AdaBoost Classification to Detect Sleep Apnea from Airflow Recordings
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Abstract—In this paper, we focus on the automatic detection
of sleep apnea-hypopnea syndrome (SAHS) from single-
channel airflow (AF) recordings. Spectral data from a very low
frequency band of AF is used to feed classifiers based on linear
discriminant analysis (LDA). These are iteratively obtained
through the AdaBoost. M1 (ABM1) algorithm, which combines
their performance in order to reach a higher diagnostic ability.
We built an ABM1-LDA model, using a training set, which
showed generalization ability as well as high diagnostic statis-
tics in an independent test set (94.1% sensitivity, 85.7%
specificity, and 92.7% accuracy). These results outperform
those from recent studies focused on scoring apneas and hi-
popneas. Hence, the utility of our approach to assist in SAHS
diagnosis is showed.

Keywords—sleep apnea hypopnea syndrome, airflow,
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I. INTRODUCTION

The sleep apnea-hypopnea syndrome (SAHS) is a preva-
lent illness that affects both health and life quality of
diseased [1]. Patients suffering from SAHS experiment
recurrent episodes of complete cessation (apneas) and sig-
nificant reduction (hypopneas) of airflow (AF) during sleep
[2]. Apneas and hypopneas lead to oxygen desaturations
and arousals [3], which avoid resting while sleeping. Inade-
quate rest derives in poor life quality due to daytime symp-
toms such as hypersomnolence, cognitive impairment, and
depression [1]. Some of them have been related to occupa-
tional accidents and motor vehicle collisions [4], [5]. More-
over, SAHS is usually associated with major cardiovascular
diseases such as stroke, myocardial infarction, cardiac fail-
ure, and hypertension [3]. Recently, it has been also related
to an increase in cancer incidence [6].

The “gold standard” for SAHS diagnosis is overnight po-
lysomnography (PSG) [7]. Despite its effectiveness, the PSG
is a complex test since it requires monitoring and recording
multiple physiological signals from subjects during sleep,
such as electroencephalogram (EEG), electrocardiogram
(ECQG), oxygen saturation of hemoglobin (SpO,) or airflow
(AF) [7]. 1t is also costly due to the expensive equipments
and specialized workforce required for the acquisition of the
signals and the patients’ care, respectively [2]. Furthermore,
physicians must perform an offline inspection of the record-
ings in order to derive the apnea-hypopnea index (AHI), the

parameter used to establish SAHS severity. Hence, PSG is
also time-consuming [2]. These drawbacks, in turn, lead to
increased time to reach diagnosis and treatment due to large
waiting lists [2].

The search for diagnostic alternatives has mainly relied
on studying a reduced set of signals from PSG [2]. The
automatic analysis of a single signal has been proposed in
order to minimize complexity, cost, and time of the test [2].
This approach facilitates the implementation of diagnostic
portable devices. Since AF is directly modified by apneas
and hypopneas [8], its investigation is a natural way of
dealing with the problem of SAHS detection. A number of
studies aimed at diagnosing SAHS in time domain from
single-channel AF by automatic scoring of apneas and hy-
popneas [9]-[11]. Alternatively, due to the recurrence of
apneic events, we propose a global analysis of AF record-
ings in the frequency domain.

Previous studies showed the usefulness of data from the
very low frequency band of AF spectrum to help in SAHS
diagnosis [12], [13]. Thus, our first step is to characterize
this band by the extraction of several spectral features.
Then, we propose the use of AdaBoost.M1 (ABM1) along
with linear discriminant analysis (LDA) in order to classify
the spectral data. ABM1 is a boosting algorithm commonly
used to combine the diagnostic ability of several weak clas-
sifiers to reach generalized models [14]. LDA, which acts as
the weak classifier, has been already used to detect SAHS
from oximetry recordings [15].

In this study, the ability of the proposed methodology to
help in SAHS diagnosis is assessed. Our hypothesis is that
the information contained in the very low frequency band of
single-channel AF can be used along with the generalization
ability of ABM1 to accurately detect SAHS.

1. POPULATION AND SIGNAL UNDER STUDY

This study involved overnight AF recordings from 104
subjects: 86 disecased (SAHS-positive) and 18 non-diseased
(SAHS-negative). The recordings were acquired during the
PSG, which was performed using a polygraph (E-Series,
Compumedics) in the sleep unit of the Hospital Universitario
Rio Hortega (Valladolid, Spain). The sensor used to obtain
AF was a nasal prong pressure (NPP) and the sample rate was
128 Hz. All the subjects were suspected of suffering from
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SAHS before undergoing PSG due to common symptoms
such as daytime sleepiness, loud snoring, nocturnal choking
and awakenings, and referring apneic events. Physicians
scored apneas and hypopneas according to the American
Academy of Sleep Medicine (AASM) rules [8]. They estab-
lished AHI = 10 events per hour (e/h) as the threshold for a
positive diagnosis. Subjects were randomly divided into a
training set (60%) and a test set (40%). All of them gave their
informed consent to participate in the study and the Review
Board on Human Studies accepted the protocol. Table 1
shows demographic and clinical data of the subjects, such as
body mass index (BMI) or age (mean * standard deviation),
from the entire set and each group.

1. METHODS

Our methodology uses data from the very low frequency
components of AF power spectral density (PSD) to feed
several LDA classifiers. These were obtained iteratively,
through ABM1, in order to combine the diagnostic ability of
all classifiers and improve the overall performance.

A. Power Spectral Density and Feature Extraction

A PSD for each AF recording was estimated by the
Welch periodogram, which is suitable for non-stationary
signals [16]. We used 50% overlap, a Hamming window
with 2" samples, and a discrete Fourier transform (DFT) of
2'® points. PSDs were normalized (PSDn) by dividing the
amplitude at each frequency by the total spectral power of
the signal. Figure 1 shows the averaged PSDns for the
SAHS-positive and SAHS-negative groups in the training
set. As reported in previous studies [12], [13], there exists a
PSD increase in the very low frequency components of the
SAHS-positive subjects. Since apneic events last 10 seconds
or more [8], their corresponding frequency components are
located in the range 0.01-0.10 Hz. Hence, we characterized
it by extracting five common features:

e  First-to-fourth statistical moments in frequency domain
(Mf-Mf,), corresponding to mean, standard deviation,
skewness, and kurtosis in the band 0.01-0.10 Hz.

e Peak amplitude (PA), which corresponds to the local
maximum in the band 0.01-0.10 Hz.

Mf-Mf; and PA values from each subject were stored in-
to an associated vector, x; €x, with i =1, 2,..., N, where N
is the total number of subjects, and x is the whole dataset.

B. Linear Discriminant Analysis

LDA is a supervised classifier which assigns data, x, into
one out of k classes, C;. It relies on the assumption that the
conditional class density function of each class, p(x|Cy),
follows a multivariate normal distribution (normality), with
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Table 1 Demographic and clinical data
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All SAHS-negative  SAHS-positive
All subijects
# Subjects 104 18 86
Age (years) 52.1+15.0 423+12.8 54.1+14.7
Men (%) 73 (70.2) 12 (66.7) 61(70.9)
BMI (kg/m®) 31.2+6.2 293+6.1 31.6+6.1
AHI (e/h) - 62+2.3 44.6 +26.9
Training set
# Subjects 63 11 52
Age (years) 51.5+15.6 42.2+13.1 53.6+15.4
Men (%) 44 (69.8) 8(72.7) 36 (69.2)
BMI (kg/m’) 30.3+5.9 28.8 + 6.4 30.7+5.8
AHI (e/h) - 6.7+1.3 43.6+27.5
Test set
# Subjects 41 7 34
Age (years) 529+14.2 43.6+14.1 549+13.7
Men (%) 29 (70.7) 4(57.1) 25(73.5)
BMI (kg/m?) 32.5+6.4 30.5+6.4 32.8+6.4
AHI (e/h) - 52+3.1 46.0+26.3
5 i Characterized band
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Fig. 1 Averaged PSDn for SAHS-positive and SAHS-negative
subjects in the training set

identical covariance matrices, X, for all the classes (homo-
cedasticity) [17]. A discriminant score y,(x) is computed for
each class following [15]:

_ 1 -
V()= IX—EH@ W, +InP(C), )

where ;. is the mean vector for class C; and P(Cy) its cor-
responding prior probability, i.e., the initial proportion of
vectors X; belonging to class C;. Since we only consider two
classes (SAHS-positive and SAHS negative), the classifica-
tion task is performed by the decision rule, “assign a new
vector X; to the class Cj; if yk(x,):rl{}%(yk(xi) 7, In our

study, P(Cy), W, and X were computed from the training set,
since they form the LDA model.
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C. AdaBoost. M1

Boosting procedures are iterative algorithms designed to
combine models that complement one another [14]. These
techniques combine models of the same type using a
weighted vote of the prediction from each one [14], [17].
AdaBoost. M1 (adaptive boosting, ABM1) is a widely used
method to perform boosting, originally developed by
Freund and Schapire [18]. ABM1 can be used along with
any classifier [14]. However, applying ABMI1 to too-
complex ones could lead to a poor performance when clas-
sifying new data [14]. Hence, simple procedures known as
weak classifiers, such as LDA, are preferable [14].

ABM1 starts assigning the same weight, w;, to each in-
stance or vector X; in the training set. Typically, 1/N,, is used
[17], being N, the number of training instances. The itera-
tive process begins by assessing the performance of the first
classifier when assigning weighted instances into the right
class. Thus, an error, & is computed by dividing the sum of
the weights of the misclassified instances by the total
weights of all instances [14]. This error is used to determine
a weight, ¢, for the current m-classifier following:

:lnl_g’”

a
m g (2)

m

Then, the weights of the misclassified instances are updated
by the expression:

w; w;- (3)

m+l

Next, all the weights w"" are normalized in order to sum

the same as the previous ones,w!", and an additional clas-

sifier is assessed using the updated weighted instances [14].
The iterative process automatically ends when &, = 0 or &,
> 0.5. The updating of w; provides higher values to those
instances misclassified during the previous iteration [14].
Hence, the new classifier provides these instances with
more relevance, being more likely to classify them rightly
[14]. The final classification task is performed by returning
the class Cy with the highest sum of the votes along all clas-
sifiers, weighted by the corresponding ¢, value. Thus, those
classifiers with smaller &, contribute more to the final deci-
sion. It has been proved that using the given expressions for
& w;, and ¢, is equivalent to a sequential minimization of
the exponential error function [17].

D. Statistical Analysis

The diagnostic ability of each single spectral features, a
conventional LDA classifier, and ABMI-LDA were as-
sessed in terms of sensitivity (Se, proportion of diseased
subjects rightly classified), specificity (Sp, proportion of
non-diseased subjects rightly classified), and accuracy (Acc,
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proportion of all subjects rightly classified). To find an
optimum threshold, u,, for the assessment of each single
feature, a receiver operating-characteristics (ROC) analysis
was done. For each feature, u, was selected in the training
set according to the minimum Euclidean distance between
the pair (Se, 1-Sp) and the point (1, 0).

IV. RESULTS

ABM1 iteratively formed five LDA models until satisfy-
ing the stopping criterion (&, = 0 or &, > 0.5). These were
obtained from the instances in the training set. Table 2
shows the performance of each one, its corresponding £ and
o values, and the performance of ABM1. The LDA with the
lowest € value was reached at iteration # 1. Hence, its con-
tribution to the final voting, ¢, was the highest. None of the
single classifiers outperformed ABMI-LDA in terms of
accuracy (84.1%). The five LDA models were subsequently
applied to the test instances. Their predictions were consi-
dered according to each ¢, in order to perform the final
classification. Table 3 summarizes the diagnostic perfor-
mance of ABM1-LDA, every single feature, and a conven-
tional LDA in the test set. It also shows the optimum thre-
sholds u, to classify the subjects by the use of single
features. As expected, ABM1-LDA generalizes better since
it widely outperformed each single feature and LDA. It
improved the performance of ABMI-LDA in the training
set as well. ABM1-LDA not only reached the highest accu-
racy (92.7%), but also achieved a balanced sensitivi-
ty/specificity pair (94.1% / 85.7%, respectively).

V. DISCUSSION AND CONCLUSIONS

We obtained an ABM1 model to detect SAHS. It was
composed of five LDA classifiers and was developed using
features from a very low spectral band in AF (0.01-0.10
Hz). Our model showed high generalization ability, reach-
ing high diagnostic performance when applied to indepen-
dent test data (94.1% Se, 85.7% Sp, and 92.7% Acc).

Recent studies addressed the automatic diagnosis of
SAHS through single-channel AF [9]-[11]. The common
aim was to detect and score respiratory events in AF time
series. These studies involved from 59 to 131 subjects and
reported Se, Sp, and Acc values ranging 80.4-91.5 %, 82.3-
87.5 %, and 81.2-89.3 %, respectively [9]-[11]. When using
single-channel AF, the event-by-event approach scores AF
reductions which are not truly hypopneas, since they should
be accompanied by a 3% or more decrease in SpO, [8].
Alternatively, the very low spectral band that we used was
previously related to desaturations [12]. This could be a
reason for our higher results. However, further investigation
is required to address this issue.
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Table 2 Performance of each LDA classifier and ABM1-LDA (Training set)

£ o Se(%) Sp(%)  Acc(%)
LDA iteration 0.175 1553  98.1 1.0 82.5
#2 0355 0598  63.5 727 65.1
#3 0277 0961 750  81.8 76.2
#4 0407 0378 769 364 69.8
#5 0372 0523 692  63.6 68.2
ABMI-LDA - - 904 545 84.1

Table 3 Diagnostic ability of single features, LDA, and ABM1-LDA (Test set)

) Se(%) Sp(%) Acc(%)
PA 0.269 76.5 85.7 82.9
Mf; 0.184 70.6 100.0 75.6
Mf> 0.040 70.6 85.7 73.2
Mf; 0.549 82.3 71.4 80.5
Mf; 2.816 76.5 71.4 75.6
LDA - 100.0 14.3 85.3
ABMI-LDA - 94.1 85.7 92.7

In spite of the effectiveness showed by our methodology,
some limitations need to be addressed. First, more subjects
are required to increase the statistical power of our results.
Accordingly, the number of SAHS-negative subjects should
be higher. However, our sample reflects a realistic propor-
tion of diseased and non-diseased subjects who undergo
PSG. Finally, several weak classifiers could be used along
with ABM1 and newer versions of AdaBoost. The assess-
ment of an optimum combination of classifiers and boosting
algorithms to help in SAHS diagnosis is a future goal.

Summarizing, the usefulness of AF spectral data from
very low frequencies was showed. We outperformed recent
studies focused on a common event-by-event scoring ap-
proach. We also obtained an ABMI1-LDA model which
achieved generalization ability as well as high accuracy,
showing its utility to help in SAHS detection.
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