more regular than in 
controls. FuzzyEn results showed significant differences 
between AD patients and controls, indicating an abnormal 
type of dynamics associated with AD. This irregularity 
reduction may be associated with the deficiencies in 
information processing suffered by AD patients. 
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