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Abstract—The aim of this research was to study the organi-
zation of the brain functional network during an auditory odd-
ball task in schizophrenia (SZ). Electroencephalographic (EEG) 
activity was recorded from 31 schizophrenic patients and 38 
healthy controls. In a first step, coherence was used to estimate 
the similarity between the spectral content of each pair of elec-
trodes. In a second step, a graph was generated from the simi-
larity matrix and two network parameters were computed: the 
clustering coefficient and the path length. Our results indicate 
that SZ patients obtained lower clustering coefficient and long-
er path length variations between the baseline and the P300 
response than controls. These findings suggest an abnormal 
organization of the brain functional network in SZ.  

Keywords—Schizophrenia, coherence, graph network,  
clustering coefficient, path length. 

I. INTRODUCTION 

Schizophrenia (SZ) is a psychiatric disorder of cognition, 
characterized by a cognitive processing dysfunction [1]. It is 
accompanied by hallucinations, delusions, loss of initiative 
and cognitive impairments. Recent formulations have de-
fined SZ as a disconnection syndrome, associated to a re-
duced capacity to integrate information between different 
brain regions [2]. Some studies have addressed the interpre-
tation of functional connectivity in SZ. Magnetic resonance 
imaging (MRI) studies have shown morphological abnor-
malities of regional gray matter structures [3]. 

Neural oscillations are the main mechanism for enabling 
coordinated activity during normal brain functioning [4]. 
Oscillations in high frequency ranges (beta and gamma) 
establish synchronization in local cortical networks, whe-
reas lower frequency ranges (delta, theta and alpha) mod-
ulate long-range synchronization [4]. Coherence has been 
widely applied to electroencephalographic (EEG) signals to 
analyze the functional connectivity between brain regions 
[5]. A further approach to study the complex organization of 
the human brain network is the application of the “network 
theory” principles. A graph is a mathematical representation 
of a network, which is essentially reduced to nodes and 
connections between them. The use of a graph-theoretical 

approach has been considered potentially relevant and use-
ful, as demonstrated on several sets of brain functional net-
works [6]. Graph network analysis offers information about 
integration, segregation, connectivity and overall organiza-
tion of brain networks. For this regard, its application to 
study SZ revealed several neural network changes [3, 5–9]. 
Most of these studies have focused on resting state [8] or 
two-back working memory task [5–7]; however, the audito-
ry oddball paradigm has been used in few researches [9]. 

In the present study, the coherence was used to generate 
connectivity/similarity patterns between the spectral content 
of EEG activity from different electrodes. The aim of this 
research was to characterize some neuropathological altera-
tions associated with SZ, during an auditory oddball task, 
by means of graph network theory. 

II. MATERIALS  

A. Subjects  

Sixty-nine subjects were enrolled in the study. Thirty-one 
were SZ patients, including 20 chronic stably treated pa-
tients (CP) (12 men and 8 women, age = 40.4 ± 10.4 years, 
mean ± standard deviation, SD) and 11 minimally treated 
patients (MTP) (7 men and 4 women, age = 33.5 ± 9.9 
years, mean ± SD). MTP had not received any previous 
treatment prior to their inclusion (first episode patients) or 
they had dropped their medications for longer than 1 month. 
The diagnosis was made according to Diagnostic and statis-
tical manual of mental disorders (DSM-IV) criteria and the 
patients’ clinical status was scored using the Positive and 
Negative Syndrome (PANSS). The control group was 
formed by 38 healthy volunteers (23 men and 15 women, 
age = 33.7 ± 13.1 years, mean ± SD). 

B. EEG Recording 

EEG recordings were acquired while subjects were  
relaxed and with eyes closed. An oddball 3-stimulus para-
digm was employed with a 500 Hz-tone target, a 1000  
Hz-tone distracter and a 2000 Hz-tone standard stimulus. 
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The experiment was composed by a random series of 600 
tones with probabilities of 0.20, 0.20 and 0.60, respectively. 

The EEG was recorded using a BrainVision® equipment 
(Brain Products GmbH; Munich; Germany) formed by 17 
tin sensors mounted in an electrode cap according to the 
10/20 International System. Recordings were re-referenced 
to the average activity of all active sensors and the sampling 
rate was 250 Hz. EEG signals were filtered between 1 and 
70 Hz and a 50 Hz notch filter was applied to remove power 
line noise. Artifact rejection was conducted following a 
two-steps approach. Firstly, Independent Component  
Analysis was carried out to decompose the signal in 17 
components. Components related to eyeblinks were dis-
carded. Secondly, artifacts were automatically rejected 
using an adaptive thresholding method. To complete the 
preprocessing, each EEG recording was divided into 800 
ms–length epochs from -250 ms to 550 ms with respect to 
the stimulus onset (200 samples per epoch). 

III. METHODS 

A. Coherence Measure 

In order to quantify the differences in the spectral content 
between EEG sensors, the coherence was applied. Cohe-
rence is a measure to assess functional interplays between 
pairs of cortical regions [10]. It describes the strength of the 
correlation between two time series as a function of fre-
quency [11]. The mean square coherence (MSC) between 
two signals corresponds to their cross–spectral density func-
tion normalized by their individual auto–spectral density 
functions [10]. 

MSCXY t, f( ) =
SXY t, f( )2

SXX t, f( ) ⋅ SYY t, f( )
.  (1)

Rappelsberger et al. [12] proposed a coherence estima-
tion to retain temporal information, named event-related 
coherence (ERC). ERC is based on the assumption that the 
same patterns of physiological activity are repeated at the 
same latency trial to trial [12]. To obtain a time course of 
coherence, each EEG epoch (200 samples) was divided into 
temporal segments of 41 samples with a 90% overlapping. 
Then, 32 time intervals were obtained and coherence was 
calculated as described above. Finally, ERC values were 
averaged in the six conventional frequency bands: δ (1-4 
Hz), θ (4-8 Hz), α (8-13 Hz), β1 (13-19 Hz), β2 (19-30 Hz) 
and γ (30-70 Hz). 

B. Graph Theory 

The brain can be assimilated to a complex anatomical 
and functional network. Hence, it can be represented by  
 

means of a graph. A graph is defined as a number of nodes 
or vertices and the corresponding edges between them [13]. 
The value of each edge depends on the importance of the 
relationship between the nodes [12, 13]. 

Coherence is limited from 0 to 1. The higher the cohe-
rence values, the higher the correlation between the spectral 
content. Hence, coherence values can be applied directly to 
the edges of a graph analysis. Then, a network with N=17 
vertices (corresponding to the 17 electrodes) can be defined 
and ERC values between two electrodes be used to establish 
the edges weights (denoted as wb

ij, where b denotes the 
frequency band). A graph can be characterized using several 
parameters [11]. In this research, the clustering coefficient 
and the average path length were used. These parameters 
measure the nature of structural building blocks and sub-
networks, and the sensitivity to the level of integration in a 
network, respectively [11]. 

The clustering coefficient of a vertex i, Ci, reflects the 
presence of triangles (complete subgraphs of three vertices) 
in networks [11, 14]. It should be noted that symmetry is 
required (wb

ij = wb
ji) and 0≤wb

ij≤1 [14]. These constrains are 
fulfilled by ERC. Therefore, the clustering coefficient for 
the vertex i at each frequency band is defined as, 

Ci
b =

wik
b ⋅ wil

b ⋅ wkl
b

l≠i
l≠k


k≠i



wik
b ⋅ wil

b

l≠i
l≠k


k≠i


, b = δ,θ,α, β1, β2,γ{ }.  (2)

The average clustering coefficient, CW, for the whole 
graph at each frequency band is defined as the average of 
the clustering coefficient in the 17 nodes. 

The path length is defined as the average number of 
edges of the shortest path between pairs of edges. The 
length between two vertices i and j is defined as the inverse 
of the weight between them: b

ij
b
ij wL /1=  if 0≠b

ijw , and 

+∞=b
ijL  if wb

ij 
= 0 [14]. The path length between two 

vertices is then defined as the sum of the lengths of the 
edges of this path. The shortest path Lb

ij 
between two  

vertices i and j is the path between i and j with the  
shortest length [14]. Equation (3) shows the average  
path length of the entire graph at each frequency band.  
It is calculated using the harmonic mean. Hence, it takes 
into account infinite path lengths between isolated nodes 
(i.e. 1/∞→0) [14]. 

LW
b = 1

1
N ⋅ (N −1)

⋅ 1
Lij

b
j≠i

N


i=1

N


, b = δ,θ,α, β1, β2,γ{ }  

(3)
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C. Parameter Baseline Correction 

In order to achieve a stimulus-independent characteriza-
tion, a baseline correction process has been carried out. A 
pre-stimulus value was obtained by averaging the values in 
the interval (-250 0) ms. Likewise, a response value was 
obtained considering the (150 450) ms post–stimulus inter-
val. The baseline correction was then carried out using the 
“percent change from baseline” method [15]. For that pur-
pose, pre-stimulus mean value was subtracted from re-
sponse value and the result was divided by the pre–stimulus 
value for each subject. 

D. Statistical Analysis 

Initially, the exploratory analysis revealed that data did 
not meet parametric test assumptions. Afterwards, a two 
level statistical analysis was made. Firstly, a Wilcoxon 
signed rank test (α=0.05) was used to analyze the evolution 
in each group. In a second step, statistical significance  
between groups was assessed by means of Mann-Whitney 
U–tests (α=0.05). 

IV. RESULTS AND DISCUSSION 

Mean values of clustering coefficient and path length were 
calculated from each graph, obtaining the temporal evolu-
tion of these parameters. In a first step, a Wilcoxon signed 
rank test was applied to analyze the differences between the 
baseline and the P300 response. As Table 1 shows, controls 
reached a statistically significant increase in CW

δ  

(p<0.0001) and CW
θ  (p=0.0021), as well as a decrease in 

CW
β2  (p=0.0020), between the P300 response and the base-

line. On the other hand, Table 2 shows the path length ob-
tained at each frequency band. A significant decrease of 
LW

δ  (p=0.0032) between the P300 response and the baseline 

was obtained in CP group. In the control group, the P300 
response showed higher  values  of  LW

δ
  (p<0.0001)  

and  LW
θ   

 
Table 1 Clustering coefficient (mean ± SD) at baseline and P300 

response for each group. Only the frequency bands with statistically 
significant results are displayed. Significant p-values are marked with 

asterisks (*, p<0.05; **, p<0.01; ***, p<0.0001). 

 
Group 

 
Segment 

Frequency band 

         δ         θ         β2 

 
CP 

Baseline 0.32 ± 0.07 0.35 ± 0.08 0.30 ± 0.10 

P300 0.34 ± 0.08 * 0.35 ± 0.07 0.30 ± 0.09 

 
MTP 

Baseline 0.32 ± 0.09 0.37 ± 0.10 0.30 ± 0.08 

P300 0.34 ± 0.09 0.38 ± 0.08 0.28 ± 0.07 * 

 
C 

Baseline 0.33 ± 0.10 0.34 ± 0.10 0.31 ± 0.12 

P300 0.37 ± 0.09 *** 0.38 ± 0.08 ** 0.30 ± 0.11 ** 

Table 2 Path length (mean ± SD) at baseline and P300 response  
for each group. Only the frequency bands with statistically significant 
results are displayed. Significant p-values are marked with asterisks  

(*, p<0.05; **, p<0.01; ***, p<0.0001). 

 
Group 

 
Segment

Frequency band 

         δ         θ         β2 

 
CP 

Baseline 3.45 ± 0.74 3.12 ± 0.59 3.78 ± 0.98 

P300 3.25 ± 0.73 ** 3.12 ± 0.47 3.78 ± 0.94 

 
MTP 

Baseline 3.60 ± 0.96 3.12 ± 0.65 3.81 ± 0.77 

P300 03.35 ± 0.91 2.95 ± 0.51 3.92 ± 0.68 

 
C 

Baseline 3.54 ± 0.94 3.31 ± 0.69 3.71 ± 0.98 

P300 3.15 ± 0.75 *** 3.01 ± 0.51 *** 3.91 ± 1.06 ***

 

(p=0.0002),  as well as lower values of  (p=0.0009), 

than the baseline segment. These results suggest that the 
brain network features are altered during the auditory odd-
ball task [9].  

In a second step, baseline correction was calculated for 
each subject and results were statistically analyzed using 
Mann-Whitney U–tests. Figs. 1 and 2 summarize the mean 
clustering coefficient and path length at each frequency 
band for each group, respectively. They represented the 
relationship between the P300 response and baseline, ex-
pressed in percent of change. A positive value indicates that  
the P300 value is higher than the baseline value. On the 
contrary, a negative value indicates a lower P300 value than 
the baseline value. As Fig. 1 shows, a statistically signifi-
cant higher ΔCW

θ  (p=0.0283) was obtained in controls in 

comparison with CP. On the other hand, Fig. 2 depicts that 
controls obtained statistically significant lower ΔLW

θ  

(p=0.0049) than CP.  
Previous studies have reported that statically significant 

lower CW values in SZ imply relatively sparse local connec-
tedness of the brain functional networks [5]. Interactions 
between interconnected brain regions are believed to be a 
basis of human cognitive processes [8]. Short absolute path 
lengths have been demonstrated to promote interactions 
between and across different cortical regions [8]. The higher 
ΔLW

θ  obtained by controls in comparison with CP, may 

indicate that information interactions between intercon-
nected brain regions are slower and less efficient in SZ [8]. 
Thus, the lower clustering coefficients and the longer path 
length obtained by CP in comparison with controls support 
the SZ disconnection hypothesis and may indicate an ab-
normal organization of the brain functional network [5, 9].  

Finally, some aspects of the present research merit fur-
ther consideration. Additional work is required to compute 
other connectivity measures and to extract other network 
parameters, like centrality, efficiency or modularity. In 
addition, it could be interesting to examine the assessment 
of regional patterns.  

LW
β2
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Fig. 1 Boxplot displaying the percent of change for the network parameters in CP, MTP and controls groups. a) Clustering coefficients (∆CW) for each 
frequency band. b) Path length (∆LW) for each frequency band. Statistically significant p-values are marked with asterisks (*, p<0.05; **, p<0.01) 

V. CONCLUSIONS  

Our research analyzes the application of ERC to generate 
a graph, useful for characterizing the organization of brain 
networks. Our findings support the notion that SZ is a dis-
connection syndrome, showing frequency-dependent neural 
network alterations. 
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