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Abstract² This paper focuses on the classification of motor 

imagery tasks from electroencephalogram (EEG) for brain 

computer interfaces (BCI). A new processing algorithm based 

on filter bank common spatial pattern (FBCSP) is presented. 

Analytic common spatial pattern (ACSP) and adaptive 

classification are introduced to investigate whether they can 

improve the performance. Four versions of FBCSP, namely, 

common spatial pattern (CSP) and ACSP with static or 

adaptive classification are studied. The session-to-session 

performances of the proposed approaches are evaluated on a 4-

class problem posed in the BCI Competition IV dataset 2a. Our 

results demonstrate the effectiveness of the proposed methods in 

comparison to the winner of the BCI Competition IV Dataset 2a 

as well as other more recent studies using this dataset. Adaptive 

classification yields a higher kappa value of 0.61 compared to 

0.57 for multiclass FBCSP algorithm. ACSP further improves 

the performance achieving a mean kappa of 0.63.  

I. INTRODUCTION 

A brain-computer interface (BCI) based on 
electroencephalogram (EEG) is a system that enables 
humans to interact with their surroundings, without the 
involvement of peripheral nerves and muscles, by using 
control signals generated from EEG activity [1]. BCIs create 
an alternative non-PXVFXODU�SDWKZD\�IRU�UHOD\LQJ�D�SHUVRQ¶V�
intentions to external devices such as computers, speech 
synthesizers, assistive appliances, and neural prostheses 
amongst many others.  

One type of BCI is based on the analysis of EEG signals 
that are dependent on motor imagery. Motor imagery tasks 
result in modulation of sensorimotor brain signals known as 
event-related desynchronization/synchronization (ERD/ERS) 
[2]. Common spatial pattern (CSP) is a successful method 
for ERD/ERS detection and motor imagery classification [3]. 
CSP processes multichannel EEG signals to design optimal 
spatial filters that maximize the variance for one class of data 
and minimize the variance for the other. The spatial patterns 
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that result from the CSP algorithm highlight the underlying 
neuronal activity that is most relevant in distinguishing 
between motor tasks. However, CSP has the limitation that 
the phase differences between spatial locations are not 
processed explicitly. Several studies indicate that phase can 
contain useful information for discerning the types of motor 
imagery action. High degree of correlation has been 
demonstrated between ERD/ERS events and phase-based 
features such as phase locking value (PLV) [4], delta-phase 
[5], and spectral coherence [4]. Then, we use analytic 
common spatial pattern (ACSP) that considers an analytic 
representation of the EEG data. Analytic signal allows the 
representation of magnitude and phase characteristics. ACSP 
was firstly used by Falzon et al. [6] for steady state visual 
evoked potentials (SSVEP) discrimination. In this study, we 
assess the use of ACSP in multiclass sensorimotor rhythm-
based BCIs. 

On the other hand, a major challenge for BCI research is 
the non-stationarity of brain activity. Diverse behavioral and 
mental states continuously change the statistical properties of 
brain signals [7]. BCI systems are usually calibrated by users 
through supervised learning using a labeled dataset. 
However, patterns observed in the experimental samples 
during calibration sessions may be different from those 
recorded during online sessions. Therefore, adaptive 
algorithms are a very important issue for improving BCI 
accuracy. Several machine learning techniques have been 
attempted to address the non-stationarity in BCI. These 
algorithms can be classified into two main approaches [8]: 
the methods that improve the model to be robust against the 
changes [9, 10] and the methods that adapt the models to the 
changes [8, 11]. In this work, we apply a method that 
belongs to the second approach. A processing stage that 
performs adaptation related-tasks is introduced before 
classification stage. Features extracted are processed before 
classification in order to reduce the small fluctuations 
between training and evaluation data. Thereby, the same 
classification model for training and evaluation sessions can 
be used reducing the loss of performance as a result of non-
stationarity.  

The aims of this study are to use the ACSP algorithm and 
apply an adaptive classification algorithm to investigate 
whether both of them can improve the performance of 
multiclass motor imagery-based BCIs. The algorithms are 
evaluated on the BCI Competition IV dataset 2a [12]. We 
compare our approaches to the best performing method in 
BCI Competition IV [13] as well as a number of more recent 
studies using this dataset [14, 15]. 
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Figure 1. Architecture of the algorithm for the training and evaluation 
phases. The architecture is based on FBCSP. 

II.  BCI COMPETITION IV DATASET 2A DESCRIPTION 

The BCI Competition IV dataset 2a challenges the 
session-to-session transfer. This dataset contains EEG 
signals from 9 subjects performing 4 classes of motor 
imagery, namely, left hand, right hand, feet, and tongue [16]. 
Each subject participated two sessions: one for training and 
the other for evaluation. 22 EEG channels and 3 monopolar 
electrooculogram (EOG) channels (with left mastoid serving 
as reference) were used to record the EEG signals that were 
sampled at 250 Hz and filtered between 0.5 and 100 Hz. A 
50 Hz notch filter was enabled to suppress line noise. For 
more details refer to Naeem et al. [16]. 

III. PROPOSED METHOD 

The architecture of the proposed algorithm is illustrated 
in Fig. 1. It is based on filter bank common spatial patterns 
(FBCSP) [13] and comprises five consecutive stages: 
multiple bandpass filtering using finite impulse response 
(FIR) filters, spatial filtering using the ACSP algorithm, 
feature selection, adaptive processing and classification of 
the selected ACSP features. 

A. Band-pass filtering 

The first stage employs a filter bank that decomposes the 
EEG signals into 9 frequency pass bands, namely, 4-8 Hz, 8-
12 Hz�«�� 36-40 Hz [13]. Every filter has a finite impulse 
response designed by means of Kaiser Window. The 
transition bandwidth is set at 1 Hz. We tested others 
configurations, which are also effective, but this transition 
bandwidth yields a reasonable order filter and discriminative 
capacity between frequency bands. 

B. Analytic Common Spatial Patterns 

The second stage of feature extraction performs spatial 
filtering using ACSP algorithm for each band-pass signal. 
Similarly to the CSP algorithm, the aim of the ACSP method 
is to discriminate between two classes of data by determining 
a set of spatial filters that maximize the variance for one 
class of data, while minimizing the variance for the other. 
However, ACSP can deal with the complex-valued variance, 
which can be more informative than the real-valued 

counterpart [6]. ACSP has been devised for the analysis of 
multichannel data belonging to 2-class problems. 
Consequently, it is necessary to set up ACSP filters based on 
the trials for each class versus the trials for all other classes. 

1) Analytic signal representation 

ACSP involves the computation of the analytic signal 
representation of the filtered EEG channels [6]. For a real-
valued signal s(t), the analytic signal is given by 

)(~)()( tsjtstz � ,         (1) 

where )(~ ts  is the Hilbert transform of a signal )(ts given by 

³ �
 W

W
W

S
d

t

s
vpts

)(
..

1
)(~  .       (2) 

p.v. denotes the Cauchy principal value.  

2) Spatial filtering 

Given the analytic representation of a single trial EEG 
�Z '

NxT, where N is the number of channels and T is the 
number of samples per channel, ACSP calculates the 
normalized complex-valued covariance matrix C [6] 

)( *

*

ZZtrace

ZZ
C            (3) 

In the above expression, * represents the hermitian 
transposition.  

ACSP calculates the mean spatial covariances 1C and 

2C for each of the two classes by averaging the spatial 
covariances over the successive training trials of each class 
over time. Then, complex-valued spatial filters W can be 
calculated from class-related mean spatial covariances by 
solving an eigenvalue decomposition problem [13] 

WDCCWC )( 211 � ,        (4) 

where D is the diagonal matrix that contains the eigenvalues 

of 1C . The spatial filtered signal Y can be obtained from the 
analytic representation of EEG trial Z as  

WZY  .          (5) 

There are as many spatial filters as EEG channels. All 
spatial filters of W are not relevant for subsequent 
classification. The first 2 and the last 2 columns of W are 
selected [6]. The normalized features for each frequency 
band are obtained as [13] 

      
»
»
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¬

ª
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~~
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log
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T

T

x ,      (6) 

whereW
~

represents a matrix having the selected spatial 
filters of W. Finally, the 16 features of the 9 frequency bands 
for a single-trial are concatenated to form a single feature 
vector of 144 features [13]. 
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C. Feature selection  

After spatial filtering, a feature selection algorithm is 
employed to select the most discriminative features. Mutual 
Information-based Best Individual Feature (MIBIF) 
algorithm is used [13]. MIBIF involves the computation of 
the mutual information of each feature and class labels. The 
features with higher mutual information are selected. In this 
work, the number of selected features is set heuristically to 
40. 

D. Classification 

The classification stage decides the class to which the 
feature vectors belong. A probabilistic generative model is 
used [17]. A stage performing adaptation related-processing 
is introduced before classification in order to reduce the 
small fluctuations between training and evaluation data. It is 
important to note that only the adaptive processing stage 
before classification performs the adaptive-related tasks. The 
classification model remains unchanged in both training and 
evaluation sessions. 

1) Adaptive processing  

The adaptive processing stage centers every incoming 
data by subtracting the global mean. Firstly, the global mean 
is estimated from the whole training data. Across the 
evaluation session, the global mean PC is updated in a casual 
manner with the following exponential update rule [11] 

),(�)1(�)1(),(� 1C tnntn x����K� ,    (7) 

where x(n,t) is the current input feature vector of the n
th 

evaluation trial at the time t and � is the update coefficient. 
The update coefficient is fixed to K� ����� for all subjects as 
was suggested by Vidaurre et al. [11]. 

2) Probabilistic generative model 

We adopt a generative approach to classify each feature 
vector x into a specific class y. Posterior probabilities P(y|x) 
DUH�FRPSXWHG�WKURXJK�WKH�%D\HV¶�UXOH�[17] 

¦
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In the above expression, it is assumed that the class-
conditional densities P(y|x) are Gaussian and all classes have 
the same probability of occurrence, P(y = 1,2,3,4) = 0.25. 
Then, the density for each class is given by  

)]()(
2

1
exp[

)2(

1
)|( 1
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¦

 �

S
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where Pi is the estimated mean of class i and 6�is the 
estimated common covariance matrix. Both of them can be 
computed from the training samples using maximum 
likelihood [17]. Finally, the feature vector x is assigned to 
class y with the following maximum a posteriori (MAP) rule 
[17] 

)|(maxarg
4,3,2,1

xypy
y 

 .         (10) 

IV. RESULTS 

The session-to-session transfers of CSP and ACSP 
algorithms with static and adaptive processing are evaluated 
on the dataset 2a from BCI Competition 2008 and compared 
with the winner in this dataset [13] as well as other recently 
published methods [14, 15]. As the organizers of competition 
[12], Cohen's kappa coefficient is used to quantify the 
performance. The results are presented in Table 1. For the 
purpose of ensuring a fair comparison, we include all 
possible alternatives. Firstly, it can be observed that the 
introduction of ACSP yields a higher mean kappa value of 
0.59 compared to 0.57 for our baseline CSP algorithm. 
Compared to CSP, ACSP improves the kappa value for 6 out 
of the 9 subjects. Secondly, the adaptive processing further 
increases the mean kappa value of ACSP approach from 0.59 
to 0.63. Likewise, it is worth highlighting that the 
performance also improves using adaptive processing stage 
without ACSP but it is lower than the one produced using 
both ACSP and adaptive processing. Regarding other 
previously published methods, the approaches using adaptive 
processing stage outperform all of them. As well, ACSP 
without adaptation produces a higher mean kappa value than 
FBCSP and Wang et al.  

Fig. 2 illustrates the most discriminant spatial filters 
obtained for the subject A3 using CSP and ACSP. It can be 
observed that the amplitudes of the coefficients are very 
similar for both methods. However, the additional phase 
patterns obtained from the ACSP spatial filter show a 
gradual change in phase. In contrast to CSP, ACSP can be 
used to obtain the phase differences between various spatial 
locations. CSP spatial filters presents only negative and 
positive coefficients, that is, -S�and S phases. 

V. DISCUSSION AND CONCLUSIONS 

This study is concerned about the problem of imaginary 
motor tasks classification for EEG-based BCI. We 
considered two issues to increase the performance: (i) the 
complex-valued spatial filtering in order to combine the 
amplitude and phase information and (ii) adaptive 
classification to follow the inherent non-stationarity in brain 
signals. Four approaches, namely, CSP and ACSP with static 
or adaptive classification were assessed on a multiclass 

TABLE I. PERFORMANCE IN TERMS OF COHEN'S KAPPA COEFFICIENT FOR 

FBCSP, WANG ET AL., KAM ET AL., CSP, AND ACSP. 

Method 
Subjects 

A1 A2 A3 A4 A5 A6 A7 A8 A9 AVG 

FBCSP 
[13] 

0.68 0.42 0.75 0.48 0.40 0.27 0.77 0.75 0.61 0.57 

Wang et al. 
[14] 

0.56 0.41 0.43 0.41 0.68 0.48 0.80 0.72 0.63 0.57 

Kam et al. 
[15] 

0.74 0.35 0.76 0.53 0.38 0.31 0.84 0.74 0.74 0.60 

CSP  0.69 0.37 0.84 0.57 0.34 0.21 0.71 0.77 0.60 0.57 

ACSP 0.75 0.36 0.85 0.58 0.37 0.30 0.69 0.76 0.68 0.59 

CSP + 
Adapt.  

0.73 0.41 0.81 0.58 0.42 0.27 0.80 0.79 0.69 0.61 

ACSP + 
Adapt. 

0.77 0.39 0.85 0.60 0.43 0.31 0.79 0.77 0.72 0.63 
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problem posed in the BCI Competition IV dataset 2a. The 
performances were compared against the winner of the 
competition as well as other published methods. Our results 
indicates that the use of the ACSP method and adaptive 
classification increase the classification accuracy. 

The reason behind the improvement produced by the 
ACSP method is that complex-valued spatial filters are 
computed. In contrast to CSP, ACSP spatial filtering 
introduces both a scalar multiplication and a phase shift. It 
allows processing simultaneously both magnitude and phase 
EEG characteristics. Therefore, while CSP method overlooks 
the phase differences between the spatial locations, ACSP 
captures the amplitude and phase differences across 
electrodes. This improvement suggests that spatial filters 
obtained from ACSP can provide additional further insight 
on phase relationships between various cortical regions 
during the performance of mental tasks. Effectively, our 
results suggest that ACSP led to a more robust motor 
imagery classification than the standard CSP method.  

The adaptive processing stage reduces the loss of 
accuracy in the subsequent classification stage as a result of 
non-stationarity in brain signals. The adaptive stage reduces 
the small fluctuations in the global mean throughout the 
evaluation sessions. These fluctuations are unrelated to task 
and, accordingly, can be addressed in an unsupervised 
manner. Adaptive processing before classification enables 
the use of the same classification model for training and 
evaluation sessions. 

Some limitations of this study have to be considered. 
Regarding the ACSP method, the analytic signal 
representation by means of Hilbert transformation is only 
well-behaved for narrow band signals. Band-pass filtered 
signals fulfil only partially this requirement. Regarding 
adaptive classification, exponential update rule requires both 
classes to be equally likely [11]. Additionally, the 
exponential rule presents the difficulty of the proper choice 
of the update coefficient �. Finally, the number of 
characteristics was set heuristically. Future work should use 
other methods that provide narrow band signals instead of a 
band-pass filter bank, explore more sophisticated adaptive 
procedures than the exponential rule and employ a feature 
selection method that optimizes the number of selected 
features for each subject. 

In summary, the use of a variant of the CSP method 
based on the analytic representation of EEG signals and an 
adaptive classification approach that separates adaptive-
related tasks from classification have been tested on BCI 
Competition IV dataset 2a. Beyond its limitations, this study 
provides evidences that the ACSP algorithm can improve the 
performance of sensorimotor rhythms-based BCIs as a result 
of considering a complex representation of the EEG signals. 
Likewise, adaptive classification was found to yield a 
superior performance for features extracted from motor 
imagery brain signals.  
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Figure 2. The most discriminant spatial filter obtained for the subject A3 
using the CSP and ACSP methods. The complex-valued ACSP spatial 
filter can be split into a magnitude and a phase component as represented 
by the spatial map on the right. The phase component is shown in radians 
from -S�to S. 
 

1087


	Start
	Author
	MAIN MENU
	Help
	Search
	Search Results
	Print
	Keyword Index
	Program in Chronological Order
	Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z


	EMBS
	MAIN MENU
	Help
	Search
	Search Results
	Print

	387_0305
	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings true
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice



 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20120516081844
       792.0000
       US Letter
       Blank
       612.0000
          

     Tall
     1
     0
     No
     675
     320
     None
     Up
     0.0000
     0.0000
            
                
         Both
         AllDoc
              

      
       PDDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     4
     3
     4
      

   1
  

 HistoryList_V1
 qi2base





