Classification Methods from Heart Rate Variability to Assist in SAHS Diagnosis
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Abstract—The aim of this study is to analyze different fea-
ture classification methods applied to heart rate variability
(HRYV) signals in order to help in sleep apnea-hypopnea syn-
drome (SAHS) diagnosis. A total of 240 recordings from pa-
tients suspected of suffering from SAHS were available. This
initial dataset was divided into training set (96 subjects) and
test set (144 subjects). For this study, spectral and nonlin-
ear features have been extracted. Spectral characteristics were
obtained from the power spectral density (PSD) from HRV
records. On the other hand, the nonlinear features were ob-
tained from HRYV records in the time domain. Afterwards, some
features were selected automatically by forward stepwise logis-
tic regression (FSLR). We constructed two classifiers based on
logistic regression (LR) and support vector machines (SVMs)
with the selected features. Our results suggest that there are
significant differences in various spectral and nonlinear param-
eters between SAHS positive and SAHS negative groups. The
highest sensitivity, specificity and accuracy values were reached
by the SVMs classifier: 70.8%, 79.2% and 73.6%, respectively.
Results showed that feature selection of optimum characteristics
from HRY signals could be useful to assist in SAHS diagnosis.

Keywords—Sleep apnea hypopnea syndrome, HRYV, stepwise
feature selection, logistic regression, support vector machines.

I. INTRODUCTION

Sleep apnea-hypopnea syndrome (SAHS) is characterized
by repetitive pharyngeal collapse during sleep, causing inter-
mittent cessations of breathing (apnea) or marked reduction
(hypopnea) in airflow [1]. These airflow interruptions are re-
lated to hypoxemia and variations in heart rate [2]. SAHS
has been usually related to major cardiovascular diseases [3],
occupational accidents, and motor-vehicle collisions [4]. Epi-
demiological studies estimate the prevalence of SAHS up to
5% of adult men in western countries [2].

Nocturnal polysomnography (PSG) is the gold standard in
SAHS diagnosis. However, it presents some drawbacks. A
high number of physiological signals and data are acquired
in each polysomnographic test. The specialist conducts an
inspection of the signals to derive the apnea-hypopnea in-
dex (AHI), which is used to determine SAHS severity. Hence,
PSG is complex, costly and time-consuming [5].

In recent years, due to limitations of the PSG, alternative
diagnostic approaches have emerged. These alternatives have
focused on automatic methods based on a reduced number
of biomedical signals. One of them is the analysis of heart
rate variability (HRV) derived from electrocardiogram (ECG)
[6, 7, 8].

In this study, we performed a feature extraction stage
where different spectral and nonlinear features were com-
puted. Then, forward stepwise logistic regression (FSLR)
were applied to automatically select optimum features. Fi-
nally, these features were classified by two methods: logistic
regression (LR) and support vector machines (SVMs).

Relative power (RP), peak amplitude (PA), spectral en-
tropy (SE) and median frequency (MF) were extracted from
the power spectral density (PSD) of HRV recordings. Three
nonlinear characteristics were also computed: central ten-
dency measure (CTM), Lempel-Ziv complexity (LZC) and
sample entropy (CTM).

Our initial hypothesis was that these features could con-
tain complementary information that could be helpful in the
diagnosis of SAHS. This study was aimed at assessing the
usefulness of the proposed techniques to obtain relevant in-
formation from HRV recordings in SAHS diagnosis.

II. DATA SET

The study population used in this work was 240 subjects.
All had typical symptomatology of suffering from SAHS.
ECG recordings were obtained through a polygraph Alice
5 of Philips Healthcare-Respironics as part of the PSG. The
signal acquisition was performed with 200 Hz of sampling
frequency. AHI was the average calculated from the number
of apneic events detected in PSG. Note that medical special-
ists have considered positive diagnosis of SHAS provided an
AHI > 10 events / hour.

A positive diagnosis of SAHS was confirmed in 160 sub-
jects. There were no differences in age and body mass index
(BMI) between SAHS positives and negatives. Table 1 sum-
marizes the clinical characteristics of both groups, including
age, sex, BMI and AHI (mean =+ standard deviation).

HRYV signals were obtained from ECG recordings. Firstly,
QRS detection algorithm was applied [9]. Next, physiologi-
cally impossible beats no fitting the following criteria were
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removed: i) 0.33s < interval between beats < 1.5s and ii)
the maximum difference between consecutive intervals were
0.66 s [2]. In order to perform spectral analysis, the HRV sig-
nal was interpolated by a linear interpolation at a frequency
of 3.41 Hz [2].

I1I. METHODOLOGY

A training set with 96 records (40%) and a test set with 144
records (60%) were randomly derived from the initial popula-
tion to developed and evaluated our algorithm. Accordingly,
the training set was used to perform feature extraction and
feature selection processes. Once LR and SVMs classifiers
were built, the test set was used to evaluate them.

A. Feature Extraction

PSD was calculated using the non-parametric Welch
method. This is suitable for the analysis of non-stationary
signals [10]. Hamming window of 2!! samples (10 minutes),
along with a 50% overlap and a 2! points PSD was used.
Then, each PSD was normalized dividing the amplitude by
its total power.

Nonlinear characteristics were obtained from HRV record-
ings in the time domain. Each signal was divided into epochs
of 500 samples corresponding to 5 minutes signal because,
during an episode of apnea, cyclical heartbeat variations usu-
ally appears periodically between 25 and 100 seconds [11].
Hence, the selection of several of this cycles is ensured. We
calculate the average of the nonlinear features extracted in all
periods of 5 minutes to obtain a single value for each feature.

Al  Spectral Parameters

Firstly, every single frequency of the PSD was analyzed to
obtain the spectral bands that showed significant differences
between SAHS positive and SAHS negative groups (p-value
< 0.01). We used Mann-Whitney U test in the training set.
Two spectral bands were obtained: B € (0.0242—0.274) Hz.
and B, € (0.0309 —0.0341) Hz. Figure 1 shows the p-value
for each frequency in the training set.

Next, four spectral features were computed from spectral
bands B; and B;:

1. RP, which is the ratio of the area enclosed under the PSD
in the frequency band to the total area under the PSD.

2. PA in the frequency band, which is the local maximum of
the spectral content in the apnea frequency range.

3. SE, which is a disorder quantifier related to the flatness
of the spectrum [12]:

J. Gémez-Pilar et al.

Table 1 Clinical data of the study population

Features All SAHS SAHS
negative positive
N° subjects 240 80 160
Age (years) 5234137 4724122 54.8+£138
Male (%) 71.5 65.0 83.8
BMI (Kg./m?) 29.8+44 278437  30.8+43
AHI (events/hour) 39+24 36.6£25.7
1
0.8+
06
=
2
“0.4r
0.2
—p-value
- p-value = 0.01
GO 0.05 0.1 0.15 0.2

Frequency (Hz.)

Fig. 1 p-value for each frequency in the training set

SE:—ij-ln(pj), (D
J

where p; is the normalized value of the PSD.
4. MF, which is defined as the spectral component which
comprises 50% of the total signal power [12].

A2 Nonlinear Parameters

Three nonlinear characteristics were computed:

1. CTM, which provides a variability measure from second
order difference plots, assigning larger values to lower
variability [13]:

1 N-2
CTM =~ 3 8(d), )

i=1

§(dy) = {1 if [(x(i+2) —x(i+ 1))+ (x(i+1) —x(i)*]/2 < p

0 otherwise

; 3

where, in our implementation, p = 0.54.

2. LZC, which is a nonparametric measure of complexity
linked with the rate of new subsequences and their repe-
tition along the original sequence [14]. ¢(n) is increased
every time a new subsequence is encountered:

LZC(n) = )
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b(n) = lim c(n) = log’: )’

3. SampEn, which quantifies irregularity in time series, with
larger values corresponding to more irregular data [15]:

ol

(5)

SampEn(m,r,N) = —1In [ 6)

where A™ and B™ are the average number of (m)-length
and (m+ 1)-length segments X,,({)(1 <i<N—m+1)
with d[X,,, (i), X (j)] < r(1 < j<N—m,j#i). Accord-

ing to [16], in our algorithm we use m = 3 and r = 0.25
because all SampEn values were different from log(0).

B. Feature Selection

Feature selection was performed using the algorithm pro-
posed by Hosmer and Lemeshow based on automatic step
forward feature selection [17].

This algorithm chooses the strongest variables in a data
set. The likelihood ratio test was used to assess statistical dif-
ferences (p-value) between nested LR models differing in one
degree of freedom. Iterative LR processes were applied to de-
scribe the relationship between a dependent variable and the
independent variables. At each iteration, the stepwise method
performs a test for backward elimination followed by a for-
ward selection procedure [17]. Features that contribute with
significant information are added to the model, whereas no
significant features are removed.

If the likelihood p-value of the likelihood ratio is less than
a threshold input oz, FSLR model includes the feature. Also
excludes features when the likelihood ratio is greater than a
threshold output oig > 0.

C. Feature Classification

In the classification stage, two classification methodolo-
gies were assessed:

1. LR relates a set of input features with a categorical de-
pendent variable. The input patterns are classified into
two mutually exclusive categories. The probability den-
sity function for the response variable can be modelled
by a Bernoulli distribution. LR classifier assigns an in-
put vector to the class with the maximum a posteriori
probability value. The maximum likelihood criterion is
used to optimize the coefficients of the independent input
features in the model.

2. SVMs map the input data into a much higher dimen-
sional space. The goal is finding an optimal separating
hyperplane between outputs belonging to two classes.
SVMs attempt to maximize the separation between the

two classes and minimize training error. This is con-
trolled by means of the regularization parameter C. In this
study a linear SVM kernel was used. C was obtained by
leave-one-out cross validation in the training set. A value
of C = 1073 was selected.

D. Statistical Analysis

Statistical differences between groups were evaluated by
means of the Mann-Whitney U test. The LR and SVM
classifiers were assessed on the test set. Sensitivity (Se),
specificity (Sp), positive predictive value (PPV), negative
predictive value (NPV) and accuracy (Ac) were computed to
quantify classification performance.

IV. RESULTS

Table 2 shows the average value (mean =+ standard
deviation) and the p-value for each feature under study in
the training set. RP, PA and SE achieved statistical signifi-
cant differences between SAHS negative and SAHS positive
groups in By and B;.

Table 3 summarizes the diagnostic results of the two clas-
sification algorithms in the test set. It can be seen that the
SVM classifier achieved higher diagnostic accuracy than the
LR model. Furthermore, the results demonstrate the utility of
performing feature selection.

V. DISCUSSION AND CONCLUSIONS

In the present study, were assessed in order to help in
SAHS diagnosis two classifiers, based on LR and SVM. In-
dependent training and test sets were used to compose and
assess each classifier. A total of 11 spectral and nonlinear fea-
tures composed the initial feature set. After the feature selec-
tion stage, 3 optimum variables were selected: PAg,, LZC and
CTM. The spectral characteristics were obtained in two very
low frequency bands, which showed significant differences.

Our results are consistent with previous studies that eval-
uated the relationship between changes in HRV (tachycar-
dia, bradycardia) and physiological changes due to periodic
hypoxia [6, 7, 8].

The optimal characteristics were extracted from the spec-
tral parameters and the nonlinear parameters, which shows
that the information is complementary. The model using
SVM performed better than LR, reaching a diagnostic
accuracy of 73.6%.

The study has some limitations that must be noted. First, it
is clear that it would be appropriate to extend the total number
of subjects and the rate of negative SAHS subjects. It would
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Table 2 Average (mean = standard deviation) for each feature under study

Features SAHS negative SAHS positive  p-value
RPg, 0.0128£0.0045  0.0205+£0.0158 < 0.01
PAp, 0.0153+£0.0100  0.0340£0.0454 < 0.01
SEp, 0.0104£0.0033  0.0153£0.0097 < 0.01
MFp, 0.0257£0.0001  0.0258 £0.0001 > 0.01
RPg, 0.0103+£0.0041  0.0161£0.0117 < 0.01
PAg, 0.0113+£0.0065 0.0255+0.0286 < 0.01
SEp, 0.0086+0.0031 0.0125+0.0076 < 0.01
MFp, 0.0325+0.0001  0.0325+0.0001 > 0.01
CTM 0.6613+0.2117  0.6923+0.1746 > 0.01
LZC 0.3727+0.0625 0.3546+0.0684 > 0.01

SampEn 0.4121+£0.0867 0.4053+0.1034 > 0.01

Table 3 Diagnostic evaluation of the classifiers (test set)

Model Se(%) Sp(%) PPV(%) NPV (%) Ac(%)
LR g, . 12c.crm 76.0 58.3 78.5 54.9 70.1
SVM ap,.12c.crmy - 70.8 79.2  87.0 56.7 73.6
LR i features) 70.8 479 747 47.2 63.2
SVM i features) 51.6 719 71.5 41.1 58.3

also be desirable to use other feature selection methods, such
as principal component analysis (PCA). Thus, it is possible
that other features also provide useful information.

In conclusion, the results reported in this study suggest
that the joint analysis of spectral and nonlinear features from
HRYV recordings obtained from ECG, automatically selected
by means of FSLR, could provide additional useful informa-
tion to help in SAHS detection.
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