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Abstract. The electroencephalographic activity allows the characterization
of movement-related cortical processes. This information may lead to novel
rehabilitation technologies with the patients’ cortical activity taking an ac-
tive role during the intervention. For such applications, the reliability of the
estimations based on the electroencephalographic activity is critical both in
terms of specificity and temporal accuracy. In this study, a detector of the
onset of voluntary upper-limb reaching movements based on cortical rhythms
and slow cortical potentials is proposed. To that end, upper-limb movements
and cortical activity were recorded while participants performed self-paced
movements. A logistic regression combined the output of two classifiers: a)
a näıve Bayes trained to detect the event-related desynchronization at the
movement onset, and b) a matched filter detecting the bereitschaftspotential.
On average, 74.5±10.8 % of the movements were detected and 1.32 ± 0.87
false detections were generated per minute. The detections were performed
with an average latency of -89.9 ± 349.2 ms with respect to the actual move-
ments. Therefore, the combination of two different sources of information
(event-related desynchronization and bereitschaftspotential) is proposed as a
way to boost the performance of this kind of systems.

1 Introduction

The development of Brain-Computer Interfaces (BCIs) based on the elec-
troencephalographic (EEG) activity for the functional rehabilitation of pa-
tients with motor disabilities has gained special interest over the last years
[1, 2]. The main purpose of BCIs in such scenarios is to provide a way to
promote the neural rehabilitation of the patient. EEG systems allow the on-
line characterization of the cortical activity over the motor cortex while the
measured subject is performing motor tasks. This way, it becomes possible to
detect online when a person is attempting or imaging a movement [3, 4, 5],
and to predict certain properties of the movement to be performed [6, 7, 8].
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This information may in turn be used to close the loop with neuroprosthetic
or neurorobotic devices, thus providing a natural interface between the pa-
tient’s intentions and the actuation of external devices [9]. In this regard,
recent studies have proven the importance of the proprioceptive feedback
timing to achieve associative neural facilitation [10, 11].

In a series of previous studies, it has been proposed the use of the Bere-
itschaftspotential (BP) to detect the movement intention [4, 12, 13, 8, 14].
The BP is defined as a slow decay of the EEG voltage over the central regions
of the cortex right before a voluntary movement is performed [15]. Given the
nature of the BP as an identifiable pattern that is decaying until the move-
ment starts, it becomes suitable to achieve temporal precision in the detection
of the onset of the movement. In fact, previous studies showing results of on-
line systems based on this pattern indicate that average latencies of 315 ±
165 ms can be obtained [14].

The BP, nonetheless, presents some limitations. First, this pattern shows
a reduced amplitude (in the order of few µV), which makes it vulnerable
to external sources of noise. In addition, the BP is not always detectable,
since some subjects do not present a significant pattern during self-paced
movements.

A second cortical pattern associated to the execution of voluntary move-
ments is the event-related desynchronization (ERD). This pattern consists of
a decay of the power in some specific cortical rhythms that takes place mainly
over the sensorimotor cortex in areas contralateral to the limb (in case upper-
limb movements are considered) [16]. Although a variable anticipation may
be observed in the ERD of a specific channel and frequency in a subject
during consecutive movements, the spatio-tempo-frequential distribution of
the ERD observed when averaging a number of EEG segments preceding
voluntary movements shows a clear pattern attached to the movement event.

In this present study, a detector of the onsets of movements is proposed
based on the combined detection of the ERD and the BP patterns preceding
volitional movements. The design of the system as well as its validation with
data collected from healthy subjects performing self-paced reaching move-
ments is presented here.

2 Methods

2.1 Participants

Six healthy subjects (all males, right-handed and between 27 and 35 years
old) were measured for the present experiments. None of them had any prior
experience with BCI paradigms.
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2.2 Experimental Protocol

Each participant was measured during one single session. The study was
performed in a sound and light-attenuated room. Participants sat in a com-
fortable chair with their arms supported on a table. During the measurement
phase, participants were instructed to remain relaxed with their eyes open
and their gaze fixated on a point on the wall. They were asked to perform
self-initiated reaching movements with the dominant arm. The average dis-
tance between consecutive movements was around 8-15 s. During the resting
state between movements, participants were asked to remain as relaxed and
quite as possible, whereas they were asked to start a movement as soon as
they felt the urge to do it.

The intervals containing at least 5 s of resting activity followed by a self-
initiated reaching movement were considered valid trials and were used in
the subsequent steps of the data analysis. On average, 53 ± 8 trials were
collected.

2.3 Data Acquisition

The movements of the arm were measured with solid-state gyroscopes. Three
gyroscopes (Technaid S.L., Madrid, Spain) placed on the hand dorsum, the
distal third of the forearm, and the middle of the arm measured the limb
kinematics. The data were sampled at 100 Hz.

EEG signals were recorded from 31 positions (AFz, F3, F1, Fz, F2,
F4, FC3, FC1, FCz, FC2, FC4, C5, C3, C1, Cz, C2, C4, C6, CP3, CP1,
CPz, CP2, CP4, P3, P1, Pz, P2, P4, PO3, PO4 and Oz, all according to
the international 10-20 system) using active Ag/AgCl electrodes (Acticap,
Brain Products GmbH, Germany). The reference was set to the voltage
of the earlobe contralateral to the arm moved. AFz was used as ground.
The signal was amplified (gUSBamp, g.Tecgmbh, Austria) and sampled at
256 Hz.

2.4 Detection of the Onset of the Movements

To detect the onsets of the movements, the data from the gyroscopic sensor
that activated the first during reaching movements in each subject was used.
The data were low-pass filtered (Butterworth, order 2, < 10 Hz). The peak
amplitude was estimated for each subject performing the reaching movement.
The threshold amplitude for the detection of the onsets of the movements was
set to 5 % of this reference amplitude.
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2.5 Description of the Classifier Architecture and
Validation

The core of the detector was a combination of the information associated to
the ERD and BP patterns observed in the participants. The validation of the
system was carried out following a leave-one-out methodology, i.e. once the
trials had been identified, each of them was classified with a detector trained
with the rest of the trials of the session.

2.5.1 ERD-Based Detection of the Movement Onset

A näıve Bayes classifier was used to detect the ERD pattern observed at
the onset of the movements. First the signals were bandpass filtered (Butter-
worth, 3th order, 6 Hz < f1, 35 > f2) and a small laplacian filter was applied
[17]. The channels from the frontal, fronto-central, central, centro-parietal
and parietal positions were kept. The power values were estimated for the
frequency interval 7-30 Hz in steps of 1 Hz. Welch’s method (Hamming win-
dows of 1 s, 50 % overlapping) was used to estimate the power values of
windows of 1.5 s. Estimations were performed at a rate of 8 Hz.

The power estimations obtained in all the training trials from -3 s to -0.5 s
(with respect to the movement onsets) were labeled as resting state examples,
whereas the estimations generated at t = 0 s where labeled as movement
examples. The Bhattacharyya distance was used for space dimensionality
reduction. The 10 best features according to this distance were selected to
build the classifier.

The classifier was applied to the test data. Estimations about movement
intention were generated every 125 ms.

2.5.2 BP-Based Detection of the Movement Onset

A similar procedure to the one proposed in [8] was used to detect the BP.
A finite impulse response (with linear phase) bandpass filter (0.05 Hz < f1,
1 Hz > f2, 15th order) was used. This solution was adopted since linear
preservation is crucial to extract the entire BP pattern.

Then spatial filtering and channel selection were performed. Three virtual
channels were computed from the original 31 channels in the experimental
set-up. These channels were extracted applying the same spatial filter as in
[8] to positions C1, Cz and C2, i.e. the average potential of channels F3,
Fz, F4, C3, C4, P3, Pz and P4 was subtracted to these three channels. The
average BP was computed for the three virtual channels using the training
data and the channel with highest absolute peak at the movement onset was
selected for the movement onset detection.

Using the training data set, a matched filter was obtained using the pre-
viously selected channel. To that end, the average BP was obtained from the
time interval between -1.5 s and 0 s (with 0 s being the movement onsets
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estimated by the gyroscopes). The matched filter was applied to the virtual
channel in the validation data set.

2.5.3 Combination of the Two Estimations

The combination of the outputs from ERD and BP detectors (real-valued
signals from the application of the Bayesian classifier and the matched filter,
respectively) was carried out by a logistic regression classifier. To build the
classifier, the examples of the resting and movement conditions were extracted
from the training data set. The estimations of the two classifiers (ERD and
BP) from -3 s to -0.5 s with respect to the movement onset (in steps of 125 ms)
were used to model the resting state. The movement state was modeled from
the output estimations of the ERD and the BP classifiers at the movement
onset.

2.5.4 Threshold Selection

A threshold was applied to the output of the detector to decide at each mo-
ment whether movement intention was detected. The threshold was optimally
obtained from the training data set, following the criterion of maximizing the
percentage of good trials (GT), which were trials with a true positive (TP)
and no false positives (FP). The definition of these metrics is further elabo-
rated in 2.6

2.6 Metrics of the Detector Performance and
Threshold Selection

Three metrics were used to evaluate the ability of the system to reliably detect
movement intentions. The TP rate was defined as the percentage of trials with
a movement detection in the time interval from -0.75 s to +0.75 s with respect
to the movement onset. The precision of the detector was characterized as
the number of FP per minute (rate of detections during the resting intervals).
Therefore, one or more false activations could be encountered in a single trial.
The percentage of GT was obtained by counting the amount of trials in which
no FP were generated and a TP was achieved. Finally, the latencies of the
detections of the onsets of movements were also computed to analyze the
time accuracy of the system.

3 Results

The average BP observed in all subjects is shown in Fig. 1. The average
(across subjects) BP peak was found at -19.8 ± 57.6 ms with respect to the
onset of the movements. An homogeneous BP pattern could be found in all
measured subjects. In addition, Fig. 2 presents the spatial distribution of the
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Fig. 1 Average BP of all subjects (discontinuous lines, and average BP across
subjects (solid line)

ERD and BP patterns for all subjects measured. Unlike with the BP, the
ERD presented visible variations in terms of spatial distribution, although,
in general, a contralateral predominance was observed.

The results obtained in the detection of the onsets of movements using the
proposed methodology are summarized in Table 1. On average, in 63.3±13.8
% of the trials the movement was detected and no previous false activations
were generated in the same trial. In addition, 74.5±10.8 % of the movements
were detected with a rate of 1.32±0.87 false activations per minute during
the resting intervals.

The average latency of the TP was -89.9 ± 349.2 ms. The histogram of the
latencies of all detections is shown in Fig. 3. The figure shows a tendency of
the detections to anticipate the actual onsets of the movements.
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βERD BPαERD

Fig. 2 First and second columns show the patial distribution of the α-ERD (be-
tween 8-12 Hz) and β-ERD (between 13-30 Hz) obtained by comparing a window
of 1.5 s ending at the movement onset with an equivalent window 4 s before the
onset. The third column shows the spatial distribution of the BP peak amplitude.
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Fig. 3 Latencies of the TP with respect to the actual onsets of the movements

Table 1 Results obtained with all subjects and average results

Code GT (%) TP (%) FP/min Latency (ms)

C1 81.3 82.8 0.47 -48±351
C2 63.8 81.0 1.34 -24±278
C3 39.0 56.1 2.63 -180±476
C4 64.6 70.8 0.38 -198±322
C5 69.8 84.9 1.13 -3±388
C6 61.5 71.2 1.96 -164±290

Average 63.3±13.8 74.5±10.8 1.32±0.87 -89±349

4 Discussion and Conclusions

A methodology to detect the onset of voluntary movements with time preci-
sion based on the EEG activity has been proposed. The novelty of the study
lies in the combination of the two most well-known movement related cortical
patterns: the ERD and the BP. These patterns are known to reflect different
underlying aspects of the motor planning process [18, 15]. Therefore, it is ex-
pected that a successful fusion of them may result in an improved estimation
of the onset of voluntary movement events, specially in those cases in which
either the ERD or the BP is not reliably detected in a given subject [19]. The
results obtained with the here proposed detector point to an improvement
in the temporal accuracy of the estimations, as compared with other similar
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online-feasible techniques [14]. Nevertheless, the use of a significantly higher
number of electrode positions to detect ERD information in this study makes
it less suitable for clinical applications. Therefore, it should be further studied
the detection improvement associated with different number of EEG chan-
nels and how significantly the ERD-based classifier improves the detection of
movement intentions.

The use of gyroscopes to detect movement events has proven to be ade-
quate for functional tasks (as the reaching movements used for the present
experiments) since the average BP patterns show similar latencies than the
ones observed in studies using the electromyographic activity to detect move-
ment events.

In future studies it should be studied how reliably can this kind of EEG-
based systems work with patients suffering from brain damages (as stroke
patients), and how would a patient react to an external stimulus (electrical
or mechanical) driven by a system as the detector proposed here.
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