
L.M. Roa Romero (ed.), XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013,  
IFMBE Proceedings 41,  

1829

DOI: 10.1007/978-3-319-00846-2_451, © Springer International Publishing Switzerland 2014  

AdaBoost Classification to Detect Sleep Apnea from Airflow Recordings 

G.C. Gutiérrez-Tobal1, D. Álvarez1, J. Gómez-Pilar1, F. del Campo1,2, and R. Hornero1 
1 Grupo de Ingeniería Biomédica, ETSI Telecomunicación, Universidad de Valladolid, Valladolid, España 

2 Hospital Universitario Rio Hortega, Valladolid, España 
 

 

 

Abstract—In this paper, we focus on the automatic detection 
of sleep apnea-hypopnea syndrome (SAHS) from single-
channel airflow (AF) recordings. Spectral data from a very low 
frequency band of AF is used to feed classifiers based on linear 
discriminant analysis (LDA). These are iteratively obtained 
through the AdaBoost.M1 (ABM1) algorithm, which combines 
their performance in order to reach a higher diagnostic ability. 
We built an ABM1-LDA model, using a training set, which 
showed generalization ability as well as high diagnostic statis-
tics in an independent test set (94.1% sensitivity, 85.7%  
specificity, and 92.7% accuracy). These results outperform 
those from recent studies focused on scoring apneas and hi-
popneas. Hence, the utility of our approach to assist in SAHS 
diagnosis is showed. 

Keywords—sleep apnea hypopnea syndrome, airflow,  
spectral analysis, linear discriminant analysis, boosting. 

I. INTRODUCTION 

The sleep apnea-hypopnea syndrome (SAHS) is a preva-
lent illness that affects both health and life quality of  
diseased [1]. Patients suffering from SAHS experiment 
recurrent episodes of complete cessation (apneas) and sig-
nificant reduction (hypopneas) of airflow (AF) during sleep 
[2]. Apneas and hypopneas lead to oxygen desaturations 
and arousals [3], which avoid resting while sleeping. Inade-
quate rest derives in poor life quality due to daytime symp-
toms such as hypersomnolence, cognitive impairment, and 
depression [1]. Some of them have been related to occupa-
tional accidents and motor vehicle collisions [4], [5]. More-
over, SAHS is usually associated with major cardiovascular 
diseases such as stroke, myocardial infarction, cardiac fail-
ure, and hypertension [3]. Recently, it has been also related 
to an increase in cancer incidence [6].   

The “gold standard” for SAHS diagnosis is overnight po-
lysomnography (PSG) [7]. Despite its effectiveness, the PSG 
is a complex test since it requires monitoring and recording 
multiple physiological signals from subjects during sleep, 
such as electroencephalogram (EEG), electrocardiogram 
(ECG), oxygen saturation of hemoglobin (SpO2) or airflow 
(AF) [7]. It is also costly due to the expensive equipments 
and specialized workforce required for the acquisition of the 
signals and the patients’ care, respectively [2]. Furthermore, 
physicians must perform an offline inspection of the record-
ings in order to derive the apnea-hypopnea index (AHI), the 

parameter used to establish SAHS severity. Hence, PSG is 
also time-consuming [2]. These drawbacks, in turn, lead to 
increased time to reach diagnosis and treatment due to large 
waiting lists [2]. 

The search for diagnostic alternatives has mainly relied 
on studying a reduced set of signals from PSG [2]. The 
automatic analysis of a single signal has been proposed in 
order to minimize complexity, cost, and time of the test [2]. 
This approach facilitates the implementation of diagnostic 
portable devices. Since AF is directly modified by apneas 
and hypopneas [8], its investigation is a natural way of 
dealing with the problem of SAHS detection. A number of 
studies aimed at diagnosing SAHS in time domain from 
single-channel AF by automatic scoring of apneas and hy-
popneas [9]-[11]. Alternatively, due to the recurrence of 
apneic events, we propose a global analysis of AF record-
ings in the frequency domain. 

Previous studies showed the usefulness of data from the 
very low frequency band of AF spectrum to help in SAHS 
diagnosis [12], [13]. Thus, our first step is to characterize 
this band by the extraction of several spectral features. 
Then, we propose the use of AdaBoost.M1 (ABM1) along 
with linear discriminant analysis (LDA) in order to classify 
the spectral data. ABM1 is a boosting algorithm commonly 
used to combine the diagnostic ability of several weak clas-
sifiers to reach generalized models [14]. LDA, which acts as 
the weak classifier, has been already used to detect SAHS 
from oximetry recordings [15]. 

In this study, the ability of the proposed methodology to 
help in SAHS diagnosis is assessed. Our hypothesis is that 
the information contained in the very low frequency band of 
single-channel AF can be used along with the generalization 
ability of ABM1 to accurately detect SAHS. 

II. POPULATION AND SIGNAL UNDER STUDY 

This study involved overnight AF recordings from 104 
subjects: 86 diseased (SAHS-positive) and 18 non-diseased 
(SAHS-negative). The recordings were acquired during the 
PSG, which was performed using a polygraph (E-Series, 
Compumedics) in the sleep unit of the Hospital Universitario 
Río Hortega (Valladolid, Spain). The sensor used to obtain 
AF was a nasal prong pressure (NPP) and the sample rate was 
128 Hz. All the subjects were suspected of suffering from 
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C. AdaBoost.M1 
Boosting procedures are iterative algorithms designed to 

combine models that complement one another [14]. These 
techniques combine models of the same type using a 
weighted vote of the prediction from each one [14], [17]. 
AdaBoost.M1 (adaptive boosting, ABM1) is a widely used 
method to perform boosting, originally developed by 
Freund and Schapire [18]. ABM1 can be used along with 
any classifier [14]. However, applying ABM1 to too-
complex ones could lead to a poor performance when clas-
sifying new data [14]. Hence, simple procedures known as 
weak classifiers, such as LDA, are preferable [14]. 

ABM1 starts assigning the same weight, wi, to each in-
stance or vector xi in the training set. Typically, 1/Ntr is used 
[17], being Ntr the number of training instances. The itera-
tive process begins by assessing the performance of the first 
classifier when assigning weighted instances into the right 
class. Thus, an error, ε, is computed by dividing the sum of 
the weights of the misclassified instances by the total 
weights of all instances [14]. This error is used to determine 
a weight, αm, for the current m-classifier following: 

αm = ln
1− εm

εm

 (2) 

Then, the weights of the misclassified instances are updated 
by the expression: 

wm+1
i = wm

i ⋅1− εm

εm

 (3)

Next, all the weights wi

m+1  are normalized in order to sum 

the same as the previous ones, wi

m , and an additional clas-
sifier is assessed using the updated weighted instances [14]. 
The iterative process automatically ends when εm = 0 or εm 
≥ 0.5. The updating of wi provides higher values to those 
instances misclassified during the previous iteration [14]. 
Hence, the new classifier provides these instances with 
more relevance, being more likely to classify them rightly 
[14]. The final classification task is performed by returning 
the class Ck with the highest sum of the votes along all clas-
sifiers, weighted by the corresponding αm value. Thus, those 
classifiers with smaller εm contribute more to the final deci-
sion. It has been proved that using the given expressions for 
ε, wi, and αm is equivalent to a sequential minimization of 
the exponential error function [17]. 

D. Statistical Analysis 
The diagnostic ability of each single spectral features, a 

conventional LDA classifier, and ABM1-LDA were as-
sessed in terms of sensitivity (Se, proportion of diseased 
subjects rightly classified), specificity (Sp, proportion of 
non-diseased subjects rightly classified), and accuracy (Acc, 

proportion of all subjects rightly classified). To find an 
optimum threshold, uo, for the assessment of each single 
feature, a receiver operating-characteristics (ROC) analysis 
was done. For each feature, uo was selected in the training 
set according to the minimum Euclidean distance between 
the pair (Se, 1-Sp) and the point (1, 0). 

IV. RESULTS  

ABM1 iteratively formed five LDA models until satisfy-
ing the stopping criterion (εm = 0 or εm ≥ 0.5). These were 
obtained from the instances in the training set. Table 2 
shows the performance of each one, its corresponding ε and 
α values, and the performance of ABM1. The LDA with the 
lowest ε value was reached at iteration # 1. Hence, its con-
tribution to the final voting, α, was the highest. None of the 
single classifiers outperformed ABM1-LDA in terms of 
accuracy (84.1%). The five LDA models were subsequently 
applied to the test instances. Their predictions were consi-
dered according to each α, in order to perform the final 
classification. Table 3 summarizes the diagnostic perfor-
mance of ABM1-LDA, every single feature, and a conven-
tional LDA in the test set. It also shows the optimum thre-
sholds uo to classify the subjects by the use of single 
features. As expected, ABM1-LDA generalizes better since 
it widely outperformed each single feature and LDA. It 
improved the performance of ABM1-LDA in the training 
set as well. ABM1-LDA not only reached the highest accu-
racy (92.7%), but also achieved a balanced sensitivi-
ty/specificity pair (94.1% / 85.7%, respectively). 

V. DISCUSSION AND CONCLUSIONS  

We obtained an ABM1 model to detect SAHS. It was 
composed of five LDA classifiers and was developed using 
features from a very low spectral band in AF (0.01-0.10 
Hz). Our model showed high generalization ability, reach-
ing high diagnostic performance when applied to indepen-
dent test data (94.1% Se, 85.7% Sp, and 92.7% Acc). 

Recent studies addressed the automatic diagnosis of 
SAHS through single-channel AF [9]-[11]. The common 
aim was to detect and score respiratory events in AF time 
series. These studies involved from 59 to 131 subjects and 
reported Se, Sp, and Acc values ranging 80.4-91.5 %, 82.3-
87.5 %, and 81.2-89.3 %, respectively [9]-[11]. When using 
single-channel AF, the event-by-event approach scores AF 
reductions which are not truly hypopneas, since they should 
be accompanied by a 3% or more decrease in SpO2 [8]. 
Alternatively, the very low spectral band that we used was 
previously related to desaturations [12]. This could be a 
reason for our higher results. However, further investigation 
is required to address this issue. 
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Table 2 Performance of each LDA classifier and ABM1-LDA (Training set)  

 ε α Se(%) Sp(%) Acc(%)
LDA iteration          0.175 1.553 98.1 1.0 82.5

# 2 0.355 0.598 63.5 72.7 65.1 
# 3 0.277 0.961 75.0 81.8 76.2 
# 4 0.407 0.378 76.9 36.4 69.8 
# 5 0.372 0.523 69.2 63.6 68.2 

ABM1-LDA - - 90.4 54.5 84.1

Table 3 Diagnostic ability of single features, LDA, and ABM1-LDA (Test set) 

 u0 Se(%) Sp(%) Acc(%)
PA 0.269 76.5 85.7 82.9
Mf1 0.184 70.6 100.0 75.6 
Mf2 0.040 70.6 85.7 73.2 
Mf3 0.549 82.3 71.4 80.5 
Mf4 2.816 76.5 71.4 75.6 
LDA - 100.0 14.3 85.3 
ABM1-LDA - 94.1 85.7 92.7 

 
In spite of the effectiveness showed by our methodology, 

some limitations need to be addressed. First, more subjects 
are required to increase the statistical power of our results. 
Accordingly, the number of SAHS-negative subjects should 
be higher. However, our sample reflects a realistic propor-
tion of diseased and non-diseased subjects who undergo 
PSG. Finally, several weak classifiers could be used along 
with ABM1 and newer versions of AdaBoost. The assess-
ment of an optimum combination of classifiers and boosting 
algorithms to help in SAHS diagnosis is a future goal.   

Summarizing, the usefulness of AF spectral data from 
very low frequencies was showed. We outperformed recent 
studies focused on a common event-by-event scoring ap-
proach. We also obtained an ABM1-LDA model which 
achieved generalization ability as well as high accuracy, 
showing its utility to help in SAHS detection. 
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