
  

 

Abstract— Diabetic Retinopathy (DR) is a common cause of 

visual impairment in industrialized countries. Automatic 

recognition of DR lesions in retinal images can contribute to the 

diagnosis and screening of this disease. The aim of this study is 

to automatically detect one of these lesions: hard exudates 

(EXs). Based on their properties, we extracted a set of features 

from image regions and selected the subset that best 

discriminated between EXs and the retinal background using 

logistic regression (LR). The LR model obtained, a multilayer 

perceptron (MLP) classifier and a radial basis function (RBF) 

classifier were subsequently used to obtain the final 

segmentation of EXs. Our database contained 130 images with 

variable color, brightness, and quality. Fifty of them were used 

to obtain the training examples. The remaining 80 images were 

used to test the performance of the method. The highest 

statistics were achieved for MLP or RBF. Using a lesion based 

criterion, our results reached a mean sensitivity of 95.9% 

(MLP) and a mean positive predictive value of 85.7% (RBF). 

With an image-based criterion, we achieved a 100% mean 

sensitivity, 87.5% mean specificity and 93.8% mean accuracy 

(MLP and RBF). 

I. INTRODUCTION 

Diabetic retinopathy (DR) is an important cause of visual 
impairment among people of working age in industrialized 
countries [1]. Treatment with laser photocoagulation can 
reduce the risk of blindness and moderate vision loss by 
more than 90%, but the treatment does not restore lost vision 
[2]. Therefore, early DR detection is essential to prevent 
serious sight damage. However, this is not an easy task 
because the patient perceives no symptoms of the disease 
until the advanced stages. To ensure that treatment is 
received on time, diabetic patients should undergo periodic 
eye examinations [2]. The growing incidence of diabetes, the 
high cost of examinations and the lack of specialists prevent 
many patients from receiving effective treatment. Computer 
aided diagnosis of DR could help ophthalmologists in the 
diagnosis and follow-up of the disease, with the subsequent 
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cost and time savings. Efforts have been made to 
automatically detect early clinical signs of DR, such as hard 
exudates (EXs) [3]. EXs are lipid and lipoprotein deposits, 
white, yellowish or waxy, which appear as compact patches 
with well-defined boundaries in retinal images. Many 
different methods to detect these lesions can be found in the 
literature. Edge detectors were applied to extract EXs 
borders [4], [5]. Other authors [6] distinguished among 
bright lesions using k-NN and linear discriminant analysis 
classifiers. Neural networks (NNs) have been also applied 
for EXs segmentation [7-10]. 

The present research introduces a comparison among 
three different classifiers for EXs detection. These are a 
logistic regression (LR) model and two neural network 
classifiers: multilayer perceptron (MLP) and radial basis 
function (RBF). Hence, the aims of the present study were: 
(i) to develop an automatic method for the detection of EXs 
in retinal images, (ii) to compare the performance of three 
classifiers in this context, (iii) to assess the diagnostic 
potential of the proposed method in DR detection. 

II. MATERIAL AND METHODS 

A. Image database 

In this study, a total of 130 images were used. They were 
provided by the “Instituto de Oftalmobiología Aplicada” of 
the University of Valladolid, Spain. All of them belonged to 
healthy retinas or to patients with mild to moderate DR, 
according to a senior ophthalmologist. Thirty of these images 
were captured with a TopCon TRC-NW6S non-mydriatic 
retinal camera at a field-of-view (FOV) of 45º. The 
remaining 100 images were captured with a TopCon TRC-
50IX mydriatic retinal camera at 50º FOV. No bad quality 
images were discarded form the study. Image resolution was 
576x768 pixels in 24 bit JPEG format. A senior 
ophthalmologist manually marked the EXs in the images. 
The results of our algorithm were compared with these hand 
labeled images. The images were randomly divided into a 
training set and a test set. The training set contained EX and 
non-EX examples from 50 images in our database. The 
remaining 80 images formed the test set. 

B. Luminosity and contrast normalization 

The physical features of a patient and the image 
acquisition process produce great variability within and 
between retinal images. Thus, it is harder to distinguish 
retinal features and lesions in some areas. Preprocessing is 
necessary to normalize the images and increase the contrast 
between EXs and the background. We followed the method 
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proposed by Foracchia et al. [11], which computes the 
original undistorted image from estimates of the luminosity 
and contrast drifts of the observed image. Normalization 

yielded a color image, with color components ooo BGR ˆˆˆ . The 

effect of normalization is shown in Fig. 1(a-b). 

C. Segmentation 

The aim of the segmentation stage was to separate all the 
possible EX regions in the image. Segmentation was 
accomplished using the properties of the global and local 

histograms in 
o

Ĝ . These histograms were usually bell-

shaped. The maximum corresponded to the background and 
the right tail corresponded to the bright regions we wanted to 
segment. We set a threshold at the gray level of the right tail 
for which the histograms (global and local) decreased to the 
10% of the maximum. To calculate local histograms, the 
image was partitioned into square blocks of side 200 pixels 
(zero-padding when necessary). The resulting images were 
combined using the binary AND operation to obtain the 
candidate EX regions [9], [10]. The papillary region was 
also masked to reduce the computational cost of the 
classifiers. We used a method that combines mathematical 
morphology and Hough transform [12]. Fig. 1(c) is the result 
of segmentation. 

D. Feature extraction 

In order to classify the candidate regions into EX or non-
EX classes, a set of significant features was extracted from 
each region. We focused on those characteristics that help 
ophthalmologists to visually distinguish EXs. We selected 24 
features previously used in this context [6-10], [13]: 

 Mean ooo BGR ˆˆˆ  values inside the region (1-3). 

 Standard deviation of the ooo BGR ˆˆˆ  values inside the 

region (4-6). 

 Mean ooo BGR ˆˆˆ  value around the region (7-9). 

 Standard deviation of the ooo BGR ˆˆˆ  value around the 

region (10-12). 

 ooo BGR ˆˆˆ  values of the region centroid (13-15). 

 Region size (16). 

 Region compactness (17). 

 Region edge strength (18). 

 Homogeneity of the region, measured as the 

Shannon’s entropy of the ooo BGR ˆˆˆ  values inside the 

region (19-21). 

 Color difference of the ooo BGR ˆˆˆ  values (22-24). 

E. Feature selection 

Feature selection is aimed at choosing the most relevant 
subset of the extracted features for a specific problem. This 
is a useful step because misclassification probability tends to 
increase with the dimensionality of the input space and the 
structure of the classifier is more difficult to interpret [14]. 

LR is a statistical method commonly used for this task and is 
adequate for data sets that are not multivariate normal and 
homocedastic [15]. It analyzes the relationship between a 
dichotomous dependent variable (the class of an object) and 
several independent variables (the extracted features) [16]. If 
the possible values of the dependent variable are 0 and 1, 
and if X is the vector of independent variables, the logit 
transformation can be modeled under the LR model as [16]: 
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where Y is the dependent variable, 1 is the desired outcome, 

X is the independent variable vector and  and β are the 

parameters of the model to be identified by the maximum 
likelihood method [16]. For model selection, we used a 
stepwise forward selection method, where the inclusion of 
variables was based on the score test and the elimination of 
variables was based on the likelihood ratio test [16]. 

F. Classification 

LR can be also applied to separate patterns in two 
classes. First,  and β  are set using the training data as 

described before. Then, the probability )1( Yp  for a test 

pattern can be obtained as [16]: 
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The class of a test example can be determined by 
comparing )1( Yp  with a threshold. In this study, if 

5.0)1( Yp , the object was labeled in class 1 (class EX); 

otherwise, it was labeled as class 0 (class non-EX). The 
selection of this threshold was motivated by the 
interpretation of the outputs as posterior probabilities.  

NNs have been also successfully used in previous studies 
after a feature selection stage based on LR [10]. Thus, we 
included also two additional classifiers based on the most 
representative paradigms of NNs. MLP is an important class 
of NN classifiers [17], [18]. A single-layered MLP can 
approximate any function provided it contains enough 
hidden units and their activation function satisfies certain 
constraints [19]. In the hidden layer, we used a hyperbolic 
tangent sigmoid activation function, which improves the 
learning speed of MLP [17]. In the output layer, we used the 
logistic sigmoid (log-sigmoid) activation function. The 
outputs of log-sigmoid lie in the range (0, 1), and can be 
interpreted as posterior probabilities [18]. MLP training can 
be viewed as the minimization of an error function. We 
chose a cross-entropy error function because it simplifies the 
optimization process when log-sigmoid is used in the output 
layer. As minimization algorithm, we selected the scaled 
conjugate gradients method because of its fast convergence. 
To avoid overfitting, we used a weight decay regularizer 
[18]. The regularization parameter,  , and the number of 

hidden neurons were experimentally determined.  

RBF NNs are also universal approximators and contain 
three layers of neurons [17], [18]. The input layer receives 
the feature vectors. The hidden layer in RBF performs a 
nonlinear transform of the input space into a high 
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dimensional space, where the patterns are more likely to be 
linearly separable. The output layer is linear and provides the 
NN response [17], [18]. As hidden layer activation functions 
we chose multidimensional Gaussian functions, since they 
are translationally and rotationally invariant [17]. They are 
characterized by their centers and spread, which represents 
their width. For RBF training, we used the orthogonal least 
squares algorithm [20]. The number of radial basis functions 
and their spread were experimentally set. Classification 
examples are shown in Fig. 1(d-f). 

III. RESULTS 

A. Selected features 

We computed the 24 features described in Section II-C 
for 940 EX regions and 940 non-EX regions extracted after 
the segmentation of our training set. We used the statistical 
package SPSS (version 20; IBM Corp., Armonk, NY, USA) 
to perform LR on these data. The method selected 13 

features: (1) mean of the oR̂  value inside the region, (2) 

standard deviation of the oR̂  value inside the region, (3-5) 
mean values of the three color channels around the region, 
(6-8) standard deviation of the three color channels around 

the region, (9) oĜ value of the region centroid, (10) size, 

(11) edge strength, (12) homogeneity of the region in oĜ  

and (13) color difference of the region in oR̂ . 

B. Optimization of the parameters of MLP and RBF 

Different configurations of the NN classifiers were tested 
to find the architecture that led to the minimum prediction 
risk [19]. A 13-dimensional feature vector, which 
represented the selected features, was computed for each of 
the aforementioned 940 EX regions and 940 non-EX 
regions. To improve the behavior of NNs, the inputs were 
normalized (mean=0, standard deviation=1) and the data 
were randomly presented to the input of the network [17]. 
We used 10-fold cross-validation to asses the generalization 
ability of the NNs, as it is an estimator of the prediction risk 
[21]. For the different architectures, we measured the mean 

sensitivity (SE), specificity (SP) and accuracy (AC) obtained 
for the validation set.  

The optimum operating point for MLP was chosen with 
35 hidden neurons and 2  (SE=93.0%, SP=92.8%, 

AC=93.0%). Regarding RBF, the optimum operating point 
was obtained with 90 hidden neurons and spread =3.5 (SE 
=92.7%, SP =91.8%, AC =92.2%). 

B. Performance of the algorithm 

The performance of the complete algorithm was tested on 
80 unseen images (test set). Forty of them contained EXs and 
in the remaining 40 images the ophthalmologists did not 
mark any EXs. Our results were obtained in terms of a lesion 
based criterion (pixel resolution) and an image-based 
criterion [8-10]. With the lesion based criterion, we 
measured the mean sensitivity (SEl) and positive predictive 
value (PPVl). With an image-based criterion, we measured 
the mean sensitivity (SEi), specificity (SPi) and accuracy 
(ACi). In order to improve the performance of the system, we 
identified those images where less than 30 pixels (0.0068% 
of the total number of pixels) had been detected as EXs and 
considered them as belonging to healthy retinas [8]. Our 
results are summarized in Table I. They were obtained 
averaging the results for each image in the test set and 
considering only EXs as a marker for DR. 

IV. DISCUSSION AND CONCLUSION 

In this study, we propose an automatic method to extract 
EXs in fundus images. The algorithm was tested on 40 
images with EXs and 40 images without EXs. A set of 24 
features was statistically analyzed using LR to obtain a 
subset of 13 features with the maximum discriminatory 
power. These features were used to configure and train three 
classifiers: LR, MLP and RBF. To the best of our 
knowledge, the comparison of these classifiers has not been 
previously investigated in this context. 

The statistics in Table I show that we obtained better 
results using MLP or RBF than using LR with both criteria, 
even if feature selection relied on the results for the LR 

 

 

Figure 1.  (a) Original retinal image. (b) Normalized image. (c) Candidate EX regions obtained after segmentation, in white. (d) Final result obtained with 

LR, in blue, superimposed over the original image. A cotton wool spot, indicated with a white arrow, has been incorrectly detected as EX. (e) Final result 

obtained with MLP, in blue, superimposed over the original image. (f) Final result obtained with RBF, in blue, superimposed over the original image. 
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classifier. This fact highlights the utility of NNs in retinal 
image analysis. The disadvantage of MLP and RBF over LR 
is that they require longer training times, especially when 
cross-validation is applied. Besides, the values of SEi in 
Table I show that we detected all images with EXs using all 
classifiers. These results can be considered satisfactory 
according to [22], where the authors stated that SEi equal or 
greater than 60% maximizes cost-effectiveness in screening 
for DR. We also detected some false positives, as SPi values 
in Table I indicate. However, for computer-aided DR 
screening, it is more important to correctly classify all 
patients with sight-threatening DR (high sensitivity), even if 
it involves misclassifying some healthy subjects. 

The detection of EXs in retinal images has also been 
analyzed in previous studies. Walter et al. [4] report lesion-
based and image-based statistics. They obtained SEl=92.8% 
and PPVl=92.4%, SEi=100% and SPi=86.7%. However, the 
distinction between EXs and other bright lesions was not 
addressed. Li and Chutatape [5] obtained SEi=100% and 
ACi=74% using edge detectors. The differentiation among 
different bright lesions is addressed in [6]. They obtained 
SEi=95.0% and SPi=86.0%. A set of 86 features was studied 
in the final classification stage. Other authors [7] used a 
Support Vector Machine (SVM) classifier. They obtained 
SEl=88.0% and PPVl=84.0%. The results given for the work 
by Osareh [8] reach SEl =90.0%, PPVl =89.3%, SEi=95.0% 
and SPi=88.9%. They studied MLP and SVM classifiers. 
The results in some of these works are above the statistics in 
Table I. However, it is impossible to objectively contrast our 
results with those reported in literature because the databases 
and performance measures vary among studies. 

The proposed method presents some limitations that 
merit consideration. Despite the normalization step, the color 
and size of EXs can differ even within the same eye. This 
makes it difficult to detect all of them, specially the most 
subtle lesions. Besides, it would be desirable to test whether 
the proposed method is appropriate to analyze images from 
different cameras and showing a wide variety of lesions. In 
this sense, future works would be aimed at testing the 
proposed methodology on publicly available databases like 
DIARETDB0 and DIARETDB1. We would also try to study 
additional features and detect other types of lesions to grade 
the evolution of DR. 

In conclusion, the use of automatic methods based on 
NNs can be adequate for lesion detection in retinal images 
and could serve as a diagnostic aid for ophthalmologists in 
the screening for DR.  
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TABLE I.  PERFORMANCE OF LR AND MLP FOR EX DETECTION 

Neural 

Network 

Lesion-based criterion Image-based criterion 

SEl (%) PPVl (%) SEi (%) SPi (%) ACi (%) 

LR 95.1 84.0 100 77.5 88.8 

MLP 95.9 84.5 100 87.5 93.8 

RBF 86.9 85.7 100 87.5 93.8 

SEl = lesion-based sensitivity, PPVl = lesion-based positive predictive value, SEi = image-based 

sensitivity, SPi = image-based specificity, ACi = image-based accuracy. 
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