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Abstract— In this work, we analyze power spectral density 
(PSD) from single-channel airflow (AF) in the context of sleep 
apnea-hypopnea syndrome (SAHS) diagnosis. PSDs from 
SAHS-positive and SAHS-negative subjects were compared 
through Mann-Whitney test to find bands of interest. Thereby, 
we characterized three spectral bands (BW1-BW3) by their 
relative power (PR1-PR3) and established relationships with 
apneas and hypopneas. Then, the single and joint diagnostic 
ability of PR1-PR3 was assessed by means of K-nearest 
neighbours (KNN), Fisher’s linear discriminant (FLD), and 
logistic regression (LR) classifiers. The KNN and LR models, 
obtained from PR1-PR3, showed the best diagnostic ability after 
a leave-one-out cross-validation procedure. 87.7%-84.2% 
accuracy and 0.799-0.853 area under receiver operating 
characteristics curve (AROC) were achieved, respectively. Our 
results suggest that the bands of interest we defined are related 
to apneas and hypopneas and, therefore, can be useful in SAHS 
diagnosis.  

I. INTRODUCTION  

The sleep apnea-hypopnea syndrome (SAHS) is a chronic 
disease characterized by recurrent episodes of total absence 
(apneas) or significant reduction (hypopnoeas) of airflow 
(AF) during sleep. SAHS is highly prevalent in western 
countries since up to 5% men and 2% women are affected 
[1]. It has been usually related to major cardiovascular 
illnesses [2], occupational accidents [3], and motor-vehicle 
collisions [4]. Recently, it has been also associated with 
cancer incidence [5].  

Overnight polysomnography (PSG) is the standard test to 
diagnose SAHS. PSG involves monitoring and recording 
multiple physiological signals from patients, such as 
electroencephalogram (EEG), electrocardiogram (ECG), 
oxygen saturation (SpO2) or AF. The origin of the signals can 
be electrical or mechanical and each one can involve one or 
several channels. The specialists perform an offline 
inspection of the signals to derive apnea-hypopnea index 
(AHI), which is used to establish SAHS and its severity. 
Hence, PSG is complex, costly, and time-consuming [6]. 

New diagnostic alternatives are needed in order to overcome 
these drawbacks. 
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Reduced sets of signals from PSG have been commonly 
investigated to decrease the complexity of SAHS diagnosis.  
In this preliminary work, we analyze single-channel AF, 
acquired with a nasal prong pressure (NPP) sensor. Since AF 
signal is directly modified by apneas and hypopneas [7], its 
study is a natural way of dealing with SAHS detection. 
Moreover, the recurrence of apneic events leads to a 
frequency analysis of AF. Previous studies successfully 
performed spectral analysis to investigate SAHS [8], [9], 
[10]. Thus, the study of spectral bands of interest is proposed. 

The main objective is to evaluate how apneas and 
hypopneas modify the spectral information contained in AF 
of SAHS patients. Hence, we automatically compare the 
power spectral density (PSD) of AF recordings from SAHS-
positive and SAHS-negative subjects in order to find 
differences along frequencies. Spectral bands are defined by 
the observation of these differences. The relative power of 
the bands is used to characterize them. The relationship 
between relative power, apneas and hypopneas is evaluated. 
Finally, we assess the single and joint diagnostic ability of 
data from the bands through K-nearest neighbours (KNN), 
Fisher’s linear discriminant (FLD) and logistic regression 
(LR) classifiers [11]. We hypothesize that apneas and 
hypopneas modify the AF PSDs of SAHS patients in certain 
bands of interest. Hence, the information contained in these 
bands could be useful to assist in SAHS diagnosis.  

II. SUBJECTS AND SIGNALS  

This study was conducted involving 57 subjects (45 
SAHS-positive and 12 SAHS-negative). The AF recordings 
were acquired during overnight PSG through a NPP. The 
sample rate was 128 Hz. PSGs were carried out with a 
polygraph (E-Series, Compumedics) in the sleep unit of the 
Hospital Universitario Río Hortega (Valladolid, Spain). 
Physicians scored apneas and hypopneas according to the 
American Academy of Sleep Medicine (AASM) rules [7]. 
They established AHI = 10 events per hour (e/h) as the 
threshold for a positive diagnosis. All subjects were 
suspected of suffering from SAHS before undergoing PSG 
due to common symptoms like daytime sleepiness, loud 
snoring, nocturnal choking and awakenings, and referring 
apnoeic events. Table I shows some clinical and demographic 
data from the sample, including AHI, apnea index (AI), and 
hypopnea index (HI). The Review Board on Human Studies 
accepted the protocol. All the subjects gave their informed 
consent to participate in the study.       
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TABLE I.  DEMOGRAPHIC AND CLINICAL DATA 

 
Figure 1.  Average of the SAHS-positive and SAHS-negative normalized 

PSDs 

Features All SAHS+ SAHS- 
# Subjects 57 45 12 
Age (years) 51.3±16.3 54.0±15.8 41.5±14.8 
Men (%) 71.9 75.5 58.3 
BMIa (kg/m2) 30.3±6.7 30.5±6.8 29.2±6.5 
Rcording Time (h) 7.26±0.40 7.25±0.41 7.27±0.38 
AHIa (e/h) 39.3±31.7 48.2±29.9 6.1±2.5 
AIa (e/h) 21.2±27.9 26.4±29.3 1.9±1.5 
HIa (e/h) 18.1±13.2 21.8±13.3 4.2±1.6 

a. BMI: Body Mass Index;AHI: Apnea-Hypopnoea Index AI: Apnea Index; HI: Hypopnea Index 

III. METHODS  

A. Power Spectral Density Estimation 
The power spectral density (PSD) of the recordings was 

estimated using the non-parametric Welch method, which is 
suitable for non-stationary signal analysis [12]. A Hamming 
window of 215 samples, along with 50% overlap and 216-point 
discrete Fourier transform (DFT), was used. Then each PSD 
was normalized (PSDn) by dividing the amplitude values by 
its total power.  Fig. 1 displays the average of the SAHS-
positive and SAHS-negative normalized PSDs. Clear peaks 
are observed around the normal respiratory rate (0.25 Hz.) 
[13]. No studies showing a maximum respiratory rate in 
SAHS patients were found. However, up to 64 breathings per 
minute were reported involving other respiratory diseases 
[14]. Thus, we applied a low-pass filter using a cutoff 
frequency of 1.2 Hz. 

 
Figure 2.  p-value vs. frequency representation 

B. Spectral Bands of Interest  
We compared the PSDs from SAHS-positive and SAHS-

negative groups to establish spectral bands of interest. The 
non-parametric Mann-Whitney test was applied to the PSD 
amplitude values at each frequency. Following this 
procedure, we observed 3 frequency ranges presenting 
statistical significance differences (p-value < 0.01):  

- BW1: 0.007-0.086 Hz.  
- BW2: 0.457-0.498 Hz.  
- BW3: 0.707-0.810 Hz.  

Fig. 2 shows the p-value vs. frequency representation. 
Since respiratory rate at rest is around 0.25 Hz, BW1, BW2, 
and BW3 correspond to abnormal frequencies. We 
characterized the three bands by obtaining their relative 
power (PR1-PR3), which can be computed as follows: 

       
 ∑

=
==

N

i

f

ff
iR NifPSDnP

1

,...,2,1),( (1) 

 

where N is the number of points in the band, and fi  each 
frequency component. 

C. Classifiers  
1) K-nearest neighbours 
KNN is a classifier based on the probability density 

estimation of the classes [11]. The probability of a class Ci 
given a pattern xj (posterior probability, p(Ci|xj)) is estimated 
according to the nearest neighbours of xj [11]: 
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where Ki is the number of nearest neighbours belonging Ci 
and K is the total number of nearest neighbours. Thus xj is 
assigned to the class with the largest posterior probability. K 
has to be adjusted by the user. Values of K too small could 
lead to noisy density estimation whereas too large values 
could equate posterior probabilities with prior probabilities 
[11]. A bootstrapping procedure was used to set up an 
appropriate K. Thus, 1000 new samples of size 57 were 
formed by resampling with replacement the original group 
[11].  Fig. 3 displays the evolution with K of the average 
accuracy of these samples. In order to keep the complexity of 
the model as low as possible, we selected K = 16 since no 
substantial improvement was observed from this value. 
Notice that choosing a K value above 23 has no sense since 
each new pattern would be always assigned to the SAHS-
positive group. 
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Figure 3. Evolution with K of the average accuracy.  

2) Fisher’s linear discriminant 
In a two-class problem, FLD methodology projects data x 

into a one dimension space following: 

,xwT=y  (3) 
 

where w is the weight vector which performs the projection, 
and x a d-dimensional vector containing data from the 
classes. The objective is to optimize w such that the ratio of 
the between-class variance to the within-class variance is 
maximized [11]. Thereby, the separation of classes in the 
projected space is also maximized. Then, the two means of 
the projected data from classes (m1, m2) are computed. A new 
pattern is assigned to class Ci when its projection is closer to 
the corresponding mi. 

3) Logistic regression 
The LR classifier estimates posterior probabilities of a 

class Ci by the use of the logistic function. This function 
depends on linear combinations of inputs xj [15]:   
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where w0 and w are computed following the maximum 
likelihood criterion by weighted least squares procedure  
[15].  As expected, a pattern xj is assigned to the class with 
larger posterior probability. 
D. Statistical Analysis  

The Spearman’s coefficient ρ was used to assess the 
correlation between PR1-PR3 and the apneic events. 
Additionally, non-linear relationships with AHI, AI, and HI 
were evaluated by symmetrical uncertainty (SU). SU is a 
normalization of mutual information which ranges 0-1 [16]: 1 
indicates that knowing one variable it is possible to 
completely predict the other, whereas 0 indicates that the two 
variables are independent [17]. We also evaluated the single 
and joint diagnostic ability of PR1-PR3. Thus, we computed 
the area under the receiver operating characteristics curve 
(AROC), sensitivity (Se, proportion of SAHS-positive 
patients correctly classified), specificity (Sp, proportion of 
SAHS-negative subjects correctly classified), accuracy (Acc, 
percentage of subjects correctly classified over the entire 
sample), positive predictive value (PPV, proportion of 
positive test results which are true positives) and negative 
predictive value (NPV, proportion of negative test results 
which are true negatives). These values were obtained 

following a leave-one-out cross-validation (loo-cv) 
procedure. 

IV. RESULTS 

A. Relationship between bands of interest and apneic events  
Table II summarizes the results of the correlation (ρ) and 

SU analysis. We observed that the relative power from the 
very low band, BW1, was significantly correlated with apneas 
but it was not with hypopneas. Conversely, the spectral 
power from BW2 and BW3 was significantly correlated with 
hypopneas but it was not with apneas. SU agrees with these 
results. It shows a higher value for apneas in the case of BW1, 
and higher values for hypopneas in the case of BW2 and 
BW3. Hence, monotonic and non-linear relationships were 
stronger when considering BW1 and apneas, and the same 
happened in the evaluation of BW2, BW3 and hypopneas. 

B. Diagnostic ability assessment  
Table III shows the diagnostic ability results for single 

PR1, PR2, and PR3. It also displays the performance of the 
models obtained applying KNN, FLD and LR to a matrix 
containing the three relative powers. All results were 
achieved following loo-cv. PR2 reached the highest AROC 
(0.789) and PR3 the highest Acc (80.7%) when assessing 
single performance. However, KNN and LR models 
outperformed single features reaching 0.799-0.853 AROC 
and 87.7%-84.2% Acc, respectively. FLD achieved the 
highest values of Sp (83.3%) and PPV (94.3%), but both Acc 
and AROC were low (73.3% and 0.682).   

V. DISCUSSION AND CONCLUSIONS  

In this paper, the spectral information from single-channel 
AF was evaluated to help in SAHS diagnosis. We used 
Mann-Whitney test to find three spectral bands showing 
statistical significant differences between SAHS-positive and 
SAHS-negative groups. BW1 was defined under the normal 
respiratory rate and its relative power was significantly 
correlated with apneas. BW2 and BW3 were above the normal 
respiratory rate and their relative power was significantly 
correlated with hypopneas. Since apneas are defined as the 
absence of AF during 10 seconds or more [7], these events 
must affect PSD under 0.1 Hz. BW1, therefore, is consistent 
with the pathophysiology of apneas. Moreover, previous 
studies reported signs of an increase in respiratory rate in the 
presence of hypopneas [10]. This could support our findings 
in BW2 and BW3. However, more research is needed to 
confirm it. SU results agreed with the Spearman analysis of 

TABLE II.  RELATIONSHIP BETWEEN THE BANDS OF INTEREST AND APNEIC 
EVENTS 

Features  AHI AI HI 

PR1 
ρ 0.561∗ 0.593∗ 0.200 

SU 0.329 0.382 0.157 

PR2 
ρ 0.342∗ 0.236 0.380∗ 

SU 0.170 0.134 0.160 

PR3 
ρ 0.318 0.166 0.441∗ 

SU 0.209 0.164 0.259 
*Statistically significant correlation (p-value < 0.01) 
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TABLE III.  DIAGNOSTIC ABILITY THROUGH LEAVE-ONE-OUT CROSS-
VALIDATION 

 Se(%) Sp(%) Acc(%) PPV(%) NPV(%) AROC 

PR1 68.9 66.7 68.4 88.6 36.4 0.778 

PR2 77.7 66.7 75.4 89.7 44.4 0.789 

PR3 84.4 66.7 80.7 90.5 53.3 0.738 

KNN 91.1 75.0 87.7 93.2 69.2 0.799 

FLD 73.3 83.3 73.7 94.3 45.5 0.682 

LR 88.9 66.7 84.2 90.9 61.5 0.853 
 

correlation. The non-linear relationship with apneas was 
higher for BW1 whereas the non-linear relationship with 
hypopneas was higher for BW2 and BW3. Nonetheless, the 
SU values were all low. 

KNN, FLD and LR models were obtained using the three 
relative powers from BW1-BW3. KNN and LR widely 
outperformed PR1, PR2, and PR3 in terms of accuracy (87.7% 
and 84.2%). They also achieved higher AROC values (0.799 
and 0.854). FLD reached low Acc and AROC, which could 
be explained by the underlying linearity assumption of the 
method. These results suggest that BW1-BW3 contain 
complementary and useful information about SAHS. Recent 
studies focused on automatic detection of SAHS through data 
from AF [18-21]. Sample sizes ranged between 30 and 200. 
Se, Sp, PPV and NPV ranged 82.1-97.0%, 76.0-90.0%, 50-
82.1% and 83.9-100%, respectively (AHI threshold = 10 e/h). 
None of them performed a global analysis of AF signal. All 
were aimed at scoring respiratory events. Although the goal 
of this preliminary study is not to achieve the highest 
diagnostic performance but to show the utility of the defined 
spectral bands, our diagnostic ability results are close to these 
successful works.  

Some limitations have to be addressed. The sample size 
should be larger to improve the generalizability of results and 
the number of SAHS-negative subjects should be higher. A 
large enough sample could allow the use of a training group 
from which independently deriving the spectral bands of 
interest and the K value for KNN. The use of a p-value = 0.01 
to define the bands is also a limitation. However, although 
the limits of the bands could change, results reported in this 
study are consistent enough to suggest that SAHS modifies 
spectral information under and above the normal respiratory 
range. Another limitation is presented when using AHI = 10 
e/h as the threshold for SAHS diagnosis. Despite it is a 
widely used cutoff, others are often considered to establish 
SAHS and its severity (5, 15, 20, 30, e/h) [18-21]. Our 
methodology could easily be adapted to these values, and the 
corresponding results would complete this study.  

In summary, after analyzing single-channel AF 
recordings we defined three spectral bands of interest located 
into abnormal respiratory ranges. We found significant 
correlations between their relative powers, apneas, and 
hypopneas. KNN and LR classifiers applied to these relative 
powers showed high diagnostic performance. These results 
suggest that the information included in the defined bands are 
related to apneas and hypopneas, and can be useful to assist 
in SAHS diagnosis. 
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